Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Upadhyay DR, Koirala G, Shah BR, Tajudin SM, Khanal R
    Environ Monit Assess, 2024 Jan 23;196(2):190.
    PMID: 38261087 DOI: 10.1007/s10661-023-12284-5
    Soil samples from vegetable farmland in densely populated wards of Nepal were analyzed for natural radionuclide levels, employing a NaI(Tl) 3" [Formula: see text] 3" gamma detector. The study aimed to evaluate the causes of radiation risk, attributing it to soil contamination resulting from the rapid urbanization and concretization that followed the earthquake in 2015. The activity concentration of radium-226, thorium-232, and potassium-40 and the ranges observed are 2.080±0.084-33.675±1.356 Bq kg[Formula: see text], 17.222±0.198-119.949±1.379 Bq kg[Formula: see text], and 11.203 ± 0.325-748.828±21.716 Bq kg[Formula: see text], respectively. The average values obtained for hazard indices are as follows: radium equivalent activity (82.779 Bq kg[Formula: see text]), absorbed dose rate (36.394 nGy h[Formula: see text]), annual effective dose equivalent (0.045 mSv yearr[Formula: see text]), gamma index (0.291), external hazard index (0.224), internal hazard index (0.253), excess lifetime cancer risk (0.159), annual gonadal dose equivalent (243.278 mSv year[Formula: see text]), alpha index (0.054), and activity utilization index (0.716). However, in most places, thorium-232 concentration is greater than those of the world average and recommended values. In specific locations such as Ward 4 in Baluwatar, the soil was found to have concentrations of Ra[Formula: see text] and K[Formula: see text] exceeding recommended limits. Despite this localized concern, the overall analysis of hazard indices across the studied areas revealed that most values were within permissible limits. This suggests that, on a broader scale, radiation exposure may not be a significant concern in the investigated regions. Nonetheless, the study recommends regular monitoring in additional locations to ensure a comprehensive and ongoing assessment of radiation levels.
    Matched MeSH terms: Earthquakes*
  2. Nazrul Azmi Ahmad Zamri, Petrus, Clotilda, Azmi Ibrahim, Hanizah Ab Hamid
    Scientific Research Journal, 2018;15(1):59-74.
    MyJurnal
    The application of concrete filled steel tubes(CFSTs) as composite members has widely been used around the world and is becoming popular day by day for structural application especially in earthquake regions. This paper indicates that an experimental study was conducted to comprehend the behaviour of T-stub end plates connected to concrete filled thin-walled steel tube (CFTST) with different types of bolts and are subjected to pullout load. The bolts used are normal type bolt M20 grade 8.8 and Lindapter Hollo-bolt HB16 and HB20. A series of 10 mm thick T-stub end plates were fastened to 2 mm CFTST of 200 mm x 200 mm in cross-section. All of the specimens were subjected to monotonic pull-out load until failure. Based on testresults, the Lidapter Hollo-boltsshowed better performance compare to normal bolts. The highest ultimate limit load for T-stub end plate fasten with Lindapter Hollo-bolt is four times higher than with normal bolt although all end plates show similar behaviour and failure mode patterns. It can be concluded that T-stub end plate with Lindapter Hollo-bolt shows a better performance in the service limit and ultimate limit states according to the regulations in the design codes.
    Matched MeSH terms: Earthquakes
  3. Shukri AA, Visintin P, Oehlers DJ, Jumaat MZ
    Materials (Basel), 2016 Apr 22;9(4).
    PMID: 28773430 DOI: 10.3390/ma9040305
    Describing the moment rotation (M/θ) behavior of reinforced concrete (RC) hinges is essential in predicting the behavior of RC structures under severe loadings, such as under cyclic earthquake motions and blast loading. The behavior of RC hinges is defined by localized slip or partial interaction (PI) behaviors in both the tension and compression region. In the tension region, slip between the reinforcement and the concrete defines crack spacing, crack opening and closing, and tension stiffening. While in the compression region, slip along concrete to concrete interfaces defines the formation and failure of concrete softening wedges. Being strain-based, commonly-applied analysis techniques, such as the moment curvature approach, cannot directly simulate these PI behaviors because they are localized and displacement based. Therefore, strain-based approaches must resort to empirical factors to define behaviors, such as tension stiffening and concrete softening hinge lengths. In this paper, a displacement-based segmental moment rotation approach, which directly simulates the partial interaction behaviors in both compression and tension, is developed for predicting the M/θ response of an RC beam hinge under cyclic loading. Significantly, in order to develop the segmental approach, a partial interaction model to predict the tension stiffening load slip relationship between the reinforcement and the concrete is developed.
    Matched MeSH terms: Earthquakes
  4. Khari M, Kassim KA, Adnan A
    ScientificWorldJournal, 2014;2014:917174.
    PMID: 24574932 DOI: 10.1155/2014/917174
    The research on damages of structures that are supported by deep foundations has been quite intensive in the past decade. Kinematic interaction in soil-pile interaction is evaluated based on the p-y curve approach. Existing p-y curves have considered the effects of relative density on soil-pile interaction in sandy soil. The roughness influence of the surface wall pile on p-y curves has not been emphasized sufficiently. The presented study was performed to develop a series of p-y curves for single piles through comprehensive experimental investigations. Modification factors were studied, namely, the effects of relative density and roughness of the wall surface of pile. The model tests were subjected to lateral load in Johor Bahru sand. The new p-y curves were evaluated based on the experimental data and were compared to the existing p-y curves. The soil-pile reaction for various relative density (from 30% to 75%) was increased in the range of 40-95% for a smooth pile at a small displacement and 90% at a large displacement. For rough pile, the ratio of dense to loose relative density soil-pile reaction was from 2.0 to 3.0 at a small to large displacement. Direct comparison of the developed p-y curve shows significant differences in the magnitude and shapes with the existing load-transfer curves. Good comparison with the experimental and design studies demonstrates the multidisciplinary applications of the present method.
    Matched MeSH terms: Earthquakes*
  5. Matin SS, Pradhan B
    Sensors (Basel), 2021 Jun 30;21(13).
    PMID: 34209169 DOI: 10.3390/s21134489
    Building-damage mapping using remote sensing images plays a critical role in providing quick and accurate information for the first responders after major earthquakes. In recent years, there has been an increasing interest in generating post-earthquake building-damage maps automatically using different artificial intelligence (AI)-based frameworks. These frameworks in this domain are promising, yet not reliable for several reasons, including but not limited to the site-specific design of the methods, the lack of transparency in the AI-model, the lack of quality in the labelled image, and the use of irrelevant descriptor features in building the AI-model. Using explainable AI (XAI) can lead us to gain insight into identifying these limitations and therefore, to modify the training dataset and the model accordingly. This paper proposes the use of SHAP (Shapley additive explanation) to interpret the outputs of a multilayer perceptron (MLP)-a machine learning model-and analyse the impact of each feature descriptor included in the model for building-damage assessment to examine the reliability of the model. In this study, a post-event satellite image from the 2018 Palu earthquake was used. The results show that MLP can classify the collapsed and non-collapsed buildings with an overall accuracy of 84% after removing the redundant features. Further, spectral features are found to be more important than texture features in distinguishing the collapsed and non-collapsed buildings. Finally, we argue that constructing an explainable model would help to understand the model's decision to classify the buildings as collapsed and non-collapsed and open avenues to build a transferable AI model.
    Matched MeSH terms: Earthquakes*
  6. Ruiz Estrada MA, Yap SF, Park D
    Disasters, 2014 Jul;38 Suppl 2:S206-29.
    PMID: 24905816 DOI: 10.1111/disa.12069
    Natural hazards have a potentially large impact on economic growth, but measuring their economic impact is subject to a great deal of uncertainty. The central objective of this paper is to demonstrate a model--the natural disasters vulnerability evaluation (NDVE) model--that can be used to evaluate the impact of natural hazards on gross national product growth. The model is based on five basic indicators-natural hazards growth rates (αi), the national natural hazards vulnerability rate (ΩT), the natural disaster devastation magnitude rate (Π), the economic desgrowth rate (i.e. shrinkage of the economy) (δ), and the NHV surface. In addition, we apply the NDVE model to the north-east Japan earthquake and tsunami of March 2011 to evaluate its impact on the Japanese economy.
    Matched MeSH terms: Earthquakes/economics*
  7. Binns C, Low WY
    Asia Pac J Public Health, 2015 Jul;27(5):484-5.
