Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Ima Nirwana S, Fakhrurazi H
    Med J Malaysia, 2002 Jun;57(2):136-44.
    PMID: 24326643
    The aim of this study was to determine the effects of palm oil-derived vitamin E on glucocorticoid-induced osteoporosis. Three-month old male Wistar rats were adrenalectomised to remove circulating glucocorticoids. The animals were then administered with Dexamethasone 120 µg/kg body weight/day. Treatment with palm vitamin E 60 mg/kg body weight/day was given simultaneously. The results showed that palm vitamin E prevented the loss in regional and whole body bone mineral density seen in the Dexamethasone treated animals. Palm vitamin E improved femoral length and calcium content in the Dexamethasone treated animals. The results confirmed that palm oil-derived vitamin E was effective in preventing glucocorticoid-induced osteoporosis.
    Matched MeSH terms: Bone and Bones/drug effects
  2. Norazlina M, Maizatul-Neza J, Azarina A, Nazrun AS, Norliza M, Ima-Nirwana S
    Med J Malaysia, 2010 Mar;65(1):14-7.
    PMID: 21265240 MyJurnal
    Vitamin E is found to reverse the effects of nicotine on bone and this study aimed to determine its mechanism. Male Sprague Dawley rats were divided into four groups and treated for 3 months: Group 1 was the control group (RC). Groups 2 (N), 3 (N+TT) and 4 (N+ATF) received nicotine 7 mg/kg throughout the treatment period. In addition, groups 3 and 4 received tocotrienol 60 mg/kg and alpha-tocopherol 60 mg/kg respectively during months 2 and 3. Parameters measured were serum osteoprotegerin (OPG), serum receptor activator of nuclear factor kappa B ligand (RANKL), femoral and lumbar bone calcium content and body weight. Nicotine did not affect OPG or RANKL levels but reduced bone calcium content suggesting the calcium loss is not due to increase osteoclastogenesis. OPG was increased in N+ATF while RANKL was slightly increased in N+TT. Both vitamin E supplements restored bone calcium loss induced by nicotine. Nicotine impaired weight gain in all treatment groups starting week 4 however, N+TT group was comparable to RC from week 6 onwards. Bone protective effects of ATF, but not TT, may be partly due to inhibition of osteoclastogenesis.
    Matched MeSH terms: Bone and Bones/drug effects*
  3. Hapidin H, Othman F, Soelaiman IN, Shuid AN, Luke DA, Mohamed N
    J. Bone Miner. Metab., 2007;25(2):93-8.
    PMID: 17323178
    The effects of nicotine administration on bone-resorbing cytokines, cotinine, and bone histomorphometric parameters were studied in 21 Sprague-Dawley male rats. Rats aged 3 months and weighing 250-300 g were divided into three groups. Group 1 was the baseline control (BC), which was killed without treatment. The other two groups were the control group (C) and the nicotine-treated group (N). The N group was treated with nicotine 7 mg/kg body weight and the C group was treated with normal saline only. Treatment was given by intraperitoneal injection for 6 days/week for 4 months. The rats were injected intraperitoneally with calcein 20 mg/kg body weight at day 9 and day 2 before they were killed. ELISA test kits were used to measure the serum interleukin-1 (IL-1), interleukin-6 (IL-6), and cotinine (a metabolite of nicotine) levels at the beginning of the study and upon completion of the study. Histomorphometric analysis was done on the metaphyseal region of the trabecular bone of the left femur by using an image analyzer. Biochemical analysis revealed that nicotine treatment for 4 months significantly increased the serum IL-1, IL-6, and cotinine levels as compared to pretreatment levels. In addition, the serum cotinine level was significantly higher in the N group than in the C group after 4 months treatment. Histomorphometric analysis showed that nicotine significantly decreased the trabecular bone volume (BV/TV), trabecular thickness (Tb.Th), double-labeled surface (dLS/BS), mineralizing surface (MS/BS), mineral appositional rate (MAR), and bone formation rate (BFR/BS), while causing an increase in the single-labeled surface (sLS/BS), osteoclast surface (Oc.S/BS), and eroded surface (ES/BS) as compared to the BC and C groups. In conclusion, treatment with nicotine 7 mg/kg for 4 months was detrimental to bone by causing an increase in the bone resorbing cytokines and cotinine levels. Nicotine also exerted negative effects on the dynamic trabecular histomorphometric parameters.
    Matched MeSH terms: Bone and Bones/drug effects
  4. Al-Obaidi MM, Al-Bayaty FH, Al Batran R, Ibrahim OE, Daher AM
    Curr Pharm Des, 2016;22(16):2403-10.
    PMID: 27139374
    OBJECTIVES: -To examine the effect of nicotine (Ni) on bone socket healing treated with Ellagic acid (EA) after tooth extraction in rat.

