Displaying all 15 publications

Abstract:
Sort:
  1. Hussain Zaki UK, Fryganas C, Trijsburg L, Feskens EJM, Capuano E
    Food Chem, 2023 Mar 15;404(Pt A):134607.
    PMID: 36272303 DOI: 10.1016/j.foodchem.2022.134607
    This research assessed the influence of pickling, fermentation, germination, and tea brewing on lignan content of a variety of food highly consumed in Malaysia. Lignans have been measured by a validated LC-MS/MS method. Secoisolariciresinol (SECO) was the most abundant compound in fermented and germinated samples. Pickling significantly decreased larisiresinol content by approximately 86 %. Fermentation increased lignan content in a mixture of flaxseed and mung beans (799.9 ± 67.4 mg/100 g DW) compared to the unfermented counterpart (501.4 ± 134.6 mg/100 g DW), whereas the fermentation of soybeans and mung beans did not significantly affect the SECO content. Germination increased lignan content, which reached its peak on day 6 of germination for all the tested matrixes. In tea brew, lignans concentration increased with brewing time reaching its highest concentration at 10 min of brewing. The results of this study expand the knowledge on the effect of processing on lignan content in food.
    Matched MeSH terms: Butylene Glycols/analysis
  2. Rafiqah SA, Khalina A, Harmaen AS, Tawakkal IA, Zaman K, Asim M, et al.
    Polymers (Basel), 2021 Apr 29;13(9).
    PMID: 33946989 DOI: 10.3390/polym13091436
    Researchers and companies have increasingly been drawn to biodegradable polymers and composites because of their environmental resilience, eco-friendliness, and suitability for a range of applications. For various uses, biodegradable fabrics use biodegradable polymers or natural fibers as reinforcement. Many approaches have been taken to achieve better compatibility for tailored and improved material properties. In this article, PBS (polybutylene succinate) was chosen as the main topic due to its excellent properties and intensive interest among industrial and researchers. PBS is an environmentally safe biopolymer that has some special properties, such as good clarity and processability, a shiny look, and flexibility, but it also has some drawbacks, such as brittleness. PBS-based natural fiber composites are completely biodegradable and have strong physical properties. Several research studies on PBS-based composites have been published, including physical, mechanical, and thermal assessments of the properties and its ability to replace petroleum-based materials, but no systematic analysis of up-to-date research evidence is currently available in the literature. The aim of this analysis is to highlight recent developments in PBS research and production, as well as its natural fiber composites. The current research efforts focus on the synthesis, copolymers and biodegradability for its properties, trends, challenges and prospects in the field of PBS and its composites also reviewed in this paper.
    Matched MeSH terms: Butylene Glycols
  3. Ayu RS, Khalina A, Harmaen AS, Zaman K, Mohd Nurrazi N, Isma T, et al.
    Sci Rep, 2020 01 24;10(1):1166.
    PMID: 31980742 DOI: 10.1038/s41598-020-58278-y
    In this study, it focused on empty fruit brunch (EFB) fibres reinforcement in polybutylene succinate (PBS) with modified tapioca starch by using hot press technique for the use of agricultural mulch film. Mechanical, morphological and thermal properties were studied. Mechanical analysis showed decreased in values of modulus strength for both tensile and flexural testing for fibres insertion. Higher EFB fibre contents in films resulted lower mechanical properties due to poor fibre wetting from insufficient matrix. This has also found evident in SEM micrograph, showing poor interfacial bonding. Water vapour permeability (WVP) shows as higher hydrophilic EFB fibre reinforcement contents, the rate of WVP also increase. Besides this, little or no significant changes on thermal properties for composite films. This is because high thermal stability PBS polymer show its superior thermal properties dominantly. Even though EFB fibres insertion into PBS/tapioca starch biocomposite films have found lower mechanical properties. It successfully reduced the cost of mulch film production without significant changes of thermal performances.
