Displaying all 20 publications

  1. Yeo SK, Ong JS, Liong MT
    Appl Biochem Biotechnol, 2014 Oct;174(4):1496-1509.
    PMID: 25119552 DOI: 10.1007/s12010-014-1141-6
    This study aimed to evaluate the effects of electroporation on growth, bioconversion of isoflavones, and probiotic properties of parent organisms and subsequent passages of Bifidobacterium longum FTDC 8643. Electroporation with the strength of electric field at 7.5 kV cm(-1) for 3.5 ms was applied on B. longum FTDC 8643. The viability of B. longum FTDC 8643 increased significantly upon treatment with electroporation. Such treatment also enhanced the intracellular and extracellular β-glucosidase activity, leading to enhanced production of bioactive isoflavone aglycones in mannitol-soymilk (P 
    Matched MeSH terms: Bacterial Adhesion/drug effects
  2. Hamzah N, Kasmuri N, Tao W, Singhal N, Padhye L, Swift S
    Braz J Microbiol, 2020 Sep;51(3):1317-1326.
    PMID: 32399689 DOI: 10.1007/s42770-020-00295-0
    Bacterial adhesion on surfaces is an essential initial step in promoting bacterial mobilization for soil bioremediation process. Modification of the cell surface is required to improve the adhesion of bacteria. The modification of physicochemical properties by rhamnolipid to Pseudomonas putida KT2442, Rhodococcus erythropolis 3586 and Aspergillus brasiliensis ATCC 16404 strains was analysed using contact angle measurements. The surface energy and total free energy of adhesion were calculated to predict the adhesion of both bacteria strains on the A. brasiliensis surface. The study of bacterial adhesion was carried out to evaluate experimental value with the theoretical results. Bacteria and fungi physicochemical properties were modified significantly when treated with rhamnolipid. The adhesion rate of P. putida improved by 16% with the addition of rhamnolipid (below 1 CMC), while the increase of rhamnolipid concentration beyond 1 CMC did not further enhance the bacterial adhesion. The addition of rhamnolipid did not affect the adhesion of R. erythropolis. A good relationship has been obtained in which water contact angle and surface energy of fungal surfaces are the major factors contributing to the bacterial adhesion. The adhesion is mainly driven by acid-base interaction. This finding provides insight to the role of physicochemical properties in controlling the bacterial adhesion on the fungal surface to enhance bacteria transport in soil bioremediation.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  3. Hui YW, Dykes GA
    J Food Prot, 2012 Aug;75(8):1507-11.
    PMID: 22856578 DOI: 10.4315/0362-028X.JFP-12-062
    The use of simple crude water extracts of common herbs to reduce bacterial attachment may be a cost-effective way to control bacterial foodborne pathogens, particularly in developing countries. The ability of water extracts of three common Malaysian herbs (Andrographis paniculata, Eurycoma longifolia, and Garcinia atroviridis) to modulate hydrophobicity and attachment to surfaces of five food-related bacterial strains (Bacillus cereus ATCC 14576, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 10145, Salmonella Enteritidis ATCC 13076, Staphylococcus aureus ATCC 25923) were determined. The bacterial attachment to hydrocarbon assay was used to determine bacterial hydrophobicity. Staining and direct microscopic counts were used to determine attachment of bacteria to glass and stainless steel. Plating on selective media was used to determine attachment of bacteria to shrimp. All extracts were capable of either significantly ( P < 0.05) increasing or decreasing bacterial surface hydrophobicity, depending on the herb extract and bacteria combination. Bacterial attachment to all surfaces was either significantly (P < 0.05) increased or decreased, depending on the herb extract and bacteria combination. Overall, hydrophobicity did not show a significant correlation (P > 0.05) to bacterial attachment. For specific combinations of bacteria, surface material, and plant extract, significant correlations (R > 0.80) between hydrophobicity and attachment were observed. The highest of these was observed for S. aureus attachment to stainless steel and glass after treatment with the E. longifolia extract (R = 0.99, P < 0.01). The crude water herb extracts in this study were shown to have the potential to modulate specific bacterial and surface interactions and may, with further work, be useful for the simple and practical control of foodborne pathogens.
    Matched MeSH terms: Bacterial Adhesion/drug effects*
  4. Rahim ZH, Thurairajah N
    J Appl Oral Sci, 2011 Apr;19(2):137-46.
    PMID: 21552715
    INTRODUCTION: Previous studies have shown that Piper betle L. leaves extract inhibits the adherence of Streptococcus mutans to glass surface, suggesting its potential role in controlling dental plaque development.

    OBJECTIVES: In this study, the effect of the Piper betle L. extract towards S. mutans (with/without sucrose) using scanning electron microscopy (SEM) and on partially purified cell-associated glucosyltransferase activity were determined.

    MATERIAL AND METHODS: S. mutans were allowed to adhere to glass beads suspended in 6 different Brain Heart Infusion broths [without sucrose; with sucrose; without sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1)); with sucrose containing the extract (2 mg mL(-1) and 4 mg mL(-1))]. Positive control was 0.12% chlorhexidine. The glass beads were later processed for SEM viewing. Cell surface area and appearance and, cell population of S. mutans adhering to the glass beads were determined upon viewing using the SEM. The glucosyltransferase activity (with/without extract) was also determined. One- and two-way ANOVA were used accordingly.

    RESULTS: It was found that sucrose increased adherence and cell surface area of S. mutans (p<0.001). S. mutans adhering to 100 µm² glass surfaces (with/without sucrose) exhibited reduced cell surface area, fluffy extracellular appearance and cell population in the presence of the Piper betle L. leaves extract. It was also found that the extract inhibited glucosyltransferase activity and its inhibition at 2.5 mg mL(-1) corresponded to that of 0.12% chlorhexidine. At 4 mg mL(-1) of the extract, the glucosyltransferase activity was undetectable and despite that, bacterial cells still demonstrated adherence capacity.

    CONCLUSION: The SEM analysis confirmed the inhibitory effects of the Piper betle L. leaves extract towards cell adherence, cell growth and extracellular polysaccharide formation of S. mutans visually. In bacterial cell adherence, other factors besides glucosyltransferase are involved.

    Matched MeSH terms: Bacterial Adhesion/drug effects*
  5. Rahim ZH, Khan HB
    J Oral Sci, 2006 Sep;48(3):117-23.
    PMID: 17023743
    A study was conducted to compare the efficiency of crude aqueous (CA) and solvent extracts (CM) of clove on the caries-inducing properties of Streptococcus mutans. The cariogenic properties investigated included the cell adhesion, cell-surface hydrophobicity and glucan synthesis activities of S. mutans. There was a significant difference between the effect of the CA and CM extracts on the adhesion of S. mutans (P < 0.05) within a concentration range of 5-15 mg/ml, the CM extract demonstrating a slightly higher inhibitory effect. However, the effect of the CM extract on the cell-surface hydrophobicity of S. mutans was weaker than that of the CA extract. The two extracts were found to reduce the synthesis of water-insoluble glucan (WIG) by almost 50% at a concentration as low as 0.5 mg/ml and the CM extract exhibited a significantly higher inhibitory effect than the CA extract (P < 0.05). The present findings indicate that both the CA and CM extracts exert inhibitory effects on the cariogenic properties of S. mutans and that the CA extract is as equally effective as the CM extract.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  6. Razak FA, Rahim ZH
    J Oral Sci, 2003 Dec;45(4):201-6.
    PMID: 14763515
    The aqueous extracts of Piper betle and Psidium guajava were prepared and tested for their anti-adherence effect on the adhesion of early plaque settlers (Strep. mitis, Strep. sanguinis and Actinomyces sp.). The saliva-coated glass surfaces were used to simulate the pellicle-coated enamel surface in the oral cavity. Our results showed that the anti-adherence activities of Piper betle and Psidium guajava extracts towards the bacteria were different between the bacterial species. Psidium guajava was shown to have a slightly greater anti-adherence effect on Strep. sanguinis by 5.5% and Actinomyces sp. by 10% and a significantly higher effect on Strep. mitis (70%) compared to Piper betle. The three bacterial species are known to be highly hydrophobic, and that hydrophobic bonding seemed to be an important factor in their adherence activities. It is therefore suggested that the plant extracts, in expressing their anti-adherence activities, could have altered the hydrophobic nature of the bonding between the bacteria and the saliva-coated glass surfaces.
    Matched MeSH terms: Bacterial Adhesion/drug effects*
  7. Omar MS, Damanhuri NS, Kumolosasi E
    Turk J Gastroenterol, 2017 Jan;28(1):53-59.
    PMID: 27991853 DOI: 10.5152/tjg.2016.0409
    BACKGROUND/AIMS: Helicobacter pylori is a carcinogenic bacterium that could induce P-glycoprotein expression in the human gastrointestinal tract. Bacterial adherence to the gastrointestinal cell lines could be influenced by the level of P-glycoprotein. This study aimed to determine the influence of proton pump inhibitors that exhibit an inhibitory effect on P-glycoprotein in gastrointestinal carcinoma cell lines, namely Caco-2 and LS174T, in relation to H. pylori adherence.

    MATERIALS AND METHODS: Caco-2 and LS174T cells lines treated with omeprazole and esomeprazole were used in this study to assess the bacterial attachment of H. pylori within certain incubation periods.

    RESULTS: The presence of proton pump inhibitors increased the H. pylori adherence in a time-dependent manner in both Caco-2 and LS174T cell lines. The double inhibition of P-glycoprotein using proton pump inhibitor and P-glycoprotein inhibitor caused low P-glycoprotein expression in the cell lines, resulting in higher H. pylori adherence compared to the control cell lines.

    CONCLUSION: Proton pump inhibitors may alter P-glycoprotein expression in the gastrointestinal tract, and subsequently H. pylori adherence on the cell lines, and may contribute to resistance to drug therapy.

    Matched MeSH terms: Bacterial Adhesion/drug effects*
  8. Shafiei Z, Rahim ZHA, Philip K, Thurairajah N, Yaacob H
    Arch Oral Biol, 2020 Jan;109:104554.
    PMID: 31563709 DOI: 10.1016/j.archoralbio.2019.104554
    OBJECTIVE: Psidium sp., Mangifera sp. and Mentha sp. and its mixture (PEM) are known to have antimicrobial and anti-adherence effects.

    DESIGN: Here, we have investigated these individual plant extracts and its synergistic mixture (PEM) for its anti-cariogenic effect to reduce populations of single and mixed-species of Streptococcus sanguinis and Streptococcus mutans in a planktonic or/and biofilm and their others reduced virulence. Bacterial populations in the biofilm after 24 h, hydrophobic cell surface activity to n-hexadecane and pH changes at 5 min' intervals until 90 min of incubation were recorded. Total phenolic content and bioactive compounds in the crude aqueous plant extracts were analysed. Regulatory gene expressions of S. mutans adhesins genes (gtfB, gtfC, gbpB and spaP) upon treatment with PEM were investigated in planktonic and biofilm conditions.

    RESULTS: All plant extracts strongly reduced S. mutans in the biofilm compared to S. sanguinis in single and mixed-species. PEM reduced S. mutans by 84% with S. sanguinis 87% in the mixed population. Psidium sp. and PEM highly reduced cell-surface hydrophobicity of the two bacteria thus reducing adherence and biofilm formation. PEM and Mangifera sp. lowered initial pH change in the mixed populations of S. sanguinis and S. mutans. PEM downregulated the S. mutans gtfB gene expression in the single species planktonic and mixed-species biofilms.

    CONCLUSIONS: The effectiveness of PEM in reducing S. mutans within the biofilm, cell-surface hydrophobicity, acid production and adhesin gene (gtfB) expression in mixed-species with S. sanguinis indicates its potential as an antibacterial agent against dental caries. This is attributed to the phenolic content in the PEM.

    Matched MeSH terms: Bacterial Adhesion/drug effects
  9. Wu XH, Liew YK, Mai CW, Then YY
    Int J Mol Sci, 2021 Mar 24;22(7).
    PMID: 33805207 DOI: 10.3390/ijms22073341
    Medical devices are indispensable in the healthcare setting, ranging from diagnostic tools to therapeutic instruments, and even supporting equipment. However, these medical devices may be associated with life-threatening complications when exposed to blood. To date, medical device-related infections have been a major drawback causing high mortality. Device-induced hemolysis, albeit often neglected, results in negative impacts, including thrombotic events. Various strategies have been approached to overcome these issues, but the outcomes are yet to be considered as successful. Recently, superhydrophobic materials or coatings have been brought to attention in various fields. Superhydrophobic surfaces are proposed to be ideal blood-compatible biomaterials attributed to their beneficial characteristics. Reports have substantiated the blood repellence of a superhydrophobic surface, which helps to prevent damage on blood cells upon cell-surface interaction, thereby alleviating subsequent complications. The anti-biofouling effect of superhydrophobic surfaces is also desired in medical devices as it resists the adhesion of organic substances, such as blood cells and microorganisms. In this review, we will focus on the discussion about the potential contribution of superhydrophobic surfaces on enhancing the hemocompatibility of blood-contacting medical devices.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  10. Yong YY, Ong MWK, Dykes G, Choo WS
    FEMS Microbiol Lett, 2021 01 26;368(1).
    PMID: 33338235 DOI: 10.1093/femsle/fnaa214
    Staphylococcus aureus and Pseudomonas aeruginosa are bacteria that cause biofilm-associated infections. The aim of this study was to determine the activity of combined betacyanin fractions from Amaranthus dubius (red spinach) and Hylocereus polyrhizus (red pitahaya) against biofilms formed by co-culture of S. aureus and P. aeruginosa on different polymer surfaces. Various formulations containing different concentrations of the betacyanin fractions were investigated for biofilm-inhibiting activity on polystyrene surfaces using crystal violet assay and scanning electron microscopy. A combination of each betacyanin fraction (0.625 mg mL-1) reduced biofilm formation of five S. aureus strains and four P. aeruginosa strains from optical density values of 1.24-3.84 and 1.25-3.52 to 0.81-2.63 and 0.80-1.71, respectively. These combined fractions also significantly inhibited dual-species biofilms by 2.30 and reduced 1.0-1.3 log CFU cm-2 bacterial attachment on polymer surfaces such as polyvinyl chloride, polyethylene, polypropylene and silicone rubber. This study demonstrated an increase in biofilm-inhibiting activity against biofilms formed by two species using combined fractions than that by using single fractions. Betacyanins found in different plants could collectively be used to potentially decrease the risk of biofilm-associated infections caused by these bacteria on hydrophobic polymers.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  11. Santiago C, Lim KH, Loh HS, Ting KN
    Molecules, 2015 Mar 10;20(3):4473-82.
    PMID: 25764489 DOI: 10.3390/molecules20034473
    Formation of biofilms is a major factor for nosocomial infections associated with methicillin-resistance Staphylococcus aureus (MRSA). This study was carried out to determine the ability of a fraction, F-10, derived from the plant Duabanga grandiflora to inhibit MRSA biofilm formation. Inhibition of biofilm production and microtiter attachment assays were employed to study the anti-biofilm activity of F-10, while latex agglutination test was performed to study the influence of F-10 on penicillin-binding protein 2a (PBP2a) level in MRSA biofilm. PBP2a is a protein that confers resistance to beta-lactam antibiotics. The results showed that, F-10 at minimum inhibitory concentration (MIC, 0.75 mg/mL) inhibited biofilm production by 66.10%; inhibited cell-surface attachment by more than 95%; and a reduced PBP2a level in the MRSA biofilm was observed. Although ampicilin was more effective in inhibiting biofilm production (MIC of 0.05 mg/mL, 84.49%) compared to F-10, the antibiotic was less effective in preventing cell-surface attachment. A higher level of PBP2a was detected in ampicillin-treated MRSA showing the development of further resistance in these colonies. This study has shown that F-10 possesses anti-biofilm activity, which can be attributed to its ability to reduce cell-surface attachment and attenuate the level of PBP2a that we postulated to play a crucial role in mediating biofilm formation.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  12. Veerachamy S, Yarlagadda T, Manivasagam G, Yarlagadda PK
    Proc Inst Mech Eng H, 2014 Oct;228(10):1083-99.
    PMID: 25406229 DOI: 10.1177/0954411914556137
    Biofilms are a complex group of microbial cells that adhere to the exopolysaccharide matrix present on the surface of medical devices. Biofilm-associated infections in the medical devices pose a serious problem to the public health and adversely affect the function of the device. Medical implants used in oral and orthopedic surgery are fabricated using alloys such as stainless steel and titanium. The biological behavior, such as osseointegration and its antibacterial activity, essentially depends on both the chemical composition and the morphology of the surface of the device. Surface treatment of medical implants by various physical and chemical techniques are attempted in order to improve their surface properties so as to facilitate bio-integration and prevent bacterial adhesion. The potential source of infection of the surrounding tissue and antimicrobial strategies are from bacteria adherent to or in a biofilm on the implant which should prevent both biofilm formation and tissue colonization. This article provides an overview of bacterial biofilm formation and methods adopted for the inhibition of bacterial adhesion on medical implants.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  13. Wang Y, Chung FF, Lee SM, Dykes GA
    BMC Res Notes, 2013;6:143.
    PMID: 23578062 DOI: 10.1186/1756-0500-6-143
    Tea has been suggested to promote oral health by inhibiting bacterial attachment to the oral cavity. Most studies have focused on prevention of bacterial attachment to hard surfaces such as enamel.
    Matched MeSH terms: Bacterial Adhesion/drug effects*
  14. Wang Y, Lee SM, Dykes GA
    Biofouling, 2013;29(3):307-18.
    PMID: 23528127 DOI: 10.1080/08927014.2013.774377
    Tea can inhibit the attachment of Streptococcus mutans to surfaces and subsequent biofilm formation. Five commercial tea extracts were screened for their ability to inhibit attachment and biofilm formation by two strains of S. mutans on glass and hydroxyapatite surfaces. The mechanisms of these effects were investigated using scanning electron microscopy (SEM) and phytochemical screening. The results indicated that extracts of oolong tea most effectively inhibited attachment and extracts of pu-erh tea most effectively inhibited biofilm formation. SEM images showed that the S. mutans cells treated with extracts of oolong tea, or grown in medium containing extracts of pu-erh tea, were coated with tea components and were larger with more rounded shapes. The coatings on the cells consisted of flavonoids, tannins and indolic compounds. The ratio of tannins to simple phenolics in each of the coating samples was ∼3:1. This study suggests potential mechanisms by which tea components may inhibit the attachment and subsequent biofilm formation of S. mutans on tooth surfaces, such as modification of cell surface properties and blocking of the activity of proteins and the structures used by the bacteria to interact with surfaces.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  15. Razak FA, Othman RY, Rahim ZH
    J Oral Sci, 2006 Jun;48(2):71-5.
    PMID: 16858135
    The adhesion of early settlers of dental plaque to the tooth surface has a role in the initiation of the development of dental plaque. The hydrophobic surface properties of the bacteria cell wall are indirectly responsible for the adhesion of the bacteria cell to the acquired pellicle on the tooth surfaces. In this study, the effect of aqueous extract of two plants (Psidium guajava and Piper betle) on the cell-surface hydro-phobicity of early settlers of dental plaque was determined in vitro. Hexadecane, a hydrocarbon was used to represent the hydrophobic surface of the teeth in the oral cavity. It was found that treatment of the early plaque settlers with 1 mg/ml extract of Psidium guajava reduced the cell-surface hydrophobicity of Strep. sanguinis, Strep. mitis and Actinomyces sp. by 54.1%, 49.9% and 40.6%, respectively. Treatment of these bacteria with the same concentration of Piper betle however, showed a comparatively lesser effect (< 10%). It was also observed that the anti-adhesive effect of the two extracts on the binding of the early plaque settlers to hexadecane is concentration dependent.
    Matched MeSH terms: Bacterial Adhesion/drug effects*
  16. Santiago C, Lim KH, Loh HS, Ting KN
    PMID: 25880167 DOI: 10.1186/s12906-015-0615-6
    Formation of biofilm is known to enhance the virulence of methicillin-resistance Staphylococcus aureus (MRSA), which is associated with persistent infections in hospital settings. The biofilm layer essentially forms a protective barrier encapsulating the bacterial colony and thus reduces the effectiveness of chemotherapeutics. We have isolated 9EA-FC-B bioactive fraction from Acalypha wilkesiana Müll. Arg. that reverses ampicillin resistant in MRSA through inhibition of the antibiotic resistant protein, penicillin-binding protein 2a (PBP2a). In this study, we aimed to investigate the effects of 9EA-FC-B on MRSA biofilm forming capacity.
    Matched MeSH terms: Bacterial Adhesion/drug effects*
  17. Abdulbaqi HR, Himratul-Aznita WH, Baharuddin NA
    Arch Oral Biol, 2016 Oct;70:117-124.
    PMID: 27343694 DOI: 10.1016/j.archoralbio.2016.06.011
    OBJECTIVE: Green tea (Gt), leafs of Camellia sinensis var. assamica, is widely consumed as healthy beverage since thousands of years in Asian countries. Chewing sticks (miswak) of Salvadora persica L. (Sp) are traditionally used as natural brush to ensure oral health in developing countries. Both Gt and Sp extracts were reported to have anti-bacterial activity against many dental plaque bacteria. However, their combination has never been tested to have anti-bacterial and anti-adherence effect against primary dental plaque colonizers, playing an initial role in the dental plaque development, which was investigated in this study.

    METHODS: Two-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria.

    RESULTS: Gt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (p<0.05) and lower the adherence ability (p<0.003) towards experimental pellicles.

    CONCLUSION: Combination between Gt and Sp aqueous extracts exhibited synergistic anti-plaque activity, and could be used as a useful active agent to produce oral health care products.

    Matched MeSH terms: Bacterial Adhesion/drug effects
  18. Dakheel KH, Abdul Rahim R, Neela VK, Al-Obaidi JR, Hun TG, Yusoff K
    Biomed Res Int, 2016;2016:4708425.
    PMID: 28078291 DOI: 10.1155/2016/4708425
    Twenty-five methicillin-resistant Staphylococcus aureus (MRSA) isolates were characterized by staphylococcal protein A gene typing and the ability to form biofilms. The presence of exopolysaccharides, proteins, and extracellular DNA and RNA in biofilms was assessed by a dispersal assay. In addition, cell adhesion to surfaces and cell cohesion were evaluated using the packed-bead method and mechanical disruption, respectively. The predominant genotype was spa type t127 (22 out of 25 isolates); the majority of isolates were categorized as moderate biofilm producers. Twelve isolates displayed PIA-independent biofilm formation, while the remaining 13 isolates were PIA-dependent. Both groups showed strong dispersal in response to RNase and DNase digestion followed by proteinase K treatment. PIA-dependent biofilms showed variable dispersal after sodium metaperiodate treatment, whereas PIA-independent biofilms showed enhanced biofilm formation. There was no correlation between the extent of biofilm formation or biofilm components and the adhesion or cohesion abilities of the bacteria, but the efficiency of adherence to glass beads increased after biofilm depletion. In conclusion, nucleic acids and proteins formed the main components of the MRSA clone t127 biofilm matrix, and there seems to be an association between adhesion and cohesion in the biofilms tested.
    Matched MeSH terms: Bacterial Adhesion/drug effects*
  19. Chung PY, Toh YS
    Pathog Dis, 2014 Apr;70(3):231-9.
    PMID: 24453168 DOI: 10.1111/2049-632X.12141
    Staphylococcus aureus is a Gram-positive pathogen that causes potentially life-threatening nosocomial- and community-acquired infections, such as osteomyelitis and endocarditis. Staphylococcus aureus has the ability to form multicellular, surface-adherent communities called biofilms, which enables it to survive in various sources of stress, including antibiotics, nutrient limitations, heat shock, and immune responses. Biofilm-forming capacity is now recognized as an important virulence determinant in the development of staphylococcal device-related infections. In light of the projected increase in the numbers of elderly patients who will require semi-permanent indwelling medical devices such as artificial knees and hips, we can anticipate an expanded need for new agents and treatment options to manage biofilm-associated infections in an expanding at-risk population. With better understanding of staphylococcal biofilm formation and growth, novel strategies that target biofilm-associated infections caused by S. aureus have recently been described and seem promising as future anti-biofilm therapies.
    Matched MeSH terms: Bacterial Adhesion/drug effects
  20. Daood U, Matinlinna JP, Pichika MR, Mak KK, Nagendrababu V, Fawzy AS
    Sci Rep, 2020 07 03;10(1):10970.
    PMID: 32620785 DOI: 10.1038/s41598-020-67616-z
    To study the antimicrobial effects of quaternary ammonium silane (QAS) exposure on Streptococcus mutans and Lactobacillus acidophilus bacterial biofilms at different concentrations. Streptococcus mutans and Lactobacillus acidophilus biofilms were cultured on dentine disks, and incubated for bacterial adhesion for 3-days. Disks were treated with disinfectant (experimental QAS or control) and returned to culture for four days. Small-molecule drug discovery-suite was used to analyze QAS/Sortase-A active site. Cleavage of a synthetic fluorescent peptide substrate, was used to analyze inhibition of Sortase-A. Raman spectroscopy was performed and biofilms stained for confocal laser scanning microscopy (CLSM). Dentine disks that contained treated dual-species biofilms were examined using scanning electron microscopy (SEM). Analysis of DAPI within biofilms was performed using CLSM. Fatty acids in bacterial membranes were assessed with succinic-dehydrogenase assay along with time-kill assay. Sortase-A protein underwent conformational change due to QAS molecule during simulation, showing fluctuating alpha and beta strands. Spectroscopy revealed low carbohydrate intensities in 1% and 2% QAS. SEM images demonstrated absence of bacterial colonies after treatment. DAPI staining decreased with 1% QAS (p 
    Matched MeSH terms: Bacterial Adhesion/drug effects
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links