    MATERIALS AND METHODS: Thirty-Two Sprague Dawley (SD) male rats were divided into four groups. The group 1 was administrated with distilled water intragastrically and injected sterile saline subcutaneously. The group 2 was administrated with EA orally and injected with sterile saline subcutaneously. The groups 3 & 4 were subcutaneously exposed to Ni for 4 weeks twice daily before tooth extraction procedure, and maintained Ni injection until the animals were sacrificed. After one month Ni exposure, the group 4 was fed with EA while continuing Ni injection. All the groups were anesthetized, and the upper left incisor was extracted. Four rats from each group were sacrificed on 14(th) and 28(th) days. Tumour necrosis factor alpha (TNFα), Interleukin-1 beta (IL-1β) and Interleukin-6 (IL-6) were applied to assess in serum rat at 14th and 28(th) days. Superoxide dismutase (SOD) and Thiobarbituric acid reactive substances (TBRAS) levels were assessed to evaluate the antioxidant status and lipid peroxidation accordingly after tooth extraction in homogenized gingival maxilla tissue of rat at 14(th) and 28(th) days. The socket hard tissue was stained by eosin and hematoxylin (H&E); immunohistochemical technique was used to assess the healing process by Osteocalcin (OCN) and Alkaline Phosphatase (ALP) biomarkers.

    RESULTS: Ni-induced rats administered with EA compound (Group 4) dropped the elevated concentration of pro-inflammatory cytokines significantly when compared to Ni-induced rats (Group 3) (p<0.05). Ni-induced rats administrated with EA compound (Group 4) showed significant production of SOD and recession in TBRAS level when compared to Ni-induced rats (Group 3) (p<0.05). The immunohistochemistry analysis has revealed that OCN and ALP have presented stronger expression in Ni-induced rats treated with EA (Group 4), as against Ni-induced rats (Group 3).

    CONCLUSION: We have concluded that, Ni-induced rats, treated with EA have exerted positive effect on the trabecular bone formation after tooth extraction in nicotinic rats could be due to the antioxidant activity of EA which lead to upregulate of OCN and ALP proteins which are responsible for osteogenesis.

