Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Neela V, Thomas R, Rankouhi SZR, Karunanidhi A, Shueh CS, Hamat RA, et al.
    J Med Microbiol, 2012 Dec;61(Pt 12):1792-1794.
    PMID: 22956752 DOI: 10.1099/jmm.0.049403-0
    Matched MeSH terms: Enzyme Assays*
  2. Omar A, Jalil JA, Shakrin NM, Ngu LH, Yunus ZM
    Data Brief, 2019 Aug;25:104377.
    PMID: 31516928 DOI: 10.1016/j.dib.2019.104377
    This article contains information related to a recent study "Selective screening for detection of mucopolysaccharidoses (MPS) in Malaysia; A Two-year Study" Affandi et al., 2019. Any patient registered under government healthcare facilities in Malaysia and fit at least two inclusion criteria were included in this selective screening. Urine and blood from these high risk patients were obtained and analysed for glycosaminoglycans (GAGs) level before characterization using high resolution electrophoresis (HRE). Thereafter, enzyme assay for different types of MPS based on result of HRE were determined using specific substrate. Demographic data as well as laboratory findings were tabulated and analysed. The data of this study demonstrate between clinical presentation and laboratory findings among high risk patients of MPS and can be employed to improve diagnosis of MPS.
    Matched MeSH terms: Enzyme Assays
  3. Gunasekaran, B., Johari, W.L.W., Wasoh, M.H., Masdor, N.A., Shukor, M.Y.
    MyJurnal
    Heavy metals pollution has become a great threat to the world. Since instrumental methods are
    expensive and need skilled technician, a simple and fast method is needed to determine the
    presence of heavy metals in the environment. In this work, a preliminary study was carried out
    on the applicability of various local plants as a source of protease for the future development of
    the inhibitive enzyme assay for heavy-metals. The crude proteases preparation was assayed using
    casein as a substrate in conjunction with the Coomassie dye-binding assay. The crude protease
    from the kesinai plant was found to be the most potent plant protease. The crude enzyme
    exhibited broad temperature and pH ranges for activity and will be developed in the future as a
    potential inhibitive assay for heavy metals.
    Matched MeSH terms: Enzyme Assays
  4. Liew CY, Husaini A, Hussain H, Muid S, Liew KC, Roslan HA
    World J Microbiol Biotechnol, 2011 Jun;27(6):1457-68.
    PMID: 25187145 DOI: 10.1007/s11274-010-0598-x
    White rot fungi are good lignin degraders and have the potential to be used in industry. In the present work, Phellinus sp., Daedalea sp., Trametes versicolor and Pycnoporus coccineus were selected due to their relatively high ligninolytic enzyme activity, and grown on Acacia mangium wood chips under solid state fermentation. Results obtained showed that manganese peroxidase produced is far more compared to lignin peroxidase, suggesting that MnP might be the predominating enzymes causing lignin degradation in Acacia mangium wood chips. Cellulase enzyme assays showed that no significant cellulase activity was detected in the enzyme preparation of T. versicolor and Phellinus sp. This low cellulolytic activity further suggests that these two white rot strains are of more interest in lignin degradation. The results on lignin losses showed 20-30% of lignin breakdown at 60 days of biodegradation. The highest lignin loss was found in Acacia mangium biotreated with T. versicolor after 60 days and recorded 26.9%, corresponding to the percentage of their wood weight loss recorded followed by P. coccineus. In general, lignin degradation was only significant from 20 days onwards. The overall percentage of lignin weight loss was within the range of 1.02-26.90% over the biodegradation periods. Microscopic observations conducted using scanning electron microscope showed that T. versicolor, P. coccineus, Daedalea sp. and Phellinus sp. had caused lignin degradation in Acacia mangium wood chips.
    Matched MeSH terms: Enzyme Assays
  5. Shukor MY, Bakar NA, Othman AR, Yunus I, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):39-44.
    PMID: 20112861
    In this work the development of an inhibitive assay for copper using the molybdenum-reducing enzyme assay is presented. The enzyme is assayed using 12-molybdophosphoric acid at pH 5.0 as an electron acceptor substrate and NADH as the electron donor substrate. The enzyme converts the yellowish solution into a deep blue solution. The assay is based on the ability of copper to inhibit the molybdenum-reducing enzyme from the molybdate-reducing Serratia sp. Strain DRY5. Other heavy metals tested did not inhibit the enzyme at 10 mg l(-1). The best model with high regression coefficient to measure copper inhibition is one-phase binding. The calculated IC50 (concentration causing 50% inhibition) is 0.099 mg l(-1) and the regression coefficient is 0.98. The comparative LC50, EC50 and IC50 data for copper in different toxicity tests show that the IC50 value for copper in this study is lower than those for immobilized urease, bromelain, Rainbow trout, R. meliloti, Baker's Yeast dehydrogenase activity Spirillum volutans, P. fluorescens, Aeromonas hydrophilia and synthetic activated sludge assays. However the IC50 value is higher than those for Ulva pertusa and papain assays, but within the reported range for Daphnia magna and Microtox assays.
