Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Cheong CSY, Khan SU, Ahmed N, Narayanan K
    J Biomol Struct Dyn, 2023 Jul;41(11):5261-5276.
    PMID: 35694994 DOI: 10.1080/07391102.2022.2084162
    Fabry disease (FD) is caused by a defective α-galactosidase A (α-GAL A) enzyme responsible for breaking down globotriaosylceramide (Gb3). To develop affordable therapeutics, more effort is needed to obtain insights into the underlying mechanism of FD and understanding human α-GAL A structure and function in related animal models. We adopted C. elegans as a model to elucidate the sequence and 3D structure of its GANA-1 enzyme and compared it to human α-GAL A. We constructed GANA-1 3D structure by homology modelling and validated the quality of the predicted GANA-1 structure, followed by computational docking of human ligands. The GANA-1 protein shared sequence similarities up to 42.1% with the human α-GAL A in silico and had dual active sites. GANA-1 homology modelling showed that 11 out of 13 amino acids in the first active site of GANA-1 protein overlapped with the human α-GAL A active site, indicating the prospect for substrate cross-reaction. Computational molecular docking using human ligands like Gb3 (first pocket), 4-nitrophenyl-α-D-galactopyranoside (second pocket), α-galactose (second pocket), and N-acetyl-D-galactosamine (second pocket) showed negative binding energy. This revealed that the ligands were able to bind within both GANA-1 active sites, mimicking the human α-GAL A and α-NAGA enzymes. We identified human compounds with adequate docking scores, predicting robust interactions with the GANA-1 active site. Our data suggested that the C. elegans GANA-1 enzyme may possess structural and functional similarities to human α-GAL A, including an intrinsic capability to metabolize Gb3 deposits.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Caenorhabditis elegans*
  2. Wong YC, Naeem R, Abd El Ghany M, Hoh CC, Pain A, Nathan S
    Front Cell Infect Microbiol, 2022;12:1062682.
    PMID: 36619746 DOI: 10.3389/fcimb.2022.1062682
    INTRODUCTION: Burkholderia pseudomallei, a soil-dwelling microbe that infects humans and animals is the cause of the fatal disease melioidosis. The molecular mechanisms that underlie B. pseudomallei's versatility to survive within a broad range of environments are still not well defined.

    METHODS: We used the genome-wide screening tool TraDIS (Transposon Directed Insertion-site Sequencing) to identify B. pseudomallei essential genes. Transposon-flanking regions were sequenced and gene essentiality was assessed based on the frequency of transposon insertions within each gene. Transposon mutants were grown in LB and M9 minimal medium to determine conditionally essential genes required for growth under laboratory conditions. The Caenorhabditis elegans infection model was used to assess genes associated with in vivo B. pseudomallei survival. Transposon mutants were fed to the worms, recovered from worm intestines, and sequenced. Two selected mutants were constructed and evaluated for the bacteria's ability to survive and proliferate in the nematode intestinal lumen.

    RESULTS: Approximately 500,000 transposon-insertion mutants of B. pseudomallei strain R15 were generated. A total of 848,811 unique transposon insertion sites were identified in the B. pseudomallei R15 genome and 492 genes carrying low insertion frequencies were predicted to be essential. A total of 96 genes specifically required to support growth under nutrient-depleted conditions were identified. Genes most likely to be involved in B. pseudomallei survival and adaptation in the C. elegans intestinal lumen, were identified. When compared to wild type B. pseudomallei, a Tn5 mutant of bpsl2988 exhibited reduced survival in the worm intestine, was attenuated in C. elegans killing and showed decreased colonization in the organs of infected mice.

    DISCUSSION: The B. pseudomallei conditional essential proteins should provide further insights into the bacteria's niche adaptation, pathogenesis, and virulence.