    Matched MeSH terms: Bone and Bones/drug effects*
  5. Jolly JJ, Chin KY, Alias E, Chua KH, Soelaiman IN
    PMID: 29751644 DOI: 10.3390/ijerph15050963
    Osteoporosis is a serious health problem affecting more than 200 million elderly people worldwide. The early symptoms of this disease are hardly detectable. It causes progressive bone loss, which ultimately renders the patients susceptible to fractures. Osteoporosis must be prevented because the associated fragility fractures result in high morbidity, mortality, and healthcare costs. Many plants used in herbal medicine contain bioactive compounds possessing skeletal protective effects. This paper explores the anti-osteoporotic properties of selected herbal plants, including their actions on osteoblasts (bone forming cells), osteoclasts (bone resorbing cells), and bone remodelling. Some of the herbal plant families included in this review are Berberidaceae, Fabaceae, Arecaceae, Labiatae, Simaroubaceaea, and Myrsinaceae. Their active constituents, mechanisms of action, and pharmaceutical applications were discussed. The literature shows that very few herbal plants have undergone human clinical trials to evaluate their pharmacological effects on bone to date. Therefore, more intensive research should be performed on these plants to validate their anti-osteoporotic properties so that they can complement the currently available conventional drugs in the battle against osteoporosis.
    Matched MeSH terms: Bone and Bones/drug effects*
  6. Wong SK, Chin KY, Ima-Nirwana S
    Int J Mol Sci, 2020 Sep 03;21(17).
    PMID: 32899435 DOI: 10.3390/ijms21176448
    Quercetin is a flavonoid abundantly found in fruits and vegetables. It possesses a wide spectrum of biological activities, thus suggesting a role in disease prevention and health promotion. The present review aimed to uncover the bone-sparing effects of quercetin and its mechanism of action. Animal studies have found that the action of quercetin on bone is largely protective, with a small number of studies reporting negative outcomes. Quercetin was shown to inhibit RANKL-mediated osteoclastogenesis, osteoblast apoptosis, oxidative stress and inflammatory response while promoting osteogenesis, angiogenesis, antioxidant expression, adipocyte apoptosis and osteoclast apoptosis. The possible underlying mechanisms involved are regulation of Wnt, NF-κB, Nrf2, SMAD-dependent, and intrinsic and extrinsic apoptotic pathways. On the other hand, quercetin was shown to exert complex and competing actions on the MAPK signalling pathway to orchestrate bone metabolism, resulting in both stimulatory and inhibitory effects on bone in parallel. The overall interaction is believed to result in a positive effect on bone. Considering the important contributions of quercetin in regulating bone homeostasis, it may be considered an economical and promising agent for improving bone health. The documented preclinical findings await further validation from human clinical trials.
    Matched MeSH terms: Bone and Bones/drug effects*
  7. Chahal S, Kumar A, Hussian FSJ
    J Biomater Sci Polym Ed, 2019 10;30(14):1308-1355.
    PMID: 31181982 DOI: 10.1080/09205063.2019.1630699
    Electrospinning is a promising and versatile technique that is used to fabricate polymeric nanofibrous scaffolds for bone tissue engineering. Ideal scaffolds should be biocompatible and bioactive with appropriate surface chemistry, good mechanical properties and should mimic the natural extracellular matrix (ECM) of bone. Selection of the most appropriate material to produce a scaffold is an important step towards the construction of a tissue engineered product. Bone tissue engineering is an interdisciplinary field, where the principles of engineering are applied on bone-related biochemical reactions. Scaffolds, cells, growth factors, and their interrelation in microenvironment are the major concerns in bone tissue engineering. This review covers the latest development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. It includes the brief details to bone tissue engineering along with bone structure and ideal bone scaffolds requirements. Details about various engineered materials and methodologies used for bone scaffolds development were discussed. Description of electrospinning technique and its parameters relating their fabrication, advantages, and applications in bone tissue engineering were also presented. The use of synthetic and natural polymers based electrospun nanofibrous scaffolds for bone tissue engineering and their biomineralization processes were discussed and reviewed comprehensively. Finally, we give conclusion along with perspectives and challenges of biomimetic scaffolds for bone tissue engineering based on electrospun nanofibers.
    Matched MeSH terms: Bone and Bones/drug effects*
  8. Ekeuku SO, Chin KY
    Molecules, 2021 May 25;26(11).
    PMID: 34070497 DOI: 10.3390/molecules26113156
    Chronic inflammation and oxidative stress are two major mechanisms leading to the imbalance between bone resorption and bone formation rate, and subsequently, bone loss. Thus, functional foods and dietary compounds with antioxidant and anti-inflammatory could protect skeletal health. This review aims to examine the current evidence on the skeletal protective effects of propolis, a resin produced by bees, known to possess antioxidant and anti-inflammatory activities. A literature search was performed using Pubmed, Scopus, and Web of Science to identify studies on the effects of propolis on bone health. The search string used was (i) propolis AND (ii) (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes). Eighteen studies were included in the current review. The available experimental studies demonstrated that propolis could prevent bone loss due to periodontitis, dental implantitis, and diabetes in animals. Combined with synthetic and natural grafts, it could also promote fracture healing. Propolis protects bone health by inhibiting osteoclastogenesis and promoting osteoblastogenesis, partly through its antioxidant and anti-inflammatory actions. Despite the promising preclinical results, the skeletal protective effects of propolis are yet to be proven in human studies. This research gap should be bridged before nutraceuticals based on propolis with specific health claims can be developed.
    Matched MeSH terms: Bone and Bones/drug effects*
  9. Ekeuku SO, Pang KL, Chin KY
    Drug Des Devel Ther, 2021;15:259-275.
    PMID: 33519191 DOI: 10.2147/DDDT.S287280
    Purpose: Caffeic acid is a metabolite of hydroxycinnamate and phenylpropanoid, which are commonly synthesized by all plant species. It is present in various food sources that are known for their antioxidant properties. As an antioxidant, caffeic acid ameliorates reactive oxygen species, which have been reported to cause bone loss. Some studies have highlighted the effects of caffeic acid against bone resorption.

    Methods: A systematic review of the literature was conducted to identify relevant studies on the effects of caffeic acid on bone. A comprehensive search was conducted from July to November 2020 using PubMed, Scopus, Cochrane Library and Web of Science databases. Cellular, animal and human studies reporting the effects of caffeic acid, as a single compound, on bone cells or bone were considered.

    Results: The literature search found 226 articles on this topic, but only 24 articles met the inclusion criteria and were included in this review. The results showed that caffeic acid supplementation reduced osteoclastogenesis and bone resorption, possibly through its antioxidant potential and increased expression of osteoblast markers. However, some studies showed that caffeic acid did not affect bone resorption in ovariectomized rats and might impair bone mechanical properties in normal rats.

    Conclusion: Caffeic acid potentially regulates the bone remodelling process by inhibiting osteoclastogenesis and bone resorption, as well as osteoblast apoptosis. Thus, it has medicinal values against bone diseases.

    Matched MeSH terms: Bone and Bones/drug effects*
  10. Kutty MG, De A, Bhaduri SB, Yaghoubi A
    ACS Appl Mater Interfaces, 2014 Aug 27;6(16):13587-93.
    PMID: 25095907 DOI: 10.1021/am502967n
    Morphological surface modifications have been reported to enhance the performance of biomedical implants. However, current methods of introducing graded porosity involves postprocessing techniques that lead to formation of microcracks, delamination, loss of fatigue strength, and, overall, poor mechanical properties. To address these issues, we developed a microwave sintering procedure whereby pure titanium powder can be readily densified into implants with graded porosity in a single step. Using this approach, surface topography of implants can be closely controlled to have a distinctive combination of surface area, pore size, and surface roughness. In this study, the effect of various surface topographies on in vitro response of neonatal rat calvarial osteoblast in terms of attachment and proliferation is studied. Certain graded surfaces nearly double the chance of cell viability in early stages (∼one month) and are therefore expected to improve the rate of healing. On the other hand, while the osteoblast morphology significantly differs in each sample at different periods, there is no straightforward correlation between early proliferation and quantitative surface parameters such as average roughness or surface area. This indicates that the nature of cell-surface interactions likely depends on other factors, including spatial parameters.
    Matched MeSH terms: Bone and Bones/drug effects
  11. Chin KY, Ima-Nirwana S
    Nutrients, 2014 Apr;6(4):1424-41.
    PMID: 24727433 DOI: 10.3390/nu6041424
    Recent studies have found conflicting evidence on the role of α-tocopherol (αTF) on bone health. This nonsystematic review aimed to summarize the current evidence on the effects of αTF on bone health from cell culture, animal, and human studies in order to clarify the role of αTF on bone health. Our review found that αTF exerted beneficial, harmful or null effects on bone formation cells. Animal studies generally showed positive effects of αTF supplementation on bone in various models of osteoporosis. However, high-dose αTF was possibly detrimental to bone in normal animals. Human studies mostly demonstrated a positive relationship between αTF, as assessed using high performance liquid chromatography and/or dietary questionnaire, and bone health, as assessed using bone mineral density and/or fracture incidence. Three possible reasons high dosage of αTF can be detrimental to bone include its interference with Vitamin K function on bone, the blocking of the entry of other Vitamin E isomers beneficial to bone, and the role of αTF as a prooxidant. However, these adverse effects have not been shown in human studies. In conclusion, αTF may have a dual role in bone health, whereby in the appropriate doses it is beneficial but in high doses it may be harmful to bone.
    Matched MeSH terms: Bone and Bones/drug effects*
  12. Shuid AN, Ping LL, Muhammad N, Mohamed N, Soelaiman IN
    J Ethnopharmacol, 2011 Jan 27;133(2):538-42.
    PMID: 20971181 DOI: 10.1016/j.jep.2010.10.033
    AIM OF THE STUDY: Postmenopausal osteoporosis is mainly treated with estrogen replacement therapy (ERT). However, ERT causes side effects, mainly breast cancer, uterine cancer and thromboembolic problems. Labisia pumila var. arata (LPva), a herb with phytoestrogenic effects has the potential to be used as an alternative agent to ERT. This study was conducted to determine the effects of LPva on bone biochemical markers and bone calcium content in ovariectomised rats.
