Displaying publications 1 - 20 of 134 in total

  1. Flora B, Kumar R, Tiwari P, Kumar A, Ruokolainen J, Narasimhan AK, et al.
    J Mech Behav Biomed Mater, 2023 Jun;142:105845.
    PMID: 37060714 DOI: 10.1016/j.jmbbm.2023.105845
    A successful attempt has been made to improve the mechanical properties of Hydroxyapatite (HAp) and reduced graphene oxide (rGO) composite nanoparticles (NPs). Various proportions of HAp and rGO were synthesized to improve the mechanical properties. HAp NPs were prepared using the wet precipitation method and further calcined to form crystalline particles. The physicochemical characterization of the HAp NPs revealed that the crystalline size and percentage of crystallinity were calculated to be 42.49 ± 1.2 nm and 44% post calcination. Furthermore, the rGO-HA composites were prepared using ball milling and obtained in the shape of pellets with different ratios of rGO (10, 20, 30, 40, 50% wt.). The mechanical properties have been evaluated through a Universal testing machine. Compared to calcined HAp (cHAp), the strength of variants significantly enhanced with the increased concentration of rGO. The compressive strength of HA-rGO with the ratio of the concentration of 60:40% by weight is a maximum of about 10.39 ± 0.43 MPa. However, the porosity has also been bolstered by increasing the concentration of rGO, which has been evaluated through the liquid displacement method. The mean surface roughness of the composites has also been evaluated from the images through Image J (an image analysis program).
    Matched MeSH terms: Compressive Strength
  2. Koting S, Karim MR, Mahmud H, Mashaan NS, Ibrahim MR, Katman H, et al.
    ScientificWorldJournal, 2014;2014:596364.
    PMID: 24526911 DOI: 10.1155/2014/596364
    Semi-flexible pavement surfacing is a composite pavement that utilizes the porous pavement structure of the flexible bituminous pavement, which is subsequently grouted with appropriate cementitious materials. This study aims to investigate the compressive strength, flexural strength, and workability performance of cementitious grout. The grout mixtures are designed to achieve high strength and maintain flow properties in order to allow the cement slurries to infiltrate easily through unfilled compacted skeletons. A paired-sample t-test was carried out to find out whether water/cement ratio, SP percentages, and use of silica fume influence the cementitious grout performance. The findings showed that the replacement of 5% silica fume with an adequate amount of superplasticizer and water/cement ratio was beneficial in improving the properties of the cementitious grout.
    Matched MeSH terms: Compressive Strength*
  3. Abdul Ghani Rafek, Azimah Hussin, Lee KE, Ailie Sofyiana Serasa, Goh TL
    Sains Malaysiana, 2016;45:185-193.
    The uniaxial compressive strength (UCS) is one of the most common mechanical parameters required in geotechnical engineering to characterize the compressive strength of rock material. Measurements of UCS are expensive, time consuming, destructive and thus, not favorable in the presence of limited samples. Therefore, a simple yet practical application is needed for the estimation of UCS. This research presents two correlations to predict UCS values for granite and schist by using ultrasonic velocity travel time (tp) from ultrasonic tests. The validity of the practical approach presented in this research is confirmed based on the strong correlations developed from the experimental tests conducted. For the entire data set, the correlation between UCS and ultrasonic velocity travel time was expressed as UCS = 217.2 e-0.016(tp) for granite and UCS = 1110.6 e-0.037(tp) for schist and the coefficient of determination (R2) value for both granite and schist is 0.93. These correlations may be useful for applications related to geotechnical engineering designs.
    Matched MeSH terms: Compressive Strength
  4. Arab A, Sktani ZDI, Zhou Q, Ahmad ZA, Chen P
    Materials (Basel), 2019 Jul 31;12(15).
    PMID: 31370216 DOI: 10.3390/ma12152440
    Zirconia toughened alumina (ZTA) is a promising advanced ceramic material for a wide range of applications that are subjected to dynamic loading. Therefore, the investigation of dynamic compressive strength, fracture toughness and hardness is essential for ZTA ceramics. However, the relationship between these mechanical properties in ZTA has not yet been established. An example of this relationship is demonstrated using ZTA samples added with MgO prepared through conventional sintering. The microstructure and mechanical properties of ZTA composites were characterized. The hardness of ZTA composites increased for ≤0.7 wt.% MgO due to the pinning effect of MgO and decrease of the porosity in the microstructure. Oppositely, the fracture toughness of ZTA composites continuously decreased due to the size reduction of Al2O3 grains. This is the main reason of deteriorate of dynamic compressive strength more than 0.2 wt.% of MgO addition. Therefore, the SHPB test shows the improvement of the dynamic compressive strength only up to a tiny amount (0.2 wt.% of MgO addition) into ZTA ceramics.
    Matched MeSH terms: Compressive Strength
  5. Lian, Oh Chai, Wee, Lee Siong, Mohd Asha’ari Masrom, Hua, Goh Ching
    Recently, there has been great interest on the applicability of Recycled Concrete Aggregate (RCA) as a new ecological construction material that can be sustainable in a gradually expanding construction industry. This paper reports the structural performance particularly on shear behaviour of high strength reinforced recycled concrete beams. Compressive cube strength of the tested beams ranged from 65-74 MPa at the age of 28-days. The experimental program compared conventional concrete mix with concrete mix having substitution of 25% recycled concrete aggregates of grade 25-30 MPa. In this study, three 150 mm x 200 mm x 1200 mm simply supported rectangular concrete beams in each mix were tested under a four-point bending static load with various shear span to effective depth ratios (a/d = 1.0, 1.5, 2.0). Subsequently, the shear behavior of the beams was investigated through studies of load-deflection responses, effect of a/d ratios and crack patterns. The test results reported that the substitution of 25% recycled concrete coarse aggregates barely affects the shear capacity of the high strength reinforced concrete beams with a/d of 1.5 onwards. Finally, experimental results were compared using existing design codes by ACI 318, Eurocode-2 and AS3600 which lie on the safe side.
    Matched MeSH terms: Compressive Strength
  6. Muhd Norhasri Mohd Sidek, Mohd Fadzil Arshad, Megat Azmi Megat Johari, Zaid Mohd Yazid, Amir Khomeiny, R.
    Metakaolin is a manufactured pozzolan produced by thermal processing of purified kaolinitic clay using electrical furnace. This study has examined the effect of Metakaolin on the properties of cement and concrete at a replacement level of 0%, 5%, 10% and 15%. The parameters studied were divided into two groups which are chemical compositions, water requirement, setting time and soundness test were carried out for cementitous properties. Workability, compressive strength and bending strength were test for concrete properties. Hardened concrete was cured under different type of curing conditions and tested.. The result showed that the inclusions of Metakaolin as cement replacement minerals have change some of the cementitous and concrete properties. This research reveals, the optimum effect for cementitous and concrete properties for metakaolin was 10%.
    Matched MeSH terms: Compressive Strength
  7. Nik Anisah Nik Ngah, Mohamad Awang, Kartini Kamaruddin
    This aim of this study is to study the effects of various contents of Automotive Windscreen Glass Waste Powder (WGWP) as a cement replacement. Mortar incorporating several compositions of WGWP (0%, 5%, 10%, 15% and 20%) by weight of cement was prepared. Three batching systems of cement to sand (C:S) ratios of 1:2.5 superplasticizers (SP), 1:3.0 SP and 1:3.5 SP was also employed. Fixed water to cement (w/c) ratio of 0.5 was used. The samples were water cured and the assessment of the strength performance of mortar cubes carried out at 7 and 28 days. Studies conducted have shown that WGWP has good pozzolanic properties. In term of compressive strength, it was observed that employing C:S ratio of 1:3.5 SP is better than 1:2.5 SP and 1:3.0 SP.
    Matched MeSH terms: Compressive Strength
  8. Teddy, T., Irwan, J.M., Othman, N.
    Strength and durability are important characteristics of concrete and desired engineering properties. Exposure to aggressive environment threatens durability of concrete. Previous studies on bio-concrete using several types of bacteria, including sulphate reduction bacteria (SRB), had to increase durability of concrete have shown promising results. This study used mixtures designed according to concrete requirement for sea water condition with SRB composition of 3%, 5% and 7% respectively. The curing time were 28, 56 and 90 days respectively. The mechanical properties, namely compressive strength and water permeability, were tested using cube samples. The results showed compressive strength had higher increase than the control at 53.9 Mpa. The SRB with 3%composition had maximum water permeability. Thus, adding SRB in concrete specimens improves compressive strength and water permeability. This is particularly suitable for applications using chloride ion penetration (sea water condition) where corrosion tends to affect durability of concrete constructions.