    Matched MeSH terms: Butylene Glycols
  4. Then, Yoon Yee, NorAzowa Ibrahim, Norhazlin Zainuddin, Hidayah Ariffin, Wan MdZin Wan Yunus
    MyJurnal
    Natural fiber is incompatible with hydrophobic polymer due to its hydrophilic nature. Therefore, surface modification of fiber is needed to impart compatibility. In this work,superheated steam (SHS)-alkali was introduced as novel surface treatment method to modify oil palm mesocarp fiber (OPMF) for fabrication of biocomposites. The OPMF was first pre-treated with SHS and subsequently treated with varying NaOH concentration (1, 2, 3, 4 and 5%) and soaking time (1, 2, 3 and 4h) at room temperature. The biocomposites were then fabricated by melt blending of 70 wt% SHS-alkali treated-OPMFs and 30 wt% poly(butylene succinate) in a Brabender internal mixer followed by hot-pressed moulding. The combination treatment resulted in fiber with rough surface as well as led to the exposure ofmicrofibers. The tensile test result showed that fiber treated at 2% NaOH solution and 3h soaking time produced biocomposite with highest improvement in tensile strength (69%) and elongation at break (36%) in comparison to that of untreated OPMF. The scanning electron micrographs of tensile fracture surfaces of biocomposite provide evident for improved adhesion between fiber and polymer after thetreatments.This work demonstrated that combination treatments of SHS and NaOH could be a promising way to modify OPMF for fabrication of biocomposite.
    Matched MeSH terms: Butylene Glycols
  5. Anisuzzaman, S.M., Krishnaiah, D., Bono, A., Lahin, F.A., Suali, E., Zuyyin, I.A.Z.
    MyJurnal
    In this study, simulation and optimisation of the purification of bioethanol from an azeotropic mixture was done using the Aspen HYSYS and the Response Surface Methodology (RSM), respectively, to achieve an acceptable bioethanol content with minimal energy use. The objective of this study is to develop the simulation process of bioethanol production from a fermentation effluent. Additionally, the effects of parameters such as solvent temperature, number of entrainer feed stage, mass flow rate and third components of the process for production of bioethanol were studied. As bioethanol is a product of biofuel production, the main challenge facing bioethanol production is the separation of high purity ethanol. However, the separation of ethanol and water can be achieved with the addition of a suitable solvent such as 1,3-butylene glycol (13C4Diol), mixture 13C4Diol and ethylene glycol (EGlycol) and mixture 13C4Diol and glycol ethyl ether (DEG) in the extractive distillation process. For the 13C4Diol mixture, the temperature of entrainer is 90oC with 1500 kg/hr of entrainer rate, while the number of entrainer feed stage is one. The optimum conditions for mixture 13C4Diol and EGlycol require a temperature of entrainer of 90.77oC with an entrainer rate of 1500 kg/hr, while the number of entrainer feed stage is one. Lastly, for optimum conditions for the mixture 13C4Diol and DEG, the temperature of entrainer should be 90oC with an entrainer rate of 1564.04 kg/hr, while the number of entrainer feed stage is one. This study shows that process simulation and optimisation can enhance the removal of water from an azeotropic mixture.
    Matched MeSH terms: Butylene Glycols
  6. Nazrin A, Sapuan SM, Zuhri MYM, Ilyas RA, Syafiq R, Sherwani SFK
    Front Chem, 2020;8:213.
    PMID: 32351928 DOI: 10.3389/fchem.2020.00213
    Synthetic plastics are severely detrimental to the environment because non-biodegradable plastics do not degrade for hundreds of years. Nowadays, these plastics are very commonly used for food packaging. To overcome this problem, food packaging materials should be substituted with "green" or environmentally friendly materials, normally in the form of natural fiber reinforced biopolymer composites. Thermoplastic starch (TPS), polylactic acid (PLA) and polybutylene succinate (PBS) were chosen for the substitution, because of their availability, biodegradability, and good food contact properties. Plasticizer (glycerol) was used to modify the starch, such as TPS under a heating condition, which improved its processability. TPS films are sensitive to moisture and their mechanical properties are generally not suitable for food packaging if used alone, while PLA and PBS have a low oxygen barrier but good mechanical properties and processability. In general, TPS, PLA, and PBS need to be modified for food packaging requirements. Natural fibers are often incorporated as reinforcements into TPS, PLA, and PBS to overcome their weaknesses. Natural fibers are normally used in the form of fibers, fillers, celluloses, and nanocelluloses, but the focus of this paper is on nanocellulose. Nanocellulose reinforced polymer composites demonstrate an improvement in mechanical, barrier, and thermal properties. The addition of compatibilizer as a coupling agent promotes a fine dispersion of nanocelluloses in polymer. Additionally, nanocellulose and TPS are also mixed with PLA and PBS because they are costly, despite having commendable properties. Starch and natural fibers are utilized as fillers because they are abundant, cheap and biodegradable.
    Matched MeSH terms: Butylene Glycols
  7. Then YY, Ibrahim NA, Zainuddin N, Ariffin H, Yunus WM, Chieng BW
    Int J Mol Sci, 2014;15(9):15344-57.
    PMID: 25177865 DOI: 10.3390/ijms150915344
    In this paper, superheated steam (SHS) was used as cost effective and green processing technique to modify oil palm mesocarp fiber (OPMF) for biocomposite applications. The purpose of this modification was to promote the adhesion between fiber and thermoplastic. The modification was carried out in a SHS oven at various temperature (200-230 °C) and time (30-120 min) under normal atmospheric pressure. The biocomposites from SHS-treated OPMFs and poly(butylene succinate) (PBS) at a weight ratio of 70:30 were prepared by melt blending technique. The mechanical properties and dimensional stability of the biocomposites were evaluated. This study showed that the SHS treatment increased the roughness of the fiber surface due to the removal of surface impurities and hemicellulose. The tensile, flexural and impact properties, as well as dimensional stability of the biocomposites were markedly enhanced by the presence of SHS-treated OPMF. Scanning electron microscopy analysis showed improvement of interfacial adhesion between PBS and SHS-treated OPMF. This work demonstrated that SHS could be used as an eco-friendly and sustainable processing method for modification of OPMF in biocomposite fabrication.
    Matched MeSH terms: Butylene Glycols/chemistry*
  8. Kian LK, Jawaid M, Nasef MM, Fouad H, Karim Z
    Int J Biol Macromol, 2021 Dec 01;192:654-664.
    PMID: 34655581 DOI: 10.1016/j.ijbiomac.2021.10.042
    In this study, poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) dual-layer membranes filled with 0-3 wt% cellulose nanowhisker (CNWs) were fabricated with aim to remove metal ions from wastewater. An integrated method was employed in the membrane fabrication process by combining water vapor-induced and crystallization-induced phase inversions. The membrane thickness was measured in between 11 and 13 μm, which did not pose significant flux deviation during filtration process. The 3% CNW filled membrane showed prominent and well-laminated two layers structure. Meanwhile, the increase in CNWs from 0 to 3% loadings could improve the membrane porosity (43-74%) but reducing pore size (2.45-0.54 μm). The heat resistance of neat membrane enhanced by 1% CNW but decreased with loadings of 2-3% CNWs due to flaming behavior of sulphated nanocellulose. Membrane with 3% CNW displayed the tensile strength (23.5 MPa), elongation at break (7.1%), and Young's modulus (0.75 GPa) as compared to other samples. For wastewater filtration performance, the continuous operation test showed that 3% CNW filled membrane exhibited the highest removal efficiency for both cobalt and nickel metal ions reaching to 83% and 84%, respectively. We concluded that CNWs filled dual-layer membranes have potential for future development in the removal of heavy metal ions from wastewater streams.
    Matched MeSH terms: Butylene Glycols/chemistry*
  9. Habib Ullah M, Mahadi WN, Latef TA
    Sci Rep, 2015;5:12868.
    PMID: 26238975 DOI: 10.1038/srep12868
    Polybutylene succinate (PBS) has become a potential candidate, similar to polypropylene (PP) and acrylonitrile butadiene styrene (ABS), for use as an organic plastic material due to its outstanding mechanical properties as well as high thermal deformation characteristics. A new composition of silica aerogel nanoparticles extracted from rice waste with PBS is proposed for use as a dielectric (εr = 4.5) substrate for microwave applications. A microstrip patch antenna was fabricated on the proposed dielectric substrate for multi-resonant ultra-wideband (UWB) applications. The performance characteristics of the proposed biomaterial-based antenna were investigated in a far-field measurement environment. The results indicate that the proposed biocompatible material-based antenna covered a bandwidth of 9.4 (2.3-11.7) GHz with stop bands from 5.5 GHz to 5.8 GHz and 7.0 GHz to 8.3 GHz. Peak gains of 9.82 dBi, 7.59 dBi, 8.0 dBi and 7.68 dBi were measured at resonant frequencies of 2.7 GHz, 4.6 GHz, 6.3 GHz and 9.5 GHz, respectively.
    Matched MeSH terms: Butylene Glycols
  10. Aziman N, Kian LK, Jawaid M, Sanny M, Alamery S
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513665 DOI: 10.3390/polym13030391
    The development of antimicrobial film for food packaging application had become the focus for researchers and scientists. This research aims to study the characteristics and antimicrobial activity of novel biofilms made of poly (butylene succinate) (PBS) and tapioca starch (TPS) added with 1.5% or 3% of Biomaster-silver (BM) particle. In morphological examination, the incorporation of 3% BM particle was considerably good in forming well-structured PBS film. Meanwhile, the functional groups analysis revealed the 3% BM particle was effectively interacted with PBS molecular chains. The flame retard behavior of BM metal particle also helped in enhancing the thermal stability for pure PBS and PBS/TPS films. The nucleating effect of BM particles had improved the films crystallinity. Small pore size features with high barrier property for gas permeability was obtained for BM filled PBS/TPS films. From antimicrobial analysis, the BM particles possessed antimicrobial activity against three bacteria Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in which PBS/TPS 3% BM film exhibited strong antimicrobial activity against all tested bacteria, however, PBS/TPS 1.5% BM film exhibited strong antimicrobial activity against E. coli only. Hence, the incorporation of BM into PBS/TPS film could be a sustainable way for developing packaging films to preserve food products.
    Matched MeSH terms: Butylene Glycols
  11. Ahmad Saffian H, Hyun-Joong K, Md Tahir P, Ibrahim NA, Lee SH, Lee CH
    Materials (Basel), 2019 Dec 05;12(24).
    PMID: 31817323 DOI: 10.3390/ma12244043
    In this study, the effects of lignin modification on the properties of kenaf core fiber reinforced poly(butylene succinate) biocomposites were examined. A weight percent gain (WPG) value of 30.21% was recorded after the lignin were modified with maleic anhydride. Lower mechanical properties were observed for lignin composites because of incompatible bonding between the hydrophobic matrix and the hydrophilic lignin. Modified lignin (ML) was found to have a better interfacial bonding, since maleic anhydrides remove most of the hydrophilic hydrogen bonding (this was proven by a Fourier-transform infrared (FTIR) spectrometer-a reduction of broadband near 3400 cm-1, corresponding to the -OH stretching vibration of hydroxyl groups for the ML samples). On the other hand, ML was found to have a slightly lower glass transition temperature, Tg, since reactions with maleic anhydride destroy most of the intra- and inter-molecular hydrogen bonds, resulting in a softer structure at elevated temperatures. The addition of kraft lignin was found to increase the thermal stability of the PBS polymer composites, while modified kraft lignin showed higher thermal stability than pure kraft lignin and possessed delayed onset thermal degradation temperature.
    Matched MeSH terms: Butylene Glycols
  12. Shamsuri AA, Md Jamil SNA
    Materials (Basel), 2020 Apr 17;13(8).
    PMID: 32316400 DOI: 10.3390/ma13081885
    Polybutylene succinate (PBS)/rice starch (RS) blends were prepared via the hot-melt extrusion technique through the usage of a twin-screw extruder without and containing ionic liquid-based surfactants (ILbS). Two types of ILbS were used, specifically, 1-dodecyl-3-methylimidazolium trifluoromethanesulfonate, [C12mim][OTf] and 1-dodecyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [C12mim][NTf2] were mixed into the PBS/RS blends at the different contents (0-8 wt.%). The tensile and flexural results showed that the blends containing ILbS have a high tensile extension and tensile energy compared to the blend without ILbS. The blends containing ILbS also have a high flexural extension compared with the blend without ILbS. The blends containing [C12mim][NTf2] have a significant improvement in the tensile energy (up to 239%) and flexural extension (up to 17%) in comparison with the blends containing [C12mim][OTf]. The FTIR spectra demonstrated that the presence of ILbS in the blends generated the intermolecular interactions (ion-dipole force and hydrophobic-hydrophobic interaction) between PBS and RS. The DSC results exhibited that the melting points of the prepared blends are decreased with the addition of ILbS. However, the TGA results showed that the thermal decomposition of the blends containing ILbS are higher than the blend without ILbS. The values of decomposition temperature were 387.4 °C, 381.8 °C, and 378.6 °C of PBS/RS-[C12mim][NTf2], PBS/RS-[C12mim][OTf], and PBS/RS, respectively. In conclusion, the ILbS could significantly improve the physicochemical properties of the PBS/RS blends by acting as a compatibilizer.
