METHODS: Articles were searched from three databases which were WOS, Scopus, and PubMed. The systemic review identified the primary articles related to SIA that focused on the impact of immunization coverage, challenges, and improvement strategies. The inclusion criteria were open access English articles that were published between 2012 and 2021 and conducted in the Asia region.
RESULTS: There are nine articles described and explained regarding some form of supplementary immunization activities (SIAs) in their findings across Asia region. The majority of studies selected reported on post vaccination coverage and revealed a multifaceted challenge faced during SIAs which are widely diverse range from the microlevel of interpersonal aspects up to the macrolevel of government policy. Upon further analysis, the intervention at community level was the most dominant strategies reported during the SIA program.
CONCLUSIONS: An effective SIAs program provides the opportunity to increase the national capacity of the polio immunization program, reducing inequities in service delivery and offering additional public health benefits in controlling polio outbreaks in both endemic and nonendemic countries. Strengthening routine immunization (RI) programmes is also important for the sustainability of SIA's programs. Despite the challenges and hurdles, many Asian countries exhibited great political willingness to boost polio immunization coverage through SIA efforts.
METHODS: Malaria is a notifiable infection in Malaysia. The data used in this study were extracted from the Disease Control Division, Ministry of Health Malaysia, contributed by the hospitals and health clinics throughout Malaysia. The population data used in this study was extracted from the Department of Statistics Malaysia. Data analyses were performed using Microsoft Excel. Data used for mapping are available at EPSG:4326 WGS84 CRS (Coordinate Reference System). Shapefile was obtained from igismap. Mapping and plotting of the map were performed using QGIS.
RESULTS: Between 2000 and 2007, human malaria contributed 100% of reported malaria and 18-46 deaths per year in Malaysia. Between 2008 and 2017, indigenous malaria cases decreased from 6071 to 85 (98.6% reduction), while during the same period, zoonotic Plasmodium knowlesi cases increased from 376 to 3614 cases (an 861% increase). The year 2018 marked the first year that Malaysia did not report any indigenous cases of malaria caused by human malaria parasites. However, there was an increasing trend of P. knowlesi cases, with a total of 4131 cases reported in that year. Although the increased incidence of P. knowlesi cases can be attributed to various factors including improved diagnostic capacity, reduction in human malaria cases, and increase in awareness of P. knowlesi, more than 50% of P. knowlesi cases were associated with agriculture and plantation activities, with a large remainder proportion linked to forest-related activities.
CONCLUSIONS: Malaysia has entered the elimination phase of malaria control. Zoonotic malaria, however, is increasing exponentially and becoming a significant public health problem. Improved inter-sectoral collaboration is required in order to develop a more integrated effort to control zoonotic malaria. Local political commitment and the provision of technical support from the World Health Organization will help to create focused and concerted efforts towards ensuring the success of the National Malaria Elimination Strategic Plan.
METHODS: Anopheles mosquitoes were collected from the location where P. knowlesi cases were reported. Cases of knowlesi malaria from 2011 to 2019 in Johor were analyzed. Internal transcribed spacers 2 (ITS2) and cytochrome c oxidase subunit I (COI) genes were used to identify the Leucosphyrus Group of Anopheles mosquitoes. In addition, spatial analysis was carried out on the knowlesi cases and vectors in Johor.
RESULTS: One hundred and eighty-nine cases of P. knowlesi were reported in Johor over 10 years. Young adults between the ages of 20-39 years comprised 65% of the cases. Most infected individuals were involved in agriculture and army-related occupations (22% and 32%, respectively). Four hundred and eighteen Leucosphyrus Group Anopheles mosquitoes were captured during the study. Anopheles introlatus was the predominant species, followed by Anopheles latens. Spatial analysis by Kriging interpolation found that hotspot regions of P. knowlesi overlapped or were close to the areas where An. introlatus and An. latens were found. A significantly high number of vectors and P. knowlesi cases were found near the road within 0-5 km.
CONCLUSIONS: This study describes the distribution of P. knowlesi cases and Anopheles species in malaria-endemic transmission areas in Johor. Geospatial analysis is a valuable tool for studying the relationship between vectors and P. knowlesi cases. This study further supports that the Leucosphyrus Group of mosquitoes might be involved in transmitting knowlesi malaria cases in Johor. These findings may provide initial evidence to prioritize diseases and vector surveillance.
OBJECTIVES: To assess the impact of antimalarial MDA on population asexual parasitaemia prevalence, parasitaemia incidence, gametocytaemia prevalence, anaemia prevalence, mortality and MDA-associated adverse events.
SEARCH METHODS: We searched the Cochrane Infectious Disease Group Specialized Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE+, EMBASE, to February 2013. We also searched CABS Abstracts, LILACS, reference lists, and recent conference proceedings.
SELECTION CRITERIA: Cluster-randomized trials and non-randomized controlled studies comparing therapeutic MDA versus placebo or no MDA, and uncontrolled before-and-after studies comparing post-MDA to baseline data were selected. Studies administering intermittent preventive treatment (IPT) to sub-populations (for example, pregnant women, children or infants) were excluded.
DATA COLLECTION AND ANALYSIS: Two authors independently reviewed studies for inclusion, extracted data and assessed risk of bias. Studies were stratified by study design and then subgrouped by endemicity, by co-administration of 8-aminoquinoline plus schizonticide drugs and by plasmodium species. The quality of evidence was assessed using the GRADE approach.
MAIN RESULTS: Two cluster-randomized trials, eight non-randomized controlled studies and 22 uncontrolled before-and-after studies are included in this review. Twenty-two studies (29 comparisons) compared MDA to placebo or no intervention of which two comparisons were conducted in areas of low endemicity (≤5%), 12 in areas of moderate endemicity (6-39%) and 15 in areas of high endemicity (≥ 40%). Ten studies evaluated MDA plus other vector control measures. The studies used a wide variety of MDA regimens incorporating different drugs, dosages, timings and numbers of MDA rounds. Many of the studies are now more than 30 years old. Areas of low endemicity (≤5%)Within the first month post-MDA, a single uncontrolled before-and-after study conducted in 1955 on a small Taiwanese island reported a much lower prevalence of parasitaemia following a single course of chloroquine compared to baseline (1 study, very low quality evidence). This lower parasite prevalence was still present after more than 12 months (one study, very low quality evidence). In addition, one cluster-randomized trial evaluating MDA in a low endemic setting reported zero episodes of parasitaemia at baseline, and throughout five months of follow-up in both the control and intervention arms (one study, very low quality evidence). Areas of moderate endemicity (6-39%)Within the first month post-MDA, the prevalence of parasitaemia was much lower in three non-randomized controlled studies from Kenya and India in the 1950s (RR 0.03, 95% CI 0.01 to 0.08, three studies, moderate quality evidence), and in three uncontrolled before-and-after studies conducted between 1954 and 1961 (RR 0.29, 95% CI 0.17 to 0.48, three studies,low quality evidence).The longest follow-up in these settings was four to six months. At this time point, the prevalence of parasitaemia remained substantially lower than controls in the two non-randomized controlled studies (RR 0.18, 95% CI 0.10 to 0.33, two studies, low quality evidence). In contrast, the two uncontrolled before-and-after studies found mixed results: one found no difference and one found a substantially higher prevalence compared to baseline (not pooled, two studies, very low quality evidence). Areas of high endemicity (≥40%)Within the first month post-MDA, the single cluster-randomized trial from the Gambia in 1999 found no significant difference in parasite prevalence (one study, low quality evidence). However, prevalence was much lower during the MDA programmes in three non-randomized controlled studies conducted in the 1960s and 1970s (RR 0.17, 95% CI 0.11 to 0.27, three studies, moderate quality evidence), and within one month of MDA in four uncontrolled before-and-after studies (RR 0.37, 95% CI 0.28 to 0.49, four studies,low quality evidence).Four trials reported changes in prevalence beyond three months. In the Gambia, the single cluster-randomized trial found no difference at five months (one trial, moderate quality evidence). The three uncontrolled before-and-after studies had mixed findings with large studies from Palestine and Cambodia showing sustained reductions at four months and 12 months, respectively, and a small study from Malaysia showing no difference after four to six months of follow-up (three studies,low quality evidence). 8-aminoquinolines We found no studies directly comparing MDA regimens that included 8-aminoquinolines with regimens that did not. In a crude subgroup analysis with a limited number of studies, we were unable to detect any evidence of additional benefit of primaquine in moderate- and high-transmission settings. Plasmodium species In studies that reported species-specific outcomes, the same interventions resulted in a larger impact on Plasmodium falciparum compared to P. vivax.
AUTHORS' CONCLUSIONS: MDA appears to reduce substantially the initial risk of malaria parasitaemia. However, few studies showed sustained impact beyond six months post-MDA, and those that did were conducted on small islands or in highland settings.To assess whether there is an impact of MDA on malaria transmission in the longer term requires more quasi experimental studies with the intention of elimination, especially in low- and moderate-transmission settings. These studies need to address any long-term outcomes, any potential barriers for community uptake, and contribution to the development of drug resistance.
METHODOLOGY/PRINCIPAL FINDINGS: A total of 439 records of P. knowlesi infections in humans, macaque reservoir and vector species were collated. To predict spatial variation in disease risk, a model was fitted using records from countries where the infection data coverage is high. Predictions were then made throughout Southeast Asia, including regions where infection data are sparse. The resulting map predicts areas of high risk for P. knowlesi infection in a number of countries that are forecast to be malaria-free by 2025 (Malaysia, Cambodia, Thailand and Vietnam) as well as countries projected to be eliminating malaria (Myanmar, Laos, Indonesia and the Philippines).
CONCLUSIONS/SIGNIFICANCE: We have produced the first map of P. knowlesi malaria risk, at a fine-scale resolution, to identify priority areas for surveillance based on regions with sparse data and high estimated risk. Our map provides an initial evidence base to better understand the spatial distribution of this disease and its potential wider contribution to malaria incidence. Considering malaria elimination goals, areas for prioritised surveillance are identified.