    Matched MeSH terms: Caenorhabditis elegans/microbiology
  3. Tee LF, Neoh HM, Then SM, Murad NA, Asillam MF, Hashim MH, et al.
    Life Sci Space Res (Amst), 2017 Nov;15:11-17.
    PMID: 29198309 DOI: 10.1016/j.lssr.2017.06.002
    Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity lead to higher expression of non-coding RNA genes, which may play an epigenetic role in the worms during longer terms of microgravity exposure.
    Matched MeSH terms: Caenorhabditis elegans/genetics*; Caenorhabditis elegans/growth & development*; Caenorhabditis elegans/physiology
  4. Lee SH, Wong RR, Chin CY, Lim TY, Eng SA, Kong C, et al.
    Proc Natl Acad Sci U S A, 2013 Sep 10;110(37):15067-72.
    PMID: 23980181 DOI: 10.1073/pnas.1311725110
    Burkholderia pseudomallei is a Gram-negative soil bacterium that infects both humans and animals. Although cell culture studies have revealed significant insights into factors contributing to virulence and host defense, the interactions between this pathogen and its intact host remain to be elucidated. To gain insights into the host defense responses to B. pseudomallei infection within an intact host, we analyzed the genome-wide transcriptome of infected Caenorhabditis elegans and identified ∼6% of the nematode genes that were significantly altered over a 12-h course of infection. An unexpected feature of the transcriptional response to B. pseudomallei was a progressive increase in the proportion of down-regulated genes, of which ELT-2 transcriptional targets were significantly enriched. ELT-2 is an intestinal GATA transcription factor with a conserved role in immune responses. We demonstrate that B. pseudomallei down-regulation of ELT-2 targets is associated with degradation of ELT-2 protein by the host ubiquitin-proteasome system. Degradation of ELT-2 requires the B. pseudomallei type III secretion system. Together, our studies using an intact host provide evidence for pathogen-mediated host immune suppression through the destruction of a host transcription factor.
    Matched MeSH terms: Caenorhabditis elegans/genetics; Caenorhabditis elegans/immunology*; Caenorhabditis elegans/microbiology*; Caenorhabditis elegans Proteins/genetics; Caenorhabditis elegans Proteins/metabolism*
  5. Dharmalingam K, Tan BK, Mahmud MZ, Sedek SA, Majid MI, Kuah MK, et al.
    J Ethnopharmacol, 2012 Jan 31;139(2):657-63.
    PMID: 22193176 DOI: 10.1016/j.jep.2011.12.016
    Swietenia macrophylla or commonly known as big leaf mahogany, has been traditionally used as an antibacterial and antifungal agent.
    Matched MeSH terms: Caenorhabditis elegans/drug effects*; Caenorhabditis elegans/genetics; Caenorhabditis elegans/immunology; Caenorhabditis elegans/microbiology; Caenorhabditis elegans Proteins/genetics; Caenorhabditis elegans Proteins/metabolism
  6. Thomas R, Hamat RA, Neela V
    J Med Microbiol, 2013 Nov;62(Pt 11):1777-1779.
    PMID: 23988629 DOI: 10.1099/jmm.0.063230-0
    Matched MeSH terms: Caenorhabditis elegans/microbiology*
  7. Tee LF, Tan TL, Neoh HM, Jamal R
    Rev Soc Bras Med Trop, 2019 Mar 14;52:e20180300.
    PMID: 30892548 DOI: 10.1590/0037-8682-0300-2018
    INTRODUCTION: The nematode Caenorhabditis elegans was used as a biological sensor to detect the urine of sepsis patients (CESDA assay).

    METHODS: C. elegans was aliquoted onto the center of assay plates and allowed to migrate towards sepsis (T) or control (C) urine samples spotted on the same plate. The number of worms found in either (T) or (C) was scored at 10-minute intervals over a 60-minute period.

    RESULTS: The worms were able to identify the urine (<48 hours) of sepsis patients rapidly within 20 minutes (AUROC=0.67, p=0.012) and infection within 40 minutes (AUROC=0.80, p=0.016).

    CONCLUSIONS: CESDA could be further explored for sepsis diagnosis.

    Matched MeSH terms: Caenorhabditis elegans*
  8. Saida K, Maroofian R, Sengoku T, Mitani T, Pagnamenta AT, Marafi D, et al.
    Genet Med, 2023 Jan;25(1):90-102.
    PMID: 36318270 DOI: 10.1016/j.gim.2022.09.010
    PURPOSE: Brain monoamine vesicular transport disease is an infantile-onset movement disorder that mimics cerebral palsy. In 2013, the homozygous SLC18A2 variant, p.Pro387Leu, was first reported as a cause of this rare disorder, and dopamine agonists were efficient for treating affected individuals from a single large family. To date, only 6 variants have been reported. In this study, we evaluated genotype-phenotype correlations in individuals with biallelic SLC18A2 variants.

    METHODS: A total of 42 affected individuals with homozygous SLC18A2 variant alleles were identified. We evaluated genotype-phenotype correlations and the missense variants in the affected individuals based on the structural modeling of rat VMAT2 encoded by Slc18a2, with cytoplasm- and lumen-facing conformations. A Caenorhabditis elegans model was created for functional studies.

    RESULTS: A total of 19 homozygous SLC18A2 variants, including 3 recurrent variants, were identified using exome sequencing. The affected individuals typically showed global developmental delay, hypotonia, dystonia, oculogyric crisis, and autonomic nervous system involvement (temperature dysregulation/sweating, hypersalivation, and gastrointestinal dysmotility). Among the 58 affected individuals described to date, 16 (28%) died before the age of 13 years. Of the 17 patients with p.Pro237His, 9 died, whereas all 14 patients with p.Pro387Leu survived. Although a dopamine agonist mildly improved the disease symptoms in 18 of 21 patients (86%), some affected individuals with p.Ile43Phe and p.Pro387Leu showed milder phenotypes and presented prolonged survival even without treatment. The C. elegans model showed behavioral abnormalities.

    CONCLUSION: These data expand the phenotypic and genotypic spectra of SLC18A2-related disorders.

    Matched MeSH terms: Caenorhabditis elegans/genetics; Caenorhabditis elegans/metabolism
  9. Ooi SK, Lim TY, Lee SH, Nathan S
    Virulence, 2012 Oct 01;3(6):485-96.
    PMID: 23076282 DOI: 10.4161/viru.21808
    The nematode Caenorhabditis elegans is hypersusceptible to Burkholderia pseudomallei infection. However, the virulence mechanisms underlying rapid lethality of C. elegans upon B. pseudomallei infection remain poorly defined. To probe the host-pathogen interaction, we constructed GFP-tagged B. pseudomallei and followed bacterial accumulation within the C. elegans intestinal lumen. Contrary to slow-killing by most bacterial pathogens, B. pseudomallei caused fairly limited intestinal lumen colonization throughout the period of observation. Using grinder-defective mutant worms that allow the entry of intact bacteria also did not result in full intestinal lumen colonization. In addition, we observed a significant decline in C. elegans defecation and pharyngeal pumping rates upon B. pseudomallei infection. The decline in defecation rates ruled out the contribution of defecation to the limited B. pseudomallei colonization. We also demonstrated that the limited intestinal lumen colonization was not attributed to slowed host feeding as bacterial loads did not change significantly when feeding was stimulated by exogenous serotonin. Both these observations confirm that B. pseudomallei is a poor colonizer of the C. elegans intestine. To explore the possibility of toxin-mediated killing, we examined the transcription of the C. elegans ABC transporter gene, pgp-5, upon B. pseudomallei infection of the ppgp-5::gfp reporter strain. Expression of pgp-5 was highly induced, notably in the pharynx and intestine, compared with Escherichia coli-fed worms, suggesting that the host actively thwarted the pathogenic assaults during infection. Collectively, our findings propose that B. pseudomallei specifically and continuously secretes toxins to overcome C. elegans immune responses.
    Matched MeSH terms: Caenorhabditis elegans/immunology*; Caenorhabditis elegans/microbiology; Caenorhabditis elegans Proteins/biosynthesis; Caenorhabditis elegans Proteins/genetics*; Caenorhabditis elegans Proteins/metabolism
  10. Kumarasingha R, Karpe AV, Preston S, Yeo TC, Lim DSL, Tu CL, et al.
    Int J Parasitol Drugs Drug Resist, 2016 12;6(3):171-178.
    PMID: 27639945 DOI: 10.1016/j.ijpddr.2016.08.002
    Anthelmintic resistance is widespread in gastrointestinal nematode populations, such that there is a consistent need to search for new anthelmintics. However, the cost of screening for new compounds is high and has a very low success rate. Using the knowledge of traditional healers from Borneo Rainforests (Sarawak, Malaysia), we have previously shown that some traditional medicinal plants are a rich source of potential new anthelmintic drug candidates. In this study, Picria fel-terrae Lour. plant extract, which has previously shown promising anthelmintic activities, was fractionated via the use of a solid phase extraction cartridge and each isolated fraction was then tested on free-living nematode Caenorhabditis elegans and the parasitic nematode Haemonchus contortus. We found that a single fraction was enriched for nematocidal activity, killing ≥90% of C. elegans adults and inhibiting the motility of exsheathed L3 of H. contortus, while having minimal cytotoxic activity in mammalian cell culture. Metabolic profiling and chemometric analysis of the effective fraction indicated medium chained fatty acids and phenolic acids were highly represented.
    Matched MeSH terms: Caenorhabditis elegans/drug effects*; Caenorhabditis elegans/chemistry
  11. Aan GJ, Zainudin MS, Karim NA, Ngah WZ
    Clinics (Sao Paulo), 2013 May;68(5):599-604.
    PMID: 23778402 DOI: 10.6061/clinics/2013(05)04
    OBJECTIVE: This study was performed to determine the effect of the tocotrienol-rich fraction on the lifespan and oxidative status of C. elegans under oxidative stress.

    METHOD: Lifespan was determined by counting the number of surviving nematodes daily under a dissecting microscope after treatment with hydrogen peroxide and the tocotrienol-rich fraction. The evaluated oxidative markers included lipofuscin, which was measured using a fluorescent microscope, and protein carbonyl and 8-hydroxy-2'-deoxyguanosine, which were measured using commercially available kits.

    RESULTS: Hydrogen peroxide-induced oxidative stress significantly decreased the mean lifespan of C. elegans, which was restored to that of the control by the tocotrienol-rich fraction when administered before or both before and after the hydrogen peroxide. The accumulation of the age marker lipofuscin, which increased with hydrogen peroxide exposure, was decreased with upon treatment with the tocotrienol-rich fraction (p<0.05). The level of 8-hydroxy-2'-deoxyguanosine significantly increased in the hydrogen peroxide-induced group relative to the control. Treatment with the tocotrienol-rich fraction before or after hydrogen peroxide induction also increased the level of 8-hydroxy-2'-deoxyguanosine relative to the control. However, neither hydrogen peroxide nor the tocotrienol-rich fraction treatment affected the protein carbonyl content of the nematodes.

    CONCLUSION: The tocotrienol-rich fraction restored the lifespan of oxidative stress-induced C. elegans and reduced the accumulation of lipofuscin but did not affect protein damage. In addition, DNA oxidation was increased.

    Matched MeSH terms: Caenorhabditis elegans/drug effects*; Caenorhabditis elegans/physiology
  12. Mariani Mohd Zain, Zary Shariman Yahaya, Nik Ahmad Irwan Izzauddin Nik Him
    Trop Life Sci Res, 2016;27(11):3-8.
    MyJurnal
    To date, the ivermectin resistance in nematode parasites has been reported
    and many studies are carried out to determine the causes of this problem. A free-living
    Caenorhabditis elegans is used as a model system for this study to investigate the
    response of C. elegans to ivermectin exposure by using larval development assay. Worms
    were exposed to ivermectin at concentration from 1 ng/mL to 10 ng/mL and dimethyl
    sulphoxide (DMSO) as a control. The developments of the worms were monitored for 24,
    48, 72, and 96 hours until the worms become adults. Results indicated that worms’ growth
    began to be affected by ivermectin at a concentration of 5 ng/mL, while at the
    concentration of 6, 7, 8, 9, and 10 ng/mL, the growth of worms were inhibited compared to
    control worms. Further study of the protein expression in C. elegans should be done to
    investigate the up-regulated and down-regulated proteins involve in ivermectin resistance.
    Matched MeSH terms: Caenorhabditis elegans
  13. Chai-Hoon, K., Jiun-Horng, S., Shiran, M.S., Son, R., Sabrina, S., Noor Zaleha, A.S., et al.
    MyJurnal
    Caenorhabditis elegans (C. elegans) have been widely used as an infection model for mammalian related pathogens with promising results. The bacterial factors required for virulence in non-mammalian host C. elegans play a role in mammalian systems. Previous reported that Salmonella found in vegetable and poultry meat could be potential health hazards to human. This study evaluated the pathogenicity of various serovars of Salmonella enterica (S. enterica) that recovered from local indigenous vegetables and poultry meat using C. elegans as a simple host model. Almost all S. enterica isolates were capable of colonizing the intestine of C. elegans, causing a significant reduction in the survival of nematodes. The colonization of Salmonella in C. elegans revealed that the ability of S. enterica in killing C. elegans correlates with its accumulation in the intestine to achieve full pathogenicity. Using this model, the virulence mechanisms of opportunistic pathogenic S. enterica were found to be not only relevant for the interactions of the bacteria with C. elegans but also with mammalian hosts including humans. Hence, C. elegans model could provide valuable insight into preliminary factors from the host that contributes to the environmental bacterial pathogenesis scenario.
    Matched MeSH terms: Caenorhabditis elegans
  14. Liew KF, Lee EH, Chan KL, Lee CY
    Biomed Pharmacother, 2019 Feb;110:118-128.
    PMID: 30466001 DOI: 10.1016/j.biopha.2018.11.054
    Previously, a series of aurones bearing amine and carbamate functionalities was synthesized and evaluated for their cholinesterase inhibitory activity and drug-like attributes. In the present study, these aurones were evaluated for their multi-targeting properties in two Alzheimer's disease (AD)-related activities namely, monoamine oxidase (MAO) and amyloid-beta (Aβ) inhibition. Evaluation of the aurones for MAO inhibitory activity disclosed several potent selective inhibitors of MAO-B, particularly those with 6-methoxyl group attached at ring A. Of the different amine moieties attached as side chains, pyrrolidine-bearing aurones were prominent as represented by 2-2, the most potent inhibitor. Evaluation on the Aβ aggregation inhibition identified 4-3 as the best inhibitor with a percentage inhibition comparable to that of a known Aβ inhibitor curcumin. Examination on the neuroprotective ability of the more drug-like aurone 4-3 in two Caenorhabditis elegans neurodegeneration models showed 4-3 to protect the nematodes against both Aβ- and 6-hydroxydopamine-induced toxicities. These new activities further support 4-3 as a promising lead to develop the aurones as potential multipotent agents for neurodegenerative diseases.
    Matched MeSH terms: Caenorhabditis elegans; Caenorhabditis elegans Proteins/antagonists & inhibitors; Caenorhabditis elegans Proteins/metabolism
  15. Wong RR, Kong C, Lee SH, Nathan S
    Sci Rep, 2016 06 07;6:27475.
    PMID: 27273550 DOI: 10.1038/srep27475
    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host's attempt to clear bacterial toxic molecules. One of these genes, ugt-29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt-29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt-29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT-29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt-29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis.
    Matched MeSH terms: Caenorhabditis elegans/metabolism*
  16. Puah SM, Puthucheary SD, Wang JT, Pan YJ, Chua KH
    ScientificWorldJournal, 2014;2014:590803.
    PMID: 25215325 DOI: 10.1155/2014/590803
    The Gram-negative saprophyte Burkholderia pseudomallei is the causative agent of melioidosis, an infectious disease which is endemic in Southeast Asia and northern Australia. This bacterium possesses many virulence factors which are thought to contribute to its survival and pathogenicity. Using a virulent clinical isolate of B. pseudomallei and an attenuated strain of the same B. pseudomallei isolate, 6 genes BPSL2033, BP1026B_I2784, BP1026B_I2780, BURPS1106A_A0094, BURPS1106A_1131, and BURPS1710A_1419 were identified earlier by PCR-based subtractive hybridization. These genes were extensively characterized at the molecular level, together with an additional gene BPSL3147 that had been identified by other investigators. Through a reverse genetic approach, single-gene knockout mutants were successfully constructed by using site-specific insertion mutagenesis and were confirmed by PCR. BPSL2033::Km and BURPS1710A_1419::Km mutants showed reduced rates of survival inside macrophage RAW 264.7 cells and also low levels of virulence in the nematode infection model. BPSL2033::Km demonstrated weak statistical significance (P = 0.049) at 8 hours after infection in macrophage infection study but this was not seen in BURPS1710A_1419::Km. Nevertheless, complemented strains of both genes were able to partially restore the gene defects in both in vitro and in vivo studies, thus suggesting that they individually play a minor role in the virulence of B. pseudomallei.
    Matched MeSH terms: Caenorhabditis elegans/microbiology
  17. Lee SH, Ooi SK, Mahadi NM, Tan MW, Nathan S
    PLoS One, 2011;6(3):e16707.
    PMID: 21408228 DOI: 10.1371/journal.pone.0016707
    Burkholderia pseudomallei is the causative agent of melioidosis, a disease of significant morbidity and mortality in both human and animals in endemic areas. Much remains to be known about the contributions of genotypic variations within the bacteria and the host, and environmental factors that lead to the manifestation of the clinical symptoms of melioidosis.
    Matched MeSH terms: Caenorhabditis elegans/microbiology*
  18. Lim SYM, Alshagga M, Kong C, Alshawsh MA, Alshehade SA, Pan Y
    Arch Toxicol, 2022 12;96(12):3163-3174.
    PMID: 36175686 DOI: 10.1007/s00204-022-03382-3
    With more than 80 cytochrome P450 (CYP) encoding genes found in the nematode Caenorhabditis elegans (C. elegans), the cyp35 genes are one of the important genes involved in many biological processes such as fatty acid synthesis and storage, xenobiotic stress response, dauer and eggshell formation, and xenobiotic metabolism. The C. elegans CYP35 subfamily consisted of A, B, C, and D, which have the closest homolog to human CYP2 family. C. elegans homologs could answer part of the hunt for human disease genes. This review aims to provide an overview of CYP35 in C. elegans and their human homologs, to explore the roles of CYP35 in various C. elegans biological processes, and how the genes of cyp35 upregulation or downregulation are influenced by biological processes, upon exposure to xenobiotics or changes in diet and environment. The C. elegans CYP35 gene expression could be upregulated by heavy metals, pesticides, anti-parasitic and anti-chemotherapeutic agents, polycyclic aromatic hydrocarbons (PAHs), nanoparticles, drugs, and organic chemical compounds. Among the cyp35 genes, cyp-35A2 is involved in most of the C. elegans biological processes regulation. Further venture of cyp35 genes, the closest homolog of CYP2 which is the largest family of human CYPs, may have the power to locate cyps gene targets, discovery of novel therapeutic strategies, and possibly a successful medical regime to combat obesity, cancers, and cyps gene-related diseases.
    Matched MeSH terms: Caenorhabditis elegans/genetics
  19. Lee WT, Tan BK, Eng SA, Yuen GC, Chan KL, Sim YK, et al.
    Food Funct, 2019 Sep 01;10(9):5759-5767.
    PMID: 31453615 DOI: 10.1039/c9fo01357a
    A strategy to circumvent the problem of multidrug resistant pathogens is the discovery of anti-infectives targeting bacterial virulence or host immunity. Black sea cucumber (Holothuria atra) is a tropical sea cucumber species traditionally consumed as a remedy for many ailments. There is a paucity of knowledge on the anti-infective capacity of H. atra and the underlying mechanisms involved. The objective of this study is to utilize the Caenorhabditis elegans-P. aeruginosa infection model to elucidate the anti-infective properties of H. atra. A bioactive H. atra extract and subsequently its fraction were shown to have the capability of promoting the survival of C. elegans during a customarily lethal P. aeruginosa infection. The same entities also attenuate the production of elastase, protease, pyocyanin and biofilm in P. aeruginosa. The treatment of infected transgenic lys-7::GFP worms with this H. atra fraction restores the repressed expression of the defense enzyme lys-7, indicating an improved host immunity. QTOF-LCMS analysis revealed the presence of aspidospermatidine, an indole alkaloid, and inosine in this fraction. Collectively, our findings show that H. atra possesses anti-infective properties against P. aeruginosa infection, by inhibiting pathogen virulence and, eventually, reinstating host lys-7 expression.
    Matched MeSH terms: Caenorhabditis elegans/drug effects; Caenorhabditis elegans/genetics; Caenorhabditis elegans/immunology; Caenorhabditis elegans/microbiology*
  20. Khoo CH, Sim JH, Salleh NA, Cheah YK
    Antonie Van Leeuwenhoek, 2015 Jan;107(1):23-37.
    PMID: 25312847 DOI: 10.1007/s10482-014-0300-7
    Salmonella is an important food-borne pathogen causing disease in humans and animals worldwide. Salmonellosis may be caused by any one of over 2,500 serovars of Salmonella. Nonetheless, Salmonella enterica serovar Typhimurium and Salmonella enterica serovar Agona are the second most prevalent serovars isolated from humans and livestock products respectively. Limited knowledge is available about the virulence mechanisms responsible for diarrheal disease caused by them. To investigate the contribution of sopB, sopD and pipD as virulence factors in intracellular infections and the uniqueness of these bacteria becoming far more prevalent than other serovars, the infection model of Caenorhabditis elegans and phenotypic microarray were used to characterize their mutants. The strains containing the mutation in sopB, sopD and pipD genes were constructed by using latest site-specific group II intron mutagenesis approach to reveal the pathogenicity of the virulence factors. Overall, we observed that the mutations in sopB, sopD and pipD genes of both serovars did not exhibit significant decrease in virulence towards the nematode. This may indicate that these virulence effectors may not be universal virulence factors involved in conserved innate immunity. There are significant phenotypic differences amongst strains carrying sopB, sopD and pipD gene mutations via the analysis of biochemical profiles of the bacteria. Interestingly, mutant strains displayed different susceptibility to chemical stressors from several distinct pharmacological and structural classes when compared to its isogenic parental strains. These metabolic and chemosensitivity assays also revealed multiple roles of Salmonella virulence factors in nutrient metabolism and antibiotic resistance.
    Matched MeSH terms: Caenorhabditis elegans/microbiology; Caenorhabditis elegans/physiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links