    Matched MeSH terms: Compressive Strength
  9. Al-Kadhim, A.H.A., Abdullah H.
    Introduction: The purpose of this study was to decide on the relation between types of mixing and the porosity of diameter (1-100) µm and compressive strength of RMGIC. Methods: Fifteen specimens 6mm height and 4mm in diameter were prepared for each type of luting cement and were stored in distilled water at 37° C for 24 hours. The compressive strength was determined. The fractured surfaces of 10 randomly selected specimens of each cement type were analyzed using SEM at 250 times magnification, and five photomicrographs were taken at five random places. All the photomicrographs were analyzed using image analyzer software to determine the amount and size of porosity present. Results: There was no significant difference in compressive strength between different mixing methods, but it had a significant impact by increasing the percentage of porosity of diameter (1-100) µm in diameter of RMGIC. There was no linear relationship between compressive strength and porosity (1-100) µm in diameter for both types of luting cements (P>0.05). Conclusion: No significant differences in compressive strength were found using different mixing methods. The size and number of porosity in the specimens of encapsulated cements were greater than those of hand-mixed cements. The porosity (1-100) µm in diameter and the compressive strength bore no linear relationship to each other.
    Matched MeSH terms: Compressive Strength
  10. Tan KT, Norhamidi Muhamad, Muchtar A, Abu Bakar Sulong, Neo MC
    Sains Malaysiana, 2016;45:653-658.
    Metallic foams are a new class of materials that have a great potential to be used in various functional and structural applications. Due to their competitive price compared to aluminium, metallic foams are anticipated to become an alternative material for light-weight structures. In this study, stainless steel foams are fabricated using a powder space holder method. The materials used include stainless steel powder, a novel space holder glycine and binders consisting of palm stearin and of polyethylene (PE). The stainless steel foams are sintered at 1100o C, 1200o C and 1300o C with sintering times of 1, 2 and 3 h, respectively, to investigate the effects of the sintering parameters on the compressive yield strength of the stainless steel foams. The results showed that all of the stainless steel foams produced exhibit the general behaviours of metal foams. The sintering time is the most significant parameter that influences the compressive yield strength of stainless steel foams. Increasing the sintering temperature and sintering time will increase the compressive yield strength. The interaction between the sintering temperature and sintering time is found to be not statistically significant.
    Matched MeSH terms: Compressive Strength
  11. Alakbari FS, Mohyaldinn ME, Muhsan AS, Hasan N, Ganat T
    Polymers (Basel), 2020 May 07;12(5).
    PMID: 32392770 DOI: 10.3390/polym12051069
    The chemical sand consolidation methods involve pumping of chemical materials, like furan resin and silicate non-polymer materials into unconsolidated sandstone formations, in order to minimize sand production with the fluids produced from the hydrocarbon reservoirs. The injected chemical material, predominantly polymer, bonds sand grains together, lead to higher compressive strength of the rock. Hence, less amounts of sand particles are entrained in the produced fluids. However, the effect of this bonding may impose a negative impact on the formation productivity due to the reduction in rock permeability. Therefore, it is always essential to select a chemical material that can provide the highest possible compressive strength with minimum permeability reduction. This review article discusses the chemical materials used for sand consolidation and presents an in-depth evaluation between these materials to serve as a screening tool that can assist in the selection of chemical sand consolidation material, which in turn, helps optimize the sand control performance. The review paper also highlights the progressive improvement in chemical sand consolidation methods, from using different types of polymers to nanoparticles utilization, as well as track the impact of the improvement in sand consolidation efficiency and production performance. Based on this review, the nanoparticle-related martials are highly recommended to be applied as sand consolidation agents, due to their ability to generate acceptable rock strength with insignificant reduction in rock permeability.
    Matched MeSH terms: Compressive Strength
  12. Kamaruddin FA, Anggraini V, Kim Huat B, Nahazanan H
    Materials (Basel), 2020 Jun 17;13(12).
    PMID: 32560432 DOI: 10.3390/ma13122753
    The durability of natural and treated clay soil stabilized with lime and alkaline activation (AA) affected by environmental factors (hot and humid) was determined in this study. Investigation and evaluation on the strength of the soil, moisture content, and volume change of the specimen were determined at each curing period (7, 28, and 90 days) based on the weather conditions. An unconfined compressive strength (UCS) of the specimen at three different wetting/drying cycles (one, three, and five cycles) was determined. The findings show that the strength of the treated specimens fluctuated with increment and decrement strength (one and three cycles) in the range of 1.41 to 1.88 MPa (lime) and 2.64 to 8.29 MPa (AA), while for five cycles with a curing period of 90 days the decrement was in the range of 1.62 to 1.25 MPa and 6.06 to 5.89 MPa for lime and AA, respectively. The decrement percentage for treated samples that were subjected to five cycles of wetting and drying in 90 days was found to be 20.38% (lime) and 38.64% (AA), respectively. Therefore, it can be summarized that wetting/drying cycles have a significant influence on the durability, strength, and the volume changes of the specimens.
    Matched MeSH terms: Compressive Strength
  13. Safiuddin M, Raman SN, Abdus Salam M, Jumaat MZ
    Materials (Basel), 2016 May 20;9(5).
    PMID: 28773520 DOI: 10.3390/ma9050396
    Modeling is a very useful method for the performance prediction of concrete. Most of the models available in literature are related to the compressive strength because it is a major mechanical property used in concrete design. Many attempts were taken to develop suitable mathematical models for the prediction of compressive strength of different concretes, but not for self-consolidating high-strength concrete (SCHSC) containing palm oil fuel ash (POFA). The present study has used artificial neural networks (ANN) to predict the compressive strength of SCHSC incorporating POFA. The ANN model has been developed and validated in this research using the mix proportioning and experimental strength data of 20 different SCHSC mixes. Seventy percent (70%) of the data were used to carry out the training of the ANN model. The remaining 30% of the data were used for testing the model. The training of the ANN model was stopped when the root mean square error (RMSE) and the percentage of good patterns was 0.001 and ≈100%, respectively. The predicted compressive strength values obtained from the trained ANN model were much closer to the experimental values of compressive strength. The coefficient of determination (R²) for the relationship between the predicted and experimental compressive strengths was 0.9486, which shows the higher degree of accuracy of the network pattern. Furthermore, the predicted compressive strength was found very close to the experimental compressive strength during the testing process of the ANN model. The absolute and percentage relative errors in the testing process were significantly low with a mean value of 1.74 MPa and 3.13%, respectively, which indicated that the compressive strength of SCHSC including POFA can be efficiently predicted by the ANN.
    Matched MeSH terms: Compressive Strength
  14. Abdulkareem OA, Abdullah MMAB, Hussin K, Ismail KN, Binhussain M
    Materials (Basel), 2013 Oct 09;6(10):4450-4461.
    PMID: 28788339 DOI: 10.3390/ma6104450
    This paper presents the mechanical and microstructural characteristics of a lightweight aggregate geopolymer concrete (LWAGC) synthesized by the alkali-activation of a fly ash source (FA) before and after being exposed to elevated temperatures, ranging from 100 to 800 °C. The results show that the LWAGC unexposed to the elevated temperatures possesses a good strength-to-weight ratio compared with other LWAGCs available in the published literature. The unexposed LWAGC also shows an excellent strength development versus aging times, up to 365 days. For the exposed LWAGC to the elevated temperatures of 100 to 800 °C, the results illustrate that the concretes gain compressive strength after being exposed to elevated temperatures of 100, 200 and 300 °C. Afterward, the strength of the LWAGC started to deteriorate and decrease after being exposed to elevated temperatures of 400 °C, and up to 800 °C. Based on the mechanical strength results of the exposed LWAGCs to elevated temperatures of 100 °C to 800 °C, the relationship between the exposure temperature and the obtained residual compressive strength is statistically analyzed and achieved. In addition, the microstructure investigation of the unexposed LWAGC shows a good bonding between aggregate and mortar at the interface transition zone (ITZ). However, this bonding is subjected to deterioration as the LWAGC is exposed to elevated temperatures of 400, 600 and 800 °C by increasing the microcrack content and swelling of the unreacted silicates.
