OBJECTIVE: Here we synthesize 10 chalcone derivatives to be evaluated their in vitro enzymatic inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE).
METHODS: The synthesis was carried out using Claissen-Schimdt condensation and the in vitro assay was conducted using Ellman Method.
RESULTS: Compounds 2b and 4b demonstrated as the best IC50 of 9.3 μM and 68.7 μM respectively, towards AChE and BChE inhibition. Molecular docking studies predicted that this activity might be due to the interaction of the chalcones with important amino acid residues in the binding site of AChE such as SER200 and in that of BChE, such as TRP82, SER198, TRP430, TYR440, LEU286 and VAL288.
CONCLUSION: Chalcone can be used as the scaffold for cholinesterase inhibitor, in particularly either fluorine or nitro group to be augmented at the para-position of Ring B, whereas the hydrophobic chain is necessary at the meta-position of Ring B.
METHODS: To assess the potential inhibitory activity of 29 phenolic acids from Theobroma cacao L. against DENV3-NS5 RdRp, a range of computational methods were employed. These included docking, drug-likeness analysis, ADMET prediction, density functional theory (DFT) calculations, and molecular dynamics (MD) simulations. The aim of these studies was to confirm the stability of the ligand-protein complex and the binding pose identified during the docking experiment.
RESULTS: Twenty-one compounds were found to have possible inhibitory activities against DENV according to the docking data, and they had a binding affinity of ≥-37.417 kcal/mol for DENV3- enzyme as compared to the reference compound panduratin A. Additionally, the drug-likeness investigation produced four hit compounds that were subjected to ADMET screening to obtain the lead compound, catechin. Based on ELUMO, EHOMO, and band energy gap, the DFT calculations showed strong electronegetivity, favouravle global softness and chemical reactivity with considerable intra-molecular charge transfer between electron-donor to electron-acceptor groups for catechin. The MD simulation result also demonstrated favourable RMSD, RMSF, SASA and H-bonds in at the binding pocket of DENV3-NS5 RdRp for catechin as compared to panduratin A.
CONCLUSION: According to the present findings, catechin showed high binding affinity and sufficient drug-like properties with the appropriate ADMET profiles. Moreover, DFT and MD studies further supported the drug-like action of catechin as a potential therapeutic candidate. Therefore, further in vitro and in vivo research on cocoa and its phytochemical catechin should be taken into consideration to develop as a potential DENV inhibitor.
OBJECTIVE: In order to investigate the influence between electron density in conjugated π-systems and biological activities, different withdrawing substituents, namely Nitro (NO2), Cyano (C≡N) and trifluoromethyl (CF3) were introduced in the chalcone-based molecular system.
METHODS: All the derivatives were then tested on MCF-7 cell line using the fluorescence microscopy-based cytotoxicity analyses.
RESULTS: The preliminary findings showed that both -NO2 and -CF3 substituents revealed their potential to inhibit the growth of MCF-7 with IC;50 values of 14.75 and 13.75 μg/ml, respectively. In addition, the morphological changes of MCF-7 cells were observed in response to alkoxy substituted chalcone treatment through an induction of apoptosis pathway with cell blebbing, phosphatidylserine exposure and autophagic activity with acidification of lysosomal structure. Intermolecular interaction based on in silico investigation on nitro, trifluoromethyl and cyano based chalcones exhibited several types of interactions with tumor necrosis factor receptor (PDB: 1EXT) protein and high hydrogen bond in the molecule-receptor interaction have given significant impact towards their toxicity on MCF-7 cells.
CONCLUSION: Significantly, these types of chalcones exhibited ideal and high potential to be further developed as anti-cancer agents.