    Matched MeSH terms: Butylene Glycols
  13. Zetty Shafiqa Othman, Nurul Huda Abd Karim, Saiful Irwan Zubairi, Nur Hasyareeda Hassan, Mamoru Koketsu
    Sains Malaysiana, 2018;47:1473-1482.
    [BMIM]OTf and alcohol-based DES combination with a selected organic solvent (acetone and acetonitrile) have
    been proven to efficiently extracting rotenone (isoflavonoid biopesticide) compound compared to individual organic
    solvents. Their efficiency builds up interest to study the solvent-solute interaction that occurs between both selected
    solvent systems with rotenone. The interaction study was analyzed using FTIR, 1D-NMR and 2D- NMR (NOESY, HMBC).
    Correlation portrayed by NOESY and HMBC of [BMIM]OTf - standard rotenone mixture predicted probable hydrogen
    bonding between the oxygen of rotenone with acidic proton C2-H of [BMIM]OTf. While for the alcohol-based DESrotenone
    mixture, the correlation shows probable interaction to occur between methyl and methoxy group rotenone
    with the hydroxyl group of 1,4-butanediol. In conclusion, potential hydrogen bonding that occurs between solvent
    and solute aid towards the solvent efficiency in extracting rotenone compound while emphasizing on the low cost and
    green mediated solvent systems.
    Matched MeSH terms: Butylene Glycols
  14. Hassan Z, Bosch OG, Singh D, Narayanan S, Kasinather BV, Seifritz E, et al.
    Front Psychiatry, 2017;8:152.
    PMID: 28868040 DOI: 10.3389/fpsyt.2017.00152
    A feature of human culture is that we can learn to consume chemical compounds, derived from natural plants or synthetic fabrication, for their psychoactive effects. These drugs change the mental state and/or the behavioral performance of an individual and can be instrumentalized for various purposes. After the emergence of a novel psychoactive substance (NPS) and a period of experimental consumption, personal and medical benefits and harm potential of the NPS can be estimated on evidence base. This may lead to a legal classification of the NPS, which may range from limited medical use, controlled availability up to a complete ban of the drug form publically accepted use. With these measures, however, a drug does not disappear, but frequently continues to be used, which eventually allows an even better estimate of the drug's properties. Thus, only in rare cases, there is a final verdict that is no more questioned. Instead, the view on a drug can change from tolerable to harmful but may also involve the new establishment of a desired medical application to a previously harmful drug. Here, we provide a summary review on a number of NPS for which the neuropharmacological evaluation has made important progress in recent years. They include mitragynine ("Kratom"), synthetic cannabinoids (e.g., "Spice"), dimethyltryptamine and novel serotonergic hallucinogens, the cathinones mephedrone and methylone, ketamine and novel dissociative drugs, γ-hydroxybutyrate, γ-butyrolactone, and 1,4-butanediol. This review shows not only emerging harm potentials but also some potential medical applications.
    Matched MeSH terms: Butylene Glycols
  15. Rasheed M, Jawaid M, Parveez B, Hussain Bhat A, Alamery S
    Polymers (Basel), 2021 Feb 01;13(3).
    PMID: 33535490 DOI: 10.3390/polym13030465
    The present study aims to develop a biodegradable polymer blend that is environmentally friendly and has comparable tensile and thermal properties with synthetic plastics. In this work, microcrystalline cellulose (MCC) extracted from bamboo-chips-reinforced poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blend composites were fabricated by melt-mixing at 180 °C and then hot pressing at 180 °C. PBS and MCC (0.5, 1, 1.5 wt%) were added to improve the brittle nature of PLA. Field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential scanning calorimetry (DSC)), and universal testing machine were used to analyze morphology, crystallinity, physiochemical, thermal, and tensile properties, respectively. The thermal stability of the PLA-PBS blends enhanced on addition of MCC up to 1wt % due to their uniform dispersion in the polymer matrix. Tensile properties declined on addition of PBS and increased with MCC above (0.5 wt%) however except elongation at break increased on addition of PBS then decreased insignificantly on addition of MCC. Thus, PBS and MCC addition in PLA matrix decreases the brittleness, making it a potential contender that could be considered to replace plastics that are used for food packaging.
    Matched MeSH terms: Butylene Glycols
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links