    MATERIALS AND METHODS: Thirty two Wistar rats were divided into 4 groups, with 8 rats in each group. The first group was sham operated (Sham), the second group was ovariectomised (OVX), the third (LPva) and fourth group (ERT) were also ovariectomised and given LPva 17.5 mg/kg and Premarin(®) 64.5 μg/kg, respectively. Blood samples were taken before and after treatment to measure osteocalcin and C-terminal telopeptide of type 1 collagen levels using ELISA while the fifth lumbar bone samples were taken to measure bone calcium content using the Atomic Absorption Spectrophotometer (AAS).
    RESULTS: The osteocalcin levels were significantly higher in both the LPva and ERT groups compared to the OVX group. The CTX levels were significantly lower in both the LPva and ERT groups compared to the OVX group. However, only the ERT group had significantly higher bone calcium level compared to the OVX group.
    CONCLUSION: The supplementation of 17.5 mg/kg of LPva to ovariectomised rats for 8 weeks was able to prevent the changes in bone biochemical markers but failed to prevent the bone calcium loss induced by ovariectomy.
    Matched MeSH terms: Bone and Bones/drug effects
  13. Chin KY, Pang KL, Mark-Lee WF
    Int J Med Sci, 2018;15(10):1043-1050.
    PMID: 30013446 DOI: 10.7150/ijms.25634
    Bisphenol A (BPA) is an endocrine disruptor which can bind to the oestrogen receptor. It also possesses oestrogenic, antiandrogenic, inflammatory and oxidative properties. Since bone responds to changes in sex hormones, inflammatory and oxidative status, BPA exposure could influence bone health in humans. This review aimed to summarize the current evidence on the relationship between BPA and bone health derived from cellular, animal and human studies. Exposure to BPA (0.5-12.5 µM) decreased the proliferation of osteoblast and osteoclast precursor cells and induce their apoptosis. Bisphenol AF (10 nM) enhanced transforming growth factor beta signalling but bisphenol S (10 nM) inhibited Wnt signalling involved in osteoblast differentiation in vitro. In animals, BPA and its derivatives demonstrated distinct effects in different models. In prenatal/postnatal exposure, BPA increased femoral bone mineral content in male rats (at 25 ug/kg/day) but decreased femoral mechanical strength in female mice (at 10 µg/kg/day). In oestrogen deficiency models, BPA improved bone mineral density and microstructures in aromatase knockout mice (at very high dose, 0.1% or 1.0% w/w diet) but decreased trabecular density in ovariectomized rats (at 37 or 370 ug/kg/day). In contrast, bisphenol A diglycidyl ether (30 mg/kg/day i.p.) improved bone health in normal male and female rodents and decreased trabecular separation in ovariectomized rodents. Two cross-sectional studies have been performed to examine the relationship between BPA level and bone mineral density in humans but they yielded negligible association. As a conclusion, BPA and its derivatives could influence bone health and a possible gender effect was observed in animal studies. However, its effects in humans await verification from more comprehensive longitudinal studies in the future.
    Matched MeSH terms: Bone and Bones/drug effects*
  14. Shen CL, Klein A, Chin KY, Mo H, Tsai P, Yang RS, et al.
    Ann N Y Acad Sci, 2017 Aug;1401(1):150-165.
    PMID: 28891093 DOI: 10.1111/nyas.13449
    Osteoporosis, a degenerative bone disease, is characterized by low bone mass and microstructural deterioration of bone tissue resulting in aggravated bone fragility and susceptibility to fractures. The trend of extended life expectancy is accompanied by a rise in the prevalence of osteoporosis and concomitant complications in the elderly population. Epidemiological evidence has shown an association between vitamin E consumption and the prevention of age-related bone loss in elderly women and men. Animal studies show that ingestion of vitamin E, especially tocotrienols, may benefit bone health in terms of maintaining higher bone mineral density and improving bone microstructure and quality. The beneficial effects of tocotrienols on bone health appear to be mediated via antioxidant/anti-inflammatory pathways and/or 3-hydroxy-3-methylglutaryl coenzyme A mechanisms. We discuss (1) an overview of the prevalence and etiology of osteoporosis, (2) types of vitamin E (tocopherols versus tocotrienols), (3) findings of tocotrienols and bone health from published in vitro and animal studies, (4) possible mechanisms involved in bone protection, and (5) challenges and future direction for research.
    Matched MeSH terms: Bone and Bones/drug effects
  15. Radzi NFM, Ismail NAS, Alias E
    Curr Drug Targets, 2018;19(9):1095-1107.
    PMID: 29412105 DOI: 10.2174/1389450119666180207092539
    BACKGROUND: There are accumulating studies reporting that vitamin E in general exhibits bone protective effects. This systematic review, however discusses the effects of a group of vitamin E isomers, tocotrienols in preventing bone loss through osteoclast differentiation and activity suppression.

    OBJECTIVE: This review is aimed to discuss the literature reporting the effects of tocotrienols on osteoclasts, the cells specialized for resorbing bone.

    RESULTS: Out of the total 22 studies from the literature search, only 11 of them were identified as relevant, which comprised of eight animal studies, two in vitro studies and only one combination of both. The in vivo studies indicated that tocotrienols improve the bone health and reduce bone loss via inhibition of osteoclast formation and resorption activity, which could be through regulation of RANKL and OPG expression as seen from their levels in the sera. This is well supported by data from the in vitro studies demonstrating the suppression of osteoclast formation and resorption activity following treatment with tocotrienol isomers.

    CONCLUSION: Thus, tocotrienols are suggested to be potential antioxidants for prevention and treatment of bone-related diseases characterized by increased bone loss.

    Matched MeSH terms: Bone and Bones/drug effects*
  16. Wong SK, Mohamad NV, Ibrahim N', Chin KY, Shuid AN, Ima-Nirwana S
    Int J Mol Sci, 2019 Mar 22;20(6).
    PMID: 30909398 DOI: 10.3390/ijms20061453
    Bone remodelling is a tightly-coordinated and lifelong process of replacing old damaged bone with newly-synthesized healthy bone. In the bone remodelling cycle, bone resorption is coupled with bone formation to maintain the bone volume and microarchitecture. This process is a result of communication between bone cells (osteoclasts, osteoblasts, and osteocytes) with paracrine and endocrine regulators, such as cytokines, reactive oxygen species, growth factors, and hormones. The essential signalling pathways responsible for osteoclastic bone resorption and osteoblastic bone formation include the receptor activator of nuclear factor kappa-B (RANK)/receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG), Wnt/β-catenin, and oxidative stress signalling. The imbalance between bone formation and degradation, in favour of resorption, leads to the occurrence of osteoporosis. Intriguingly, vitamin E has been extensively reported for its anti-osteoporotic properties using various male and female animal models. Thus, understanding the underlying cellular and molecular mechanisms contributing to the skeletal action of vitamin E is vital to promote its use as a potential bone-protecting agent. This review aims to summarize the current evidence elucidating the molecular actions of vitamin E in regulating the bone remodelling cycle.
    Matched MeSH terms: Bone and Bones/drug effects*
  17. Mohamad Asri SF, Soelaiman IN, Mohd Moklas MA, Mohd Nor NH, Mohamad Zainal NH, Mohd Ramli ES
    Int J Mol Sci, 2020 Oct 19;21(20).
    PMID: 33086468 DOI: 10.3390/ijms21207715
    Glucocorticoids are one of the causes of secondary osteoporosis. The aqueous extract of Piper sarmentosum contains flavonoids that possess antioxidant effects. In this study, we determined the effects of aqueous Piper sarmentosum leaf extract on structural, dynamic and static histomorphometric changes from osteoporotic bones of rats induced with glucocorticoids. Thirty-two Sprague-Dawley rats were divided equally into four groups-Sham control group given vehicles (intramuscular (IM) olive oil and oral normal saline); AC: Adrenalectomised (Adrx) control group given IM dexamethasone (DEX) (120 μg/kg/day) and vehicle (oral normal saline); AP: Adrx group administered IM DEX (120 μg/kg/day) and aqueous Piper sarmentosum leaf extract (125 mg/kg/day) orally; and AG: Adrx group administered IM DEX (120 μg/kg/day) and oral glycyrrhizic acid (GCA) (120 mg/kg/day). Histomorphometric measurements showed that the bone volume, trabecular thickness, trabecular number, osteoid and osteoblast surfaces, double-labelled trabecular surface, mineralizing surface and bone formation rate of rats given aqueous Piper sarmentosum leaf extract were significantly increased (p < 0.05), whereas the trabecular separation and osteoclast surface were significantly reduced (p < 0.05). This study suggests that aqueous Piper sarmentosum leaf extract was able to prevent bone loss in prolonged glucocorticoid therapy. Thus, Piper sarmentosum has the potential to be used as an alternative medicine against osteoporosis and osteoporotic fractures in patients undergoing long-term glucocorticoid therapy.
    Matched MeSH terms: Bone and Bones/drug effects
  18. Chin KY, Thong BKS, Kamalulloh RF, Mohamad NV, Wong SK, Mohd Arlamsyah A, et al.
    Drug Des Devel Ther, 2020;14:2561-2572.
    PMID: 32753839 DOI: 10.2147/DDDT.S260565
    Purpose: Prolonged use of proton pump inhibitors may cause bone loss, and limited therapeutic agents are available to prevent this skeletal side effect. The combination of annatto tocotrienol, a bone anabolic agent, with calcium presents a novel strategy to prevent bone loss caused by proton pump inhibitors. This study aims to compare the effects of calcium alone and in combination with annatto tocotrienol or vitamin D3 (Caltrate Plus) in preventing bone loss caused by pantoprazole.

    Methods: Three-month-old Sprague Dawley male rats (n=30) were randomised into five groups (n=6/group). Bone loss was induced by pantoprazole (3 mg/kg p.o.) in four groups, and they were treated concurrently with either calcium carbonate (77 mg p.o.), calcium carbonate (77 mg p.o.) plus annatto tocotrienol (60 mg/kg p.o.) or Caltrate Plus (31 mg p.o.) for 60 days. The rats were euthanised at the end of the experiment, and their femurs were harvested for X-ray micro-computed tomography, bone cellular histomorphometry and bone mechanical strength analysis.

    Results: Pantoprazole caused significant deterioration of trabecular bone microstructures but did not affect other skeletal indices. Calcium supplementation with or without annatto tocotrienol prevented the deterioration of trabecular microstructures at the femur but did not improve other skeletal indices. Annatto tocotrienol did not enhance the skeletal actions of calcium, whereas Caltrate Plus did not affect the bone health indices in these rats.

    Conclusion: Calcium supplementation per se can prevent the deterioration of bone trabecular microstructures in rats receiving long-term treatment of pantoprazole.

    Matched MeSH terms: Bone and Bones/drug effects*
  19. Ekeuku SO, Thong BKS, Quraisiah A, Annuar F, Hanafiah A, Nur Azlina MF, et al.
    Drug Des Devel Ther, 2020;14:5359-5366.
    PMID: 33324037 DOI: 10.2147/DDDT.S287239
    Purpose: Triple therapy is the standard therapy to eradicate Helicobacter pylori (H.pylori) infection. Chronic use of proton pump inhibitors (PPIs), a component of triple therapy, is associated with osteoporosis. However, the skeletal effects of short-term triple therapy containing PPI remain elusive. This study aims to determine the skeletal effect of short-term triple therapy in a rat model of gastric ulcer induced by H. pylori.

    Methods: Three-month-old male Sprague Dawley rats were assigned to normal control, H. pylori-inoculated group (negative control) and H. pylori-inoculated group receiving triple therapy consisting of omeprazole [2.035 mg/kg body weight (b.w)], amoxicillin (102.80 mg/kg b.w) and clarithromycin (51.37 mg/kg b.w) (n=6/group). H. pylori infection developed for four weeks after inoculation, followed by two-week triple therapy. At the end of the treatment period, femoral bones of the rats were harvested for analysis. Bone mineral density and content of the femurs were determined using dual-energy X-ray absorptiometry, while bone strength was measured with a universal mechanical tester.

    Results: Bone mineral content was significantly lower in the negative control group compared to the triple therapy group (p=0.014). Triple therapy decreased strain (vs negative control, p=0.002) and displacement of the femur (vs normal control, p=0.004; vs untreated control, p=0.005). No significant difference was observed in other parameters among the study groups (p>0.05).

    Conclusion: Short-term triple therapy increases bone mineral content but decreases bone strength of rats. Skeletal prophylaxis should be considered for patients on short-term triple therapy containing PPI.

    Matched MeSH terms: Bone and Bones/drug effects*
  20. Karim K, Giribabu N, Salleh N
    Phytomedicine, 2021 Oct;91:153677.
    PMID: 34333329 DOI: 10.1016/j.phymed.2021.153677
    BACKGROUND: M. pumilum has been claimed to protect the bone against the adverse effect of estrogen deficiency. Additionally, it also exhibits anti-diabetic activity. In view of these, this study aims to identify the mechanisms underlying the bone protective effect of M. pumilum in the presence of both estrogen deficiency and diabetes mellitus (DM).

    METHODS: Ovariectomized, diabetic female rats were given M. pumilum leave aqueous extract (MPLA) (50 and 100 mg/kg/day), estrogen, glibenclamide and estrogen plus glibenclamide for 28 consecutive days. At the end of the treatment, fasting blood glucose (FBG), serum insulin, Ca2+, PO43- and bone alkaline phosphatase (BALP) levels were measured. Rats were sacrificed and femur bones were harvested for determination of expression level and distribution of RANK, RANKL, OPG and oxidative stress and inflammatory proteins by molecular biological techniques.

    RESULTS: 100 mg/kg/day MPLA treatment decreased the FBG and BALP levels but increased the serum insulin, Ca2+ and PO43- levels in estrogen deficient, diabetic rats. Expression and distribution of RANKL, NF-κB p65, IKKβ, IL-6, IL-1β and Keap-1 decreased however expression and distribution of RANK, OPG, BMP-2, Type-1 collagen, Runx2, TRAF6, Nrf2, NQO-1, HO-1, SOD and CAT increased in the bone of estrogen deficient, diabetic rats which received 100 mg/kg/day MPLA with greater effects than estrogen-only, glibenclamide-only and estrogen plus glibenclamide treatments.

    CONCLUSION: MPLA helps to overcome the adverse effect of estrogen deficiency and DM on the bone and thus this herb could potentially be used for the treatment and prevention of osteoporosis in postmenopausal women with diabetes.

    Matched MeSH terms: Bone and Bones/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links