    Matched MeSH terms: Enzyme Assays/methods*
  6. Nayak AG, Kumar N, Shenoy S, Roche M
    3 Biotech, 2020 Nov;10(11):476.
    PMID: 33083200 DOI: 10.1007/s13205-020-02462-4
    The study investigates the ability of methanolic extract of Andrographis paniculata (MAP) to supplement polyvalent anti-snake venom (ASV) in inhibiting neurotoxic enzyme acetylcholinesterase (AChE) and 'spreading factor' hyaluronidase from Naja naja (N.N) venom. AChE and hyaluronidase activity were measured in 100 or 200 µg of crude venom, respectively, and designated as 'control'. In Test Group I, enzyme assays were performed immediately after the addition of ASV/MAP/ASV + MAP to the venom. Inhibition of AChE by ASV (100-367 µg) was 12-17%, and of hyaluronidase (22-660 µg) was 33-41%. Under the same conditions, MAP (100-400 µg) inhibited AChE and hyaluronidase to the extent of 17-33% and 17-52%, respectively. When ASV (220 µg) and MAP (100-200 µg) were added together, AChE and hyaluronidase were inhibited to a greater extent from 39-63 to 36-44%, than when either of them was used alone. In Test Group 2, the venom was incubated with ASV/MAP/ASV + MAP for 10-30 min at 37 °C prior to the assay which enhanced AChE inhibition by 6%, 82% and 18% respectively, when compared to Test Group I. Though there was no change in inhibition of hyaluronidase in the presence of ASV, MAP could further increase the extent of inhibition by 27% and ASV + MAP upto 4%. In Test Group III, venom and substrate were incubated for 90 min and hyaluronidase activity was measured after the addition of inhibitors. Here, ASV + MAP caused increased inhibition by 69% compared to ASV alone. The study confirms the ability of phytochemicals in MAP to contribute to a multipronged strategy by supplementing, thereby augmenting the efficacy of ASV.
    Matched MeSH terms: Enzyme Assays
  7. Tan IKP, Foong CP, Tan HT, Lim H, Zain NA, Tan YC, et al.
    J Biotechnol, 2020 Apr 10;313:18-28.
    PMID: 32171790 DOI: 10.1016/j.jbiotec.2020.03.006
    The polyhydroxyalkanoate (PHA) producing capability of four bacterial strains isolated from Antarctica was reported in a previous study. This study analyzed the PHA synthase genes and the PHA-associated gene clusters from the two antarctic Pseudomonas isolates (UMAB-08 and UMAB-40) and the two antarctic Janthinobacterium isolates (UMAB-56 and UMAB-60) through whole-genome sequence analysis. The Pseudomonas isolates were found to carry PHA synthase genes which fall into two different PHA gene clusters, namely Class I and Class II, which are involved in the biosynthesis of short-chain-length-PHA (SCL-PHA) and medium-chain-length-PHA (MCL-PHA), respectively. On the other hand, the Janthinobacterium isolates carry a Class I and an uncharacterized putative PHA synthase genes. No other gene involved in PHA synthesis was detected in close proximity to the uncharacterized putative PHA synthase gene in the Janthinobacterium isolates, therefore it falls into a separate clade from the ordinary Class I, II, III and IV clades of PHA synthase (PhaC) phylogenetic tree. Multiple sequence alignment showed that the uncharacterized putative PHA synthase gene contains all the highly conserved amino acid residues and the proposed catalytic triad of PHA synthase. PHA biosynthesis and in vitro PhaC enzymatic assay results showed that this uncharacterized putative PHA synthase from Janthinobacterium sp. UMAB-60 is funtional. This report adds new knowledge to the PHA synthase database as we describe scarce information of PHA synthase genes and PHA-associated gene clusters from the antarctic bacterial isolates (extreme and geographically isolated environment) and comparing with those from non-antarctic PHA-producing bacteria.
    Matched MeSH terms: Enzyme Assays
  8. Azma, R.Z., Siti Zubaidah, M., Azlin, I., Hafiza, A., Nurasyikin, Y., Nor Hidayati, S., et al.
    Medicine & Health, 2014;9(1):11-21.
    MyJurnal
    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzyme deficiency worldwide including Malaysia. Screening of cord blood for partial G6PD deficiency is important as they are also prone to develop acute haemolysis. In this study, we determined the prevalence of partial G6PD deficient in paediatric population aged 1 month-12 years and normal term female neonates using OSMMR-D kit with haemoglobin (Hb) normalization and compare it with florescence spot test (FST). A total of 236 children, aged between between 1 month-12 years and 614 normal term female neonates were recruited for this study. Determination of normal means for G6PD activity and; cut-off points for partial and severe deficiency were determined according to WHO Working Group (1989). Determination of prevalence for partial deficiency for both groups (female patient) was done using this enzyme assay kit and findings were compared with FST. In this study, 15.7% (18/115) female children were classified as partial G6PD deficient by quantitative enzyme method (G6PD activity: 4.23-5.26U/gHb). However, FST only detected 0.9% (1/115) with minimal G6PD activity. The prevalence of partial G6PD deficiency in female neonate group was 3.42% (21/614) by enzyme assay versus 0.49% (3/614) by FST. This study concluded that our routine screening method using FST was unable to diagnose female heterozygotes. We recommend using this quantitative enzyme assay method by OSMMR-D kit since it was more sensitive in detecting G6PD deficiency in female neonates compared to FST.
    Matched MeSH terms: Enzyme Assays
  9. Ainon Hamzah, Tavakoli A, Amir Rabu
    Sains Malaysiana, 2011;40:1231-1235.
    Toluene (C7H8) a hydrocarbon in crude oil, is a common contaminant in soil and groundwater. In this study, the ability to degrade toluene was investigated from twelve bacteria isolates which were isolated from soil contaminated with oil. Out of 12 bacterial isolates tested, most of Pseudomonas sp. showed the capability to grow in 1 mM of toluene compared with other isolates on the third day of incubation. Based on enzyme assays towards toluene monooxