Displaying publications 1 - 20 of 44 in total

  1. Mohd Zaid NA, Sekar M, Bonam SR, Gan SH, Lum PT, Begum MY, et al.
    Drug Des Devel Ther, 2022;16:23-66.
    PMID: 35027818 DOI: 10.2147/DDDT.S326332
    The skin is the largest organ in the human body, composed of the epidermis and the dermis. It provides protection and acts as a barrier against external menaces like allergens, chemicals, systemic toxicity, and infectious organisms. Skin disorders like cancer, dermatitis, psoriasis, wounds, skin aging, acne, and skin infection occur frequently and can impact human life. According to a growing body of evidence, several studies have reported that natural products have the potential for treating skin disorders. Building on this information, this review provides brief information about the action of the most important in vitro and in vivo research on the use of ten selected natural products in inflammatory, neoplastic, and infectious skin disorders and their mechanisms that have been reported to date. The related studies and articles were searched from several databases, including PubMed, Google, Google Scholar, and ScienceDirect. Ten natural products that have been reported widely on skin disorders were reviewed in this study, with most showing anti-inflammatory, antioxidant, anti-microbial, and anti-cancer effects as the main therapeutic actions. Overall, most of the natural products reported in this review can reduce and suppress inflammatory markers, like tumor necrosis factor-alpha (TNF-α), scavenge reactive oxygen species (ROS), induce cancer cell death through apoptosis, and prevent bacteria, fungal, and virus infections indicating their potentials. This review also highlighted the challenges and opportunities of natural products in transdermal/topical delivery systems and their safety considerations for skin disorders. Our findings indicated that natural products might be a low-cost, well-tolerated, and safe treatment for skin diseases. However, a larger number of clinical trials are required to validate these findings. Natural products in combination with modern drugs, as well as the development of novel delivery mechanisms, represent a very promising area for future drug discovery of these natural leads against skin disorders.
    Matched MeSH terms: Biological Products/therapeutic use*
  2. Abdulla MA, Banat I, Naughton P
    Biomed Res Int, 2014;2014:401698.
    PMID: 24809048 DOI: 10.1155/2014/401698
    Matched MeSH terms: Biological Products/therapeutic use*
  3. Islam MA, Alam F, Khalil MI, Sasongko TH, Gan SH
    Curr Pharm Des, 2016;22(20):2926-46.
    PMID: 26951101
    Globally, thrombosis-associated disorders are one of the main contributors to fatalities. Besides genetic influences, there are some acquired and environmental risk factors dominating thrombotic diseases. Although standard regimens have been used for a long time, many side effects still occur which can be life threatening. Therefore, natural products are good alternatives. Although the quest for antithrombotic natural products came to light only since the end of last century, in the last two decades, a considerable number of natural products showing antithrombotic activities (antiplatelet, anticoagulant and fibrinolytic) with no or minimal side effects have been reported. In this review, several natural products used as antithrombotic agents including medicinal plants, vegetables, fruits, spices and edible mushrooms which have been discovered in the last 15 years and their target sites (thrombogenic components, factors and thrombotic pathways) are described. In addition, the side effects, limitations and interactions of standard regimens with natural products are also discussed. The active compounds could serve as potential sources for future research on antithrombotic drug development. As a future direction, more advanced researches (in quest of the target cofactor or component involved in antithrombotic pathways) are warranted for the development of potential natural antithrombotic medications (alone or combined with standard regimens) to ensure maximum safety and efficacy.
    Matched MeSH terms: Biological Products/therapeutic use*
  4. Choy KW, Murugan D, Mustafa MR
    Pharmacol Res, 2018 06;132:119-129.
    PMID: 29684674 DOI: 10.1016/j.phrs.2018.04.013
    Endoplasmic reticulum (ER) is the main organelle for the synthesis, folding, and processing of secretory and transmembrane proteins. Pathological stimuli including hypoxia, ischaemia, inflammation and oxidative stress interrupt the homeostatic function of ER, leading to accumulation of unfolded proteins, a condition referred to as ER stress. ER stress triggers a complex signalling network referred as the unfolded protein response (UPR). Extensive studies have demonstrated that ER stress plays an important role in the pathogenesis of various cardiovascular diseases such as heart failure, ischemic heart disease and atherosclerosis. The importance of natural products in modern medicine are well recognized and continues to be of interests as a source of novel lead compounds. Natural products targeting components of UPR and reducing ER stress offers an innovative strategic approach to treat cardiovascular diseases. In this review, we discussed several therapeutic interventions using natural products with potential cardiovascular protective properties targeting ER stress signalling pathways.
    Matched MeSH terms: Biological Products/therapeutic use*
  5. Mourya A, Shubhra, Bajwa N, Baldi A, Singh KK, Pandey M, et al.
    Mini Rev Med Chem, 2023;23(9):992-1032.
    PMID: 35546778 DOI: 10.2174/1389557522666220511140527
    Osteoarthritis (OA), a chronic degenerative musculoskeletal disorder, progressively increases with age. It is characterized by progressive loss of hyaline cartilage followed by subchondral bone remodeling and inflammaging. To counteract the inflammation, synovium releases various inflammatory and immune mediators along with metabolic intermediates, which further worsens the condition. However, even after recognizing the key molecular and cellular factors involved in the progression of OA, only disease-modifying therapies are available such as oral and topical NSAIDs, opioids, SNRIs, etc., providing symptomatic treatment and functional improvement instead of suppressing OA progression. Long-term use of these therapies leads to various life-threatening complications. Interestingly, mother nature has numerous medicinal plants containing active phytochemicals that can act on various targets involved in the development and progression of OA. Phytochemicals have been used for millennia in traditional medicine and are promising alternatives to conventional drugs with a lower rate of adverse events and efficiency frequently comparable to synthetic molecules. Nevertheless, their mechanism of action in many cases is elusive and uncertain. Even though many in vitro and in vivo studies show promising results, clinical evidence is scarce. Studies suggest that the presence of carbonyl group in the 2nd position, chloro in the 6th and an electron- withdrawing group at the 7th position exhibit enhanced COX-2 inhibition activity in OA. On the other hand, the presence of a double bond at the C2-C3 position of C ring in flavonoids plays an important role in Nrf2 activation. Moreover, with the advancements in the understanding of OA progression, SARs (structure-activity relationships) of phytochemicals and integration with nanotechnology have provided great opportunities for developing phytopharmaceuticals. Therefore, in the present review, we have discussed various promising phytomolecules, SAR as well as their nano-based delivery systems for the treatment of OA to motivate the future investigation of phytochemical-based drug therapy.
    Matched MeSH terms: Biological Products/therapeutic use
  6. Zulkhernain NS, Teo SH, Patel V, Tan PJ
    Curr Cancer Drug Targets, 2014;14(8):764-73.
    PMID: 25348017 DOI: 10.2174/1568009614666141028121347
    Targeted therapy, the treatment of cancer based on an underlying genetic alteration, is rapidly gaining favor as the preferred therapeutic approach. To date, although natural products represent a rich resource of bio-diverse drug candidates, only a few have been identified to be effective as targeted cancer therapies largely due to the incompatibilities to current high-throughput screening methods. In this article, we review the utility of a zebrafish developmental screen for bioactive natural product-based compounds that target signaling pathways that are intimately shared with those in humans. Any bioactive compound perturbing signaling pathways identified from phenotypic developmental defects in zebrafish embryos provide an opportunity for developing targeted therapies for human cancers. This model provides a promising tool in the search for targeted cancer therapeutics from natural products.
    Matched MeSH terms: Biological Products/therapeutic use*
  7. Kiew PL, Don MM
    Int J Food Sci Nutr, 2012 Aug;63(5):616-36.
    PMID: 22149726 DOI: 10.3109/09637486.2011.641944
    Marine sources have been attracting the attention of scientists and manufacturers worldwide hoping to find new alternatives for biological active substances. Promising new research indicates that sea cucumber, which is slug-like in appearance and has been a staple in Japan, China and other parts of East Asia since ancient times, is beginning to gain popularity as a dietary supplement in western countries. The roles of sea cucumber extracts in various physiological functions have spurred researchers to investigate the ability of sea cucumber to be an alternative in neutraceutical and medical applications. This article provides a brief introduction to sea cucumber and reviews its numerous bioactive compounds, such as triterpene glycosides, glycosaminoglycans, gangliosides, collagen, branched-chain fatty acid and lectins, which serve as potential sources of neutraceutical, pharmaceutical and cosmetic agents, thus providing a new platform in biochemical research.
    Matched MeSH terms: Biological Products/therapeutic use*
  8. Sasidharan S, Jothy SL, Kavitha N, Chen Y, Kanwar JR
    Asian Pac J Cancer Prev, 2015;16(18):8671.
    PMID: 26745135
    Matched MeSH terms: Biological Products/therapeutic use*
  9. Alt F, Chong PW, Teng E, Uebelhack R
    Phytother Res, 2017 Jul;31(7):1056-1062.
    PMID: 28508427 DOI: 10.1002/ptr.5826
    Irritable bowel syndrome (IBS) is a functional bowel disorder of unknown aetiology. There is currently no known cure, and pharmacological interventions are usually targeting symptomatic relief, where natural and herbal remedies also play a role. This study aimed to evaluate the benefit and tolerability of IQP-CL-101 in symptomatic IBS relief. A double-blinded, randomised, placebo-controlled trial was conducted over 8 weeks. A total of 99 subjects fulfilling ROME-III criteria for IBS were randomised into two groups, given either two IQP-CL-101 softgels or matching placebo twice daily before main meals. The primary endpoint was the difference in change of IBS Symptom Severity Score (IBS-SSS) after an 8-week intake of IQP-CL-101 compared to placebo. After 8 weeks, subjects on IQP-CL-101 showed a significant reduction in IBS-SSS (113.0 ± 64.9-point reduction) compared to subjects on placebo (38.7 ± 64.5-point reduction) (p 
    Matched MeSH terms: Biological Products/therapeutic use*
  10. El-Seedi HR, Yosri N, Khalifa SAM, Guo Z, Musharraf SG, Xiao J, et al.
    J Ethnopharmacol, 2021 Apr 06;269:113626.
    PMID: 33248183 DOI: 10.1016/j.jep.2020.113626
    ETHNOPHARMACOLOGICAL RELEVANCE: Egyptian plants are a rich source of natural molecules, representing considerable biodiversity due to climate variations between the Northern, Southern, Eastern and Western regions of the country. Sinai is considered a precious nature reserves preserving flora, fauna, marine organisms, and historical habitats with ancient origins. Here, traditional medicinal approaches have been used for hundreds of years. Healthy lifestyles, low levels of stress and microbial infections, and a dependence on flora and herbal medicine might in combination explain why the burden of cancer is lower in some regions than in others.

    AIM OF THE STUDY: The primary aim of this review is to document the plants and natural products that are used as foods and medicines in Egypt, in general, and in Sinai, in particular, with a focus on those with demonstrated anticancer activities. The documented traditional uses of these plants are described, together with their chemical and pharmacological activities and the reported outcomes of clinical trials against cancer.

    MATERIALS AND METHODS: A literature search was performed to identify texts describing the medicinal plants that are cultivated and grown in Egypt, including information found in textbooks, published articles, the plant list website (http://www.theplantlist.org/), the medicinal plant names services website (http://mpns.kew.org/mpns-portal/), and web databases (PubMed, Science Direct, and Google Scholar).

    RESULTS AND DISCUSSION: We collected data for most of the plants cultivated or grown in Egypt that have been previously investigated for anticancer effects and reported their identified bioactive elements. Several plant species, belonging to different families and associated with 67 bioactive compounds, were investigated as potential anticancer agents (in vitro studies). The most potent cytotoxic activities were identified for the families Asteraceae, Lamiaceae, Chenopodiaceae, Apocynaceae, Asclepiadaceae, Euphorbiaceae, Gramineae, and Liliaceae. The anticancer activities of some species, such as Punica granatum L., Nerium oleander L., Olea europea L., Matricaria chamomilla L., Cassia acutifolia L., Nigella sativa L., Capsicum frutescens L., Withania somnifera L., and Zingiber officinale Roscoe, have been examined in clinical trials. Among the various Egyptian plant habitats, we found that most of these plants are grown in the North Sinai, New-Delta, and Giza Governorates.

    CONCLUSION: In this review, we highlight the role played by Egyptian flora in current medicinal therapies and the possibility that these plants may be examined in further studies for the development of anticancer drugs. These bioactive plant extracts form the basis for the isolation of phytochemicals with demonstrated anticancer activities. Some active components derived from these plants have been applied to preclinical and clinical settings, including resveratrol, quercetin, isoquercetin, and rutin.

    Matched MeSH terms: Biological Products/therapeutic use*
  11. Chan XH, Sabaratnam V, Abdullah N, Phan CW
    Int J Med Mushrooms, 2020;22(6):521-534.
    PMID: 32865894 DOI: 10.1615/IntJMedMushrooms.2020035031
    The research field of culinary and medicinal mushrooms has been well developed since the first relevant publication in 1966. However, to date, there has been no bibliometric analysis published specifically for this field. This study aimed to assess the most influential publications as well as the research trends and important drivers in the field of culinary and medicinal mushrooms. Scopus was used to identify relevant publications and the 1000 most-cited publications were identified and analyzed. Bradford's law of scattering shows one-third of the papers were published in 14 core journals, with a total of 102 papers published in International Journal of Medicinal Mushrooms. There is an insignificant negative correlation (Pearson's correlation coefficient, r = -0.355) between the journal impact factor and publication count. VOSviewer was used to generate a country network. China represents Asia's research center in this field, having contributed 20% of the 1000 most-cited publications. A term map was also created to visualize the co-occurrence of key terms in the domain. Different biological activities such as antioxidant and antitumor properties of mushrooms appeared to be a recurring topic in this field. Wasser (2003) showed the highest citation count (n = 1282), which is almost double the second most-cited publication (n = 611). There is a weak positive correlation (r = +0.237) between the years since publication and total citation count. In conclusion, this bibliometric study will assist researchers to comprehend the current status of the research on culinary and medicinal mushrooms, and to visualize the future impact of such an important field.
    Matched MeSH terms: Biological Products/therapeutic use*
  12. Khalid EB, Ayman EE, Rahman H, Abdelkarim G, Najda A
    Tumour Biol., 2016 Nov;37(11):14513-14536.
    PMID: 27651162
    The process of angiogenesis is quite well-known nowadays. Some medicines and extracts affecting this process are already used routinely in supporting the conventional treatment of many diseases that are considered angiogenic such as cancer. However, we must be aware that the area of currently used drugs of this type is much narrower than the theoretical possibilities existing in therapeutic angiogenesis. Plant substances are a large and diverse group of compounds that are found naturally in fruits, vegetables, spices, and medicinal plants. They also have different anticancer properties. The aim of this literature review article is to present the current state of knowledge concerning the molecular targets of tumor angiogenesis and the active substances (polyphenols, alkaloids, phytohormones, carbohydrates, and terpenes) derived from natural sources, whose activity against cancer angiogenesis has been confirmed.
    Matched MeSH terms: Biological Products/therapeutic use*
  13. Arulselvan P, Fard MT, Tan WS, Gothai S, Fakurazi S, Norhaizan ME, et al.
    Oxid Med Cell Longev, 2016;2016:5276130.
    PMID: 27803762
    Inflammation is a comprehensive array of physiological response to a foreign organism, including human pathogens, dust particles, and viruses. Inflammations are mainly divided into acute and chronic inflammation depending on various inflammatory processes and cellular mechanisms. Recent investigations have clarified that inflammation is a major factor for the progression of various chronic diseases/disorders, including diabetes, cancer, cardiovascular diseases, eye disorders, arthritis, obesity, autoimmune diseases, and inflammatory bowel disease. Free radical productions from different biological and environmental sources are due to an imbalance of natural antioxidants which further leads to various inflammatory associated diseases. In this review article, we have outlined the inflammatory process and its cellular mechanisms involved in the progression of various chronic modern human diseases. In addition, we have discussed the role of free radicals-induced tissue damage, antioxidant defence, and molecular mechanisms in chronic inflammatory diseases/disorders. The systematic knowledge regarding the role of inflammation and its associated adverse effects can provide a clear understanding in the development of innovative therapeutic targets from natural sources that are intended for suppression of various chronic inflammations associated diseases.
    Matched MeSH terms: Biological Products/therapeutic use*
  14. Hasan MM, Ahmed QU, Mat Soad SZ, Tunna TS
    Biomed Pharmacother, 2018 May;101:833-841.
    PMID: 29635892 DOI: 10.1016/j.biopha.2018.02.137
    Diabetes mellitus is a chronic disease which has high prevalence. The deficiency in insulin production or impaired insulin function is the underlying cause of this disease. Utilization of plant sources as a cure of diabetes has rich evidence in the history. Recently, the traditional medicinal plants have been investigated scientifically to understand the underlying mechanism behind antidiabetic potential. In this regard, a substantial number of in vivo and in vitro models have been introduced for investigating the bottom-line mechanism of the antidiabetic effect. A good number of methods have been reported to be used successfully to determine antidiabetic effects of plant extracts or isolated compounds. This review encompasses all the possible methods with a list of medicinal plants which may contribute to discovering a novel drug to treat diabetes more efficaciously with the minimum or no side effects.
    Matched MeSH terms: Biological Products/therapeutic use*
  15. Lim CH, Chen HH, Chen YH, Chen DY, Huang WN, Tsai JJ, et al.
    PLoS One, 2017;12(6):e0178035.
    PMID: 28570568 DOI: 10.1371/journal.pone.0178035
    The objective of this study is to determine the risk of tuberculosis (TB) disease in biologics users among rheumatoid arthritis (RA) patients in Taiwan from 2000 to 2015. This retrospective cohort study enrolled adult RA patients initiated on first biologics at Taichung Veterans General Hospital. TB risks were determined as hazard ratio (HR) with 95% confidence interval (CI) using cox regression. A total of 951 patients were recruited; etanercept (n = 443), adalimumab (n = 332), abatacept (n = 74), golimumab (n = 60), tocilizumab (n = 31) and tofacitinib (n = 11). Twenty-four TB cases were identified; 13 in etanercept and 11 in adalimumab group with the TB incidence rate of 889.3/ 100,000 and 1055.6/ 100,000 patient-years respectively. There was no significant difference in TB risk between adalimumab and etanercept users with an incidence rate ratio of 1.27 (p = 0.556 by Poisson model). Significant 2-year TB risk factors included elderly patient >65 year-old (HR: 2.72, 95% CI: 1.06-6.99, p = 0.037), history of TB (HR: 6.24, 95% CI: 1.77-22.00, p = 0.004) and daily glucocorticoid use ≥5mg (HR:5.01, 95% CI: 1.46-17.21, p = 0.010). Sulfasalazine treatment appeared to be protective (HR: 0.32, 95% CI: 0.11-0.97, p = 0.043). Risk management plan (RMP) for TB before initiation of biologics commenced in 2012. The 2-year TB risks after RMP was compared with that before 2012 (HR:0.67, 95% CI: 0.30-1.49, p = 0.323). Elderly RA patients with a history of previous TB infection and concomitant moderate dose glucocorticoid were at higher risk of TB disease. Concurrent sulfasalazine treatment appeared to be a protective factor against TB disease.
    Matched MeSH terms: Biological Products/therapeutic use*
  16. Rehman MU, Wali AF, Ahmad A, Shakeel S, Rasool S, Ali R, et al.
    Curr Neuropharmacol, 2019;17(3):247-267.
    PMID: 30207234 DOI: 10.2174/1570159X16666180911124605
    Nature has bestowed mankind with surplus resources (natural products) on land and water. Natural products have a significant role in the prevention of disease and boosting of health in humans and animals. These natural products have been experimentally documented to possess various biological properties such as antioxidant, anti-inflammatory and anti-apoptotic activities. In vitro and in vivo studies have further established the usefulness of natural products in various preclinical models of neurodegenerative disorders. Natural products include phytoconstituents, like polyphenolic antioxidants, found in herbs, fruits, nuts, vegetables and also in marine and freshwater flora. These phytoconstituents may potentially suppress neurodegeneration and improve memory as well as cognitive functions of the brain. Also, they are known to play a pivotal role in the prevention and cure of different neurodegenerative diseases, such as Alzheimer's disease, epilepsy, Parkinson's disease and other neuronal disorders. The large-scale neuro-pharmacological activities of natural products have been documented due to the result of either the inhibition of inflammatory processes, or the up-regulation of various cell survival proteins or a combination of both. Due to the scarcity of human studies on neuroprotective effects of natural products, this review focuses on the various established activities of natural products in in vitro and in vivo preclinical models, and their potential neuro-therapeutic applications using the available knowledge in the literature.
    Matched MeSH terms: Biological Products/therapeutic use*
  17. De Clercq E
    Med Res Rev, 2000 Sep;20(5):323-49.
    PMID: 10934347
    A large variety of natural products have been described as anti-HIV agents, and for a portion thereof the target of interaction has been identified. Cyanovirin-N, a 11-kDa protein from Cyanobacterium (blue-green alga) irreversibly inactivates HIV and also aborts cell-to-cell fusion and transmission of HIV, due to its high-affinity interaction with gp120. Various sulfated polysaccharides extracted from seaweeds (i.e., Nothogenia fastigiata, Aghardhiella tenera) inhibit the virus adsorption process. Ingenol derivatives may inhibit virus adsorption at least in part through down-regulation of CD4 molecules on the host cells. Inhibition of virus adsorption by flavanoids such as (-)epicatechin and its 3-O-gallate has been attributed to an irreversible interaction with gp120 (although these compounds are also known as reverse transcriptase inhibitors). For the triterpene glycyrrhizin (extracted from the licorice root Glycyrrhiza radix) the mode of anti-HIV action may at least in part be attributed to interference with virus-cell binding. The mannose-specific plant lectins from Galanthus, Hippeastrum, Narcissus, Epipac tis helleborine, and Listera ovata, and the N-acetylgl ucosamine-specific lectin from Urtica dioica would primarily be targeted at the virus-cell fusion process. Various other natural products seem to qualify as HIV-cell fusion inhibitors: the siamycins [siamycin I (BMY-29304), siamycin II (RP 71955, BMY 29303), and NP-06 (FR901724)] which are tricyclic 21-amino-acid peptides isolated from Streptomyces spp that differ from one another only at position 4 or 17 (valine or isoleucine in each case); the betulinic acid derivative RPR 103611, and the peptides tachyplesin and polyphemusin which are highly abundant in hemocyte debris of the horseshoe crabs Tachypleus tridentatus and Limulus polyphemus, i.e., the 18-amino-acid peptide T22 from which T134 has been derived. Both T22 and T134 have been shown to block T-tropic X4 HIV-1 strains through a specific antagonism with the HIV corecept or CXCR4. A number of natural products have been reported to interact with the reverse transcriptase, i.e., baicalin, avarol, avarone, psychotrine, phloroglucinol derivatives, and, in particular, calanolides (from the tropical rainforest tree, Calophyllum lanigerum) and inophyllums (from the Malaysian tree, Calophyllum inophyllum). The natural marine substance illimaquinone would be targeted at the RNase H function of the reverse transcriptase. Curcumin (diferuloylmethane, from turmeric, the roots/rhizomes of Curcuma spp), dicaffeoylquinic and dicaffeoylt artaric acids, L-chicoric acid, and a number of fungal metabolites (equisetin, phomasetin, oteromycin, and integric acid) have all been proposed as HIV-1 integrase inhibitors. Yet, we have recently shown that L-c hicoric acid owes its anti-HIV activity to a specific interaction with the viral envelope gp120 rather than integrase. A number of compounds would be able to inhibit HIV-1 gene expression at the transcription level: the flavonoid chrysin (through inhibition of casein kinase II, the antibacter ial peptides melittin (from bee venom) and cecropin, and EM2487, a novel substance produced by Streptomyces. (ABSTRACT TRUNCATED)
    Matched MeSH terms: Biological Products/therapeutic use*
  18. Samat N, Tan PJ, Shaari K, Abas F, Lee HB
    Anal Chem, 2014 Feb 4;86(3):1324-31.