    PMID: 26116652 DOI: 10.1177/1010539515593015
    Matched MeSH terms: Earthquakes*
  8. Yew Y, Arcos González P, Castro Delgado R
    Prehosp Disaster Med, 2020 Feb;35(1):76-82.
    PMID: 31928556 DOI: 10.1017/S1049023X19005247
    INTRODUCTION: The Richter Scale measures the magnitude of the seismic activity for an earthquake; however, it does not quantify the humanitarian need at the point of impact. This poses a challenge for humanitarian stakeholders in decision and policy making, especially in risk reduction, response, recovery, and reconstruction. The new disaster metrics tool titled "The YEW Disaster Severity Index" (DSI) was developed and presented at the 2017 World Congress of Disaster and Emergency Medicine, May 2017, Toronto, Canada. It uses a median score of three for vulnerability and exposure indicators, a median score percentage of 100%, and medium YEW DSI scoring of four to five as baseline, indicating the ability to cope within local capacity. Therefore, scoring more than baseline coping capacity indicates that external assistance is needed. This special real-time report was presented at the 2nd National Pre-Hospital Care Conference and Championship, October 2018, Malaysia.

    REPORT: The aim of this analysis is to present the real-time humanitarian impact and response to the 2018 earthquake and tsunami at Donggala and Palu, Sulawesi in Indonesia using the new disaster metrics YEW DSI. Based on the earthquake (measuring 7.7 on the Richter Scale) and tsunami at Donggala, the humanitarian impact calculated on September 29, 2018 scored 7.4 High in the YEW DSI with 11 of the total 17 indicators scoring more than the baseline coping capacity. The same YEW DSI score of 7.4 was scored on the earthquake and tsunami at Palu, with 13 of the total 17 indicators scoring more than baseline ability to cope within local capacity. Impact analysis reports were sent to relevant authorities on September 30, 2018.

    DISCUSSION & CONCLUSION: A State of Emergency was declared for a national response, which indicated an inability to cope within the local capacity, shown by the YEW DSI. The strong correlation between the earthquake magnitude, intensities, and the humanitarian impact at Donggala and Palu reported could be added into the science of knowledge in prehospital care and disaster medicine research and practice. As a conclusion, the real-time disaster response was found to be almost an exact fit with the YEW DSI indicators, demonstrating the inability to cope within the local capacity.

    Matched MeSH terms: Earthquakes*
  9. Chew BH
    Malays Fam Physician, 2008;3(3):170-172.
    MyJurnal
    The massive 2008 Sichuan earthquake brought unprecedented international humanitarian aid to China. The monstrous damages and casualties aroused all human's sympathy. I took the opportunity to join a Malaysian voluntary medical relief team to Sichuan in June 2008. This essay recounts the immediate events post-earthquake and reports on my experience during the mission.
    Matched MeSH terms: Earthquakes
  10. Zong-ji Yang, Taro Uchimura, Jian-ping Qiao, Jian-ping Qiao
    Sains Malaysiana, 2017;46:2029-2034.
    Prevention and mitigation of rainfall induced geological hazards after the Ms=8 Wenchuan earthquake on May 12th, 2008 were significant for rebuild of earthquake hit regions. After the Wenchuan earthquake, there were tens of thousands of fractured slopes which were broken and loosened by the ground shaking, they were very susceptible to heavy rainfall and change forms into potential debris flows. In order to carry out this disaster reduction and prediction effectively in Longmenshan region, careful real-time monitoring and pre-warning of mountain hazards in both regional and site-specific scales is reasonable as alternatives in Wenchuan earthquake regions. For pre-warning the failure of fractured slopes induced by rainfall, the threshold value or the critical value of the precipitation of hazards should be proposed. However, the identification of critical criterion and parameters to pre-warning is the most difficult issue in mountainous hazards monitoring and pre-warning system especially in the elusive and massive fractured slopes widespread in Wenchuan earthquake regions. In this study, a natural coseismic fractured landslide in the Taziping village, Hongkou County, Dujianyan City, was selected to conduct the field experimental test, in order to identify the threshold parameters and critical criterion of the fractured slopes of Taziping. After the field experimental test, the correlation of rainfall intensity, rainfall duration and accumulative rainfall was investigated. The field experimental test was capable of identifying the threshold factors for failure of rainfall-induced fractured slopes after the giant earthquake.