    Matched MeSH terms: Compressive Strength
  15. Latif SD
    Environ Sci Pollut Res Int, 2021 Jun;28(23):30294-30302.
    PMID: 33590396 DOI: 10.1007/s11356-021-12877-y
    One of the most critical parameters in concrete design is compressive strength. As the compressive strength of concrete is correctly measured, time and cost can be decreased. Concrete strength is relatively resilient to impacts on the environment. The production of concrete compressive strength is greatly influenced by severe weather conditions and increases in humidity rates. In this research, a model has been developed to predict concrete compressive strength utilizing a detailed dataset obtained from previously published studies based on a deep learning method, namely, long short-term memory (LSTM), and a conventional machine learning (ML) algorithm, namely, support vector machine (SVM). The input variables of the model include cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate, and age of specimens. To demonstrate the efficiency of the proposed models, three statistical indices, namely, the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE), were used. Findings shows that LSTM outperformed SVM with R2=0.98, R2= 0.78, MAE=1.861, MAE=6.152, and RMSE=2.36, RMSE=7.93, respectively. The results of this study suggest that high-performance concrete (HPC) compressive strength can be reliably measured using the proposed LSTM model.
    Matched MeSH terms: Compressive Strength
  16. Iftikhar B, Alih SC, Vafaei M, Javed MF, Rehman MF, Abdullaev SS, et al.
    Sci Rep, 2023 Jul 27;13(1):12149.
    PMID: 37500697 DOI: 10.1038/s41598-023-39349-2
    Plastic sand paver blocks provide a sustainable alternative by using plastic waste and reducing the need for cement. This innovative approach leads to a more sustainable construction sector by promoting environmental preservation. No model or Equation has been devised that can predict the compressive strength of these blocks. This study utilized gene expression programming (GEP) and multi-expression programming (MEP) to develop empirical models to forecast the compressive strength of plastic sand paver blocks (PSPB) comprised of plastic, sand, and fibre in an effort to advance the field. The database contains 135 results for compressive strength with seven input parameters. The R2 values of 0.87 for GEP and 0.91 for MEP for compressive strength reveal a relatively significant relationship between predicted and actual values. MEP outperformed GEP by displaying a higher R2 and lower values for statistical evaluations. In addition, a sensitivity analysis was conducted, which revealed that the sand grain size and percentage of fibres play an essential part in compressive strength. It was estimated that they contributed almost 50% of the total. The outcomes of this research have the potential to promote the reuse of PSPB in the building of green environments, hence boosting environmental protection and economic advantage.
    Matched MeSH terms: Compressive Strength
  17. Lai VY, Hejazi F, Saleem S
    PLoS One, 2020;15(11):e0238654.
    PMID: 33147216 DOI: 10.1371/journal.pone.0238654
    Towers are important structures for installing radio equipment to emit electromagnetic waves that allow radio, television and/or mobile communications to function. Feasibility, cost, and speed of the construction are considered in the design process as well as providing stability and functionality for the communication tower. This study proposes the new design for construction of segmental tubular section communication tower with ultra-high-performance fibre concrete (UHPFC) material and prestress tendon to gain durability, ductility, and strength. The proposed mix design for UHPFC in this study which used for construction of communication tower is consisted of densified Silica Fume, Silica fine and coarse Sand and hooked-ends Steel Fiber. The prestressed tendon is used in the tower body to provide sufficient strength against the lateral load. The proposed design allows the tower to be built with three precast segments that are connected using bolts and nuts. This paper presents a novel method of construction and installation of the communication tower. The advantages of proposed design and construction process include rapid casting of the precast segment for the tower and efficient installation of segments in the project. The use of UHPFC material with high strength and prestress tendon can reduce the size and thickness of the tower as well as the cost of construction. Notably, this material can also facilitate the construction and installation procedure.
    Matched MeSH terms: Compressive Strength
  18. Marto A, Tan CS, Makhtar AM, Kung Leong T
    ScientificWorldJournal, 2014;2014:290207.
    PMID: 24757417 DOI: 10.1155/2014/290207
    The Critical State Soil Mechanic (CSSM) is a globally recognised framework while the critical states for sand and clay are both well established. Nevertheless, the development of the critical state of sand matrix soils is lacking. This paper discusses the development of critical state lines and corresponding critical state parameters for the investigated material, sand matrix soils using sand-kaolin mixtures. The output of this paper can be used as an interpretation framework for the research on liquefaction susceptibility of sand matrix soils in the future. The strain controlled triaxial test apparatus was used to provide the monotonic loading onto the reconstituted soil specimens. All tested soils were subjected to isotropic consolidation and sheared under undrained condition until critical state was ascertain. Based on the results of 32 test specimens, the critical state lines for eight different sand matrix soils were developed together with the corresponding values of critical state parameters, M, λ, and Γ. The range of the value of M, λ, and Γ is 0.803-0.998, 0.144-0.248, and 1.727-2.279, respectively. These values are comparable to the critical state parameters of river sand and kaolin clay. However, the relationship between fines percentages and these critical state parameters is too scattered to be correlated.
    Matched MeSH terms: Compressive Strength*
  19. Talebi E, Tahir MM, Zahmatkesh F, Yasreen A, Mirza J
    ScientificWorldJournal, 2014;2014:672629.
    PMID: 24526915 DOI: 10.1155/2014/672629
    The primary focus of this investigation was to analyze sequentially coupled nonlinear thermal stress, using a three-dimensional model. It was meant to shed light on the behavior of Buckling Restraint Brace (BRB) elements with circular cross section, at elevated temperature. Such bracing systems were comprised of a cylindrical steel core encased in a strong concrete-filled steel hollow casing. A debonding agent was rubbed on the core's surface to avoid shear stress transition to the restraining system. The numerical model was verified by the analytical solutions developed by the other researchers. Performance of BRB system under seismic loading at ambient temperature has been well documented. However, its performance in case of fire has yet to be explored. This study showed that the failure of brace may be attributed to material strength reduction and high compressive forces, both due to temperature rise. Furthermore, limiting temperatures in the linear behavior of steel casing and concrete in BRB element for both numerical and analytical simulations were about 196°C and 225°C, respectively. Finally it is concluded that the performance of BRB at elevated temperatures was the same as that seen at room temperature; that is, the steel core yields prior to the restraining system.
    Matched MeSH terms: Compressive Strength*
  20. Fatihhi SJ, Rabiatul AA, Harun MN, Kadir MR, Kamarul T, Syahrom A
    J Mech Behav Biomed Mater, 2016 Feb;54:21-32.
    PMID: 26410762 DOI: 10.1016/j.jmbbm.2015.09.006
    The present study reports the effects of combined torsional and compressive cyclic loading on trabecular bone in order to mimic true physiological conditions and thereby provides improved data that represents clinical and real life conditions. However, only compressive behaviour is evaluated in most previous studies of bone mechanics. From the monotonic evaluation, it is observed that lower stress is needed for the onset of microcrack in the sample under torsional loading, compared to the stress needed in compression. Trabecular bone samples were subjected to a combination of torsion and compression fatigue at different stress levels during which they were compared to compressive axial fatigue. The stress levels were determined by considering the monotonic strength at 25-50% for both compressive and shear stresses. Significant decrease in fatigue lifetime is observed in between samples of pure compression fatigue and those with superpositioned torsional loading (p<0.05). The reduction in fatigue lifetime became more evident at a high torsional stress level. In this case, the failure of the sample is said to be 'torsional dominant'. Fatigue behaviour of bovine trabecular bone begins with plastic deformation, followed by strain accumulation and modulus reduction. As the strain rate increases, more energy dissipates and the sample finally failed. Further, the analysis of fractograph revealed something on the trabeculae by bending in sample with superpositioned torsional loading. In conclusion, torsional loading decreases the quality of the trabecular properties in terms of stiffness, life and structural integrity. It is hoped that results from this study will improve the understanding of the behaviour of trabecular bone under combined fatigue and help to develop future assessments of trabecular failure.
    Matched MeSH terms: Compressive Strength*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links