    PMID: 24405504 DOI: 10.1021/ac403709a
    Photodynamic therapy (PDT) is an alternative treatment for cancer that involves administration of a photosensitive drug or photosensitizer that localizes at the tumor tissue followed by in situ excitation at an appropriate wavelength of light. Tumour tissues are then killed by cytotoxic reactive oxygen species generated by the photosensitizer. Targeted excitation and photokilling of affected tissues is achieved through focal light irradiation, thereby minimizing systemic side effects to the normal healthy tissues. Currently, there are only a small number of photosensitizers that are in the clinic and many of these share the same structural core based on cyclic tetrapyrroles. This paper describes how metabolic tools are utilized to prioritize natural extracts to search for structurally new photosensitizers from Malaysian biodiversity. As proof of concept, we analyzed 278 photocytotoxic extracts using a hyphenated technique of liquid chromatography-mass spectrometry coupled with principal component analysis (LC-MS-PCA) and prioritized 27 extracts that potentially contained new photosensitizers for chemical dereplication using an in-house UPLC-PDA-MS-Photocytotoxic assay platform. This led to the identification of 2 new photosensitizers with cyclic tetrapyrrolic structures, thereby demonstrating the feasibility of the metabolic approach.
    Matched MeSH terms: Biological Products/therapeutic use
  19. Vijayarathna S, Jothy SL, Chen Y, Kanwar JR, Sasidharan S
    Asian Pac J Cancer Prev, 2015;16(14):6175-6.
    PMID: 26320517
    Matched MeSH terms: Biological Products/therapeutic use*
  20. Rahman MA, Hossain S, Abdullah N, Aminudin N
    Int J Med Mushrooms, 2020;22(1):93-103.
    PMID: 32464001 DOI: 10.1615/IntJMedMushrooms.2020033383
    Hypercholesterolemia has been implicated as one of the pathomechanistic factors of Alzheimer's disease (AD), the most common neurodegenerative disorder affecting memory and learning abilities. In the present study, ameliorative effect of hot water extract (HWE) of mushroom Ganoderma lucidum to the memory and learning related behavioral performance of hypercholesterolemic and AD rats was investigated using Morris water maze (MWM). Male Wistar rats were randomly grouped into control, extract fed control, hypercholesterolemic, extract fed hypercholesterolemic, AD, and extract fed AD groups, each group containing 8 animals. Hypercholesterolemia was induced in rats by adding 1% cholesterol and 1% cholic acid with the basal diet of the respective group. Alzheimer's disease model rats were prepared through infusion of amyloid β(1-42) to the right ventricle. Memory and learning related performance of all the rats was tested for 6 consecutive days that included time taken to reach the submerged platform (sec) and distance traveled (m). G. lucidum HWE fed rats took less time and traveled less distance to find the submerged platform, which indicates the spatial learning and memory related behavioral amelioration of the extract fed rats compared with their non-fed counterparts. Thus, usage of G. lucidum seems promising in withstanding hypercholesterolemia-induced Alzheimer's disease pathogenesis.
    Matched MeSH terms: Biological Products/therapeutic use*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links