    Matched MeSH terms: Earthquakes
  11. Firoozi AA, Taha MR, Mir Moammad Hosseini SM, Firoozi AA
    ScientificWorldJournal, 2014;2014:325759.
    PMID: 25126595 DOI: 10.1155/2014/325759
    Deformation of quay walls is one of the main sources of damage to port facility while liquefaction of backfill and base soil of the wall are the main reasons for failures of quay walls. During earthquakes, the most susceptible materials for liquefaction in seashore regions are loose saturated sand. In this study, effects of enhancing the wall width and the soil improvement on the behavior of gravity quay walls are examined in order to obtain the optimum improved region. The FLAC 2D software was used for analyzing and modeling progressed models of soil and loading under difference conditions. Also, the behavior of liquefiable soil is simulated by the use of "Finn" constitutive model in the analysis models. The "Finn" constitutive model is especially created to determine liquefaction phenomena and excess pore pressure generation.
    Matched MeSH terms: Earthquakes*
  12. Javanmardi A, Ibrahim Z, Ghaedi K, Khan NB, Benisi Ghadim H
    PLoS One, 2018;13(7):e0200482.
    PMID: 30059506 DOI: 10.1371/journal.pone.0200482
    This paper investigated the seismic retrofitting of an existing cable-stayed bridge through the use of a seismic isolation system. The bridge is situated in a high seismic zone. During the Saguenay earthquake 1988, one of the anchorage plates of the bridge supports failed. Herein, several configurations of seismic isolation system were considered to identify an appropriate solution for the seismic retrofitting of the bridge in both the longitudinal and transverse directions. A three-dimensional model of the bridge was created, and its seismic behavior studied through nonlinear dynamic time-history analysis. The comparative performance study among the five retrofitting configurations showed that the partial seismic isolation of the bridge led to an enhancement of the seismic response of the bridge in one direction only. However, the overall seismic response of the cable-stayed bridge substantially improved in the longitudinal and transverse directions in cases where the isolation systems were utilized between the supports and the deck-tower connection of the bridge.
    Matched MeSH terms: Earthquakes*
  13. Babar, Muneer Gohar, Gonzalez, Ma Angela
    MyJurnal
    Background: The importance of tooth sectioning is realized in disasters such as earthquake, airplane crash investigation, terror, micro leakage studies, age estimation etc. The objective of this study was to develop a simple method to make thin sections (approximately 100 mm) from freshly extracted teeth.

    Methods: One hundred and twenty human premolars recently extracted for orthodontic purpose were used for this study. The teeth were stored in 0.5% chorlaramine for 2 weeks and were not allowed to dry at any stage of the experiment. The teeth were thoroughly washed in distilled water teeth and then were sectioned buccolingually from crown to the root portion.

    Results: A detailed embedding-cutting-mounting procedure is described. The prepared thin ground sections were then examined under a Polarised light microscope for the enamel and the dentine, as well as the caries lesions can clearly be distinguished.

    Conclusion: This is an effective and efficient method for preparation of ground sections in which the hard tissue details are preserved.
    Matched MeSH terms: Earthquakes
  14. Zainap Lamat, Yuhani Jamian, Mohd Agus Adib Eskandar
    MyJurnal
    Sarawak has experienced several earthquakes of local origin and was also affected by long-distance earthquake that originated from Southern Philippine and the Straits of Macassar, Sulu Sea and Celebes Sea. The objectives for this study were to conduct site specific ground response analysis and develop design response spectra for Bakun area by using 1-D equivalent linear ground response analysis. The site characterisation was carried out utilising the soil profile and soil property data of the selected site. Local surface fault ruptures were investigated for possible hazards due to intraplate earthquakes. Earthquake ground motion records were selected based on characteristics of the controlling earthquakes for an area and the maximum magnitude faults were considered for risk assessment. The site-specific response spectra represent the predicted surface ground motions that reflect the levels of strong motion amplitude and frequency content at a particular site. The site-specific ground response analysis for Bakun site found that the peak ground acceleration at bedrock was amplified from 0.16 g to 0.33 g at the ground surface.
    Matched MeSH terms: Earthquakes
  15. Santosa BJ
    This research, compares the observed seismogram of the PNG earthquake, C051099C with its synthetics in UGM, Wanagama, Indonesia, PMG, Port Moresby, PNG and CHTO, Chiang May, Thailand. The synthetic seismogram is calculated using preliminary earth model, which are the IASPEI91 and the anisotropic version of PREM. The seismogram comparison is conducted after imposing a low pass filter whose corner frequency is fixed at 20 mHz. We have found a real discrepancy on the travel time and waveform of some wave phases, namely P, S and Rayleigh and Love surface waves, by seismogram comparison in time domain. To correct the discrepancies, we need to adjust the earth structures, which include the depth of the Moho reflector, the velocity gradient of bh, and the propagation velocity of the P and S waves. The correction has been conducted in the earth layering system from the upper mantle down to the CMB, so that the excellent seismogram fitting was obtained for nearly all phases of the targeted waves. The used wave length for analysing is about 150 km. It turns out that the waveform of the body and surface waves is sensitive to the change of velocity structure. The analysis of repetitive ScS depth phases at closer distance stations gives better opportunity to investigate the S velocity structure near the CMB, something not used by other seismologists.
    Matched MeSH terms: Earthquakes
  16. Khan A, Ali I, Ghani A, Khan N, Alsaqer M, Rahman AU, et al.
    Sensors (Basel), 2018 May 18;18(5).
    PMID: 29783686 DOI: 10.3390/s18051619
    Recent research in underwater wireless sensor networks (UWSNs) has gained the attention of researchers in academia and industry for a number of applications. They include disaster and earthquake prediction, water quality and environment monitoring, leakage and mine detection, military surveillance and underwater navigation. However, the aquatic medium is associated with a number of limitations and challenges: long multipath delay, high interference and noise, harsh environment, low bandwidth and limited battery life of the sensor nodes. These challenges demand research techniques and strategies to be overcome in an efficient and effective fashion. The design of routing protocols for UWSNs is one of the promising solutions to cope with these challenges. This paper presents a survey of the routing protocols for UWSNs. For the ease of description, the addressed routing protocols are classified into two groups: localization-based and localization-free protocols. These groups are further subdivided according to the problems they address or the major parameters they consider during routing. Unlike the existing surveys, this survey considers only the latest and state-of-the-art routing protocols. In addition, every protocol is described in terms of its routing strategy and the problem it addresses and solves. The merit(s) of each protocol is (are) highlighted along with the cost. A description of the protocols in this fashion has a number of advantages for researchers, as compared to the existing surveys. Firstly, the description of the routing strategy of each protocol makes its routing operation easily understandable. Secondly, the demerit(s) of a protocol provides (provide) insight into overcoming its flaw(s) in future investigation. This, in turn, leads to the foundation of new protocols that are more intelligent, robust and efficient with respect to the desired parameters. Thirdly, a protocol can be selected for the appropriate application based on its described merit(s). Finally, open challenges and research directions are presented for future investigation.
    Matched MeSH terms: Earthquakes
  17. Bathrellos GD, Skilodimou HD, Chousianitis K, Youssef AM, Pradhan B
    Sci Total Environ, 2017 Jan 01;575:119-134.
    PMID: 27736696 DOI: 10.1016/j.scitotenv.2016.10.025
    Preparation of natural hazards maps are vital and essential for urban development. The main scope of this study is to synthesize natural hazard maps in a single multi-hazard map and thus to identify suitable areas for the urban development. The study area is the drainage basin of Xerias stream (Northeastern Peloponnesus, Greece) that has frequently suffered damages from landslides, floods and earthquakes. Landslide, flood and seismic hazard assessment maps were separately generated and further combined by applying the Analytical Hierarchy Process (AHP) and utilizing a Geographical Information System (GIS) to produce a multi-hazard map. This map represents the potential suitability map for urban development in the study area and was evaluated by means of uncertainty analysis. The outcome revealed that the most suitable areas are distributed in the southern part of the study area, where the landslide, flood and seismic hazards are at low and very low level. The uncertainty analysis shows small differences on the spatial distribution of the suitability zones. The produced suitability map for urban development proves a satisfactory agreement between the suitability zones and the landslide and flood phenomena that have affected the study area. Finally, 40% of the existing urban pattern boundaries and 60% of the current road network are located within the limits of low and very low suitability zones.
    Matched MeSH terms: Earthquakes
  18. Kadri U, Crivelli D, Parsons W, Colbourne B, Ryan A
    Sci Rep, 2017 10 24;7(1):13949.
    PMID: 29066744 DOI: 10.1038/s41598-017-14177-3
    Analysis of data, recorded on March 8th 2014 at the Comprehensive Nuclear-Test-Ban Treaty Organisation's hydroacoustic stations off Cape Leeuwin Western Australia, and at Diego Garcia, reveal unique pressure signatures that could be associated with objects impacting at the sea surface, such as falling meteorites, or the missing Malaysian Aeroplane MH370. To examine the recorded signatures, we carried out experiments with spheres impacting at the surface of a water tank, where we observed almost identical pressure signature structures. While the pressure structure is unique to impacting objects, the evolution of the radiated acoustic waves carries information on the source. Employing acoustic-gravity wave theory we present an analytical inverse method to retrieve the impact time and location. The solution was validated using field observations of recent earthquakes, where we were able to calculate the eruption time and location to a satisfactory degree of accuracy. Moreover, numerical validations confirm an error below 0.02% for events at relatively large distances of over 1000 km. The method can be developed to calculate other essential properties such as impact duration and geometry. Besides impacting objects and earthquakes, the method could help in identifying the location of underwater explosions and landslides.
    Matched MeSH terms: Earthquakes
  19. Azimi M, Bin Adnan A, Sam AR, Tahir MM, Faridmehr I, Hodjati R
    ScientificWorldJournal, 2014;2014:802605.
    PMID: 25309957 DOI: 10.1155/2014/802605
    The seismic performance of RC columns could be significantly improved by continuous spiral reinforcement as a result of its adequate ductility and energy dissipation capacity. Due to post-earthquake brittle failure observations in beam-column connections, the seismic behaviour of such connections could greatly be improved by simultaneous application of this method in both beams and columns. In this study, a new proposed detail for beam to column connection introduced as "twisted opposing rectangular spiral" was experimentally and numerically investigated and its seismic performance was compared against normal rectangular spiral and conventional shear reinforcement systems. In this study, three full scale beam to column connections were first designed in conformance with Eurocode (EC2-04) for low ductility class connections and then tested by quasistatic cyclic loading recommended by ACI Building Code (ACI 318-02). Next, the experimental results were validated by numerical methods. Finally, the results revealed that the new proposed connection could improve the ultimate lateral resistance, ductility, and energy dissipation capacity.
    Matched MeSH terms: Earthquakes*
  20. Rafiey H, Momtaz YA, Alipour F, Khankeh H, Ahmadi S, Sabzi Khoshnami M, et al.
    Clin Interv Aging, 2016;11:1791-1795.
    PMID: 27994445
    BACKGROUND: Despite the growing interest in the study of disasters, there is limited research addressing the elderly population that lead to prejudiced beliefs that older adults are more vulnerable to disasters than younger adults. This study aimed to compare positive mental health between elderly and young earthquake survivors.

    METHOD: Data for this study, consisting of 324 earthquake survivors, were obtained from a population-based cross-sectional survey conducted in Iran, 2015. The long-term effect of earthquake was assessed using the Mental Health Continuum-Short Form questionnaire. A one-way multivariate analysis of covariance (MANCOVA) using SPSS (version 22) was used in data analysis.

    RESULTS: Older adults scored significantly a higher level of overall positive mental health (mean [M]=34.31, standard deviation [SD]=10.52) than younger age group (M=27.48, SD=10.56, t=-4.41; P<0.001). Results of MANCOVA revealed a statistically significant difference between older and young adults on the combined positive mental health subscales (F(3,317)=6.95; P<0.001), after controlling for marital status, sex, and employment status.

    CONCLUSION: The present findings showing a higher level of positive mental health among elderly earthquake survivors compared with their younger counterparts in the wake of natural disasters suggest that advancing age per se does not contribute to increasing vulnerability.

    Matched MeSH terms: Earthquakes/statistics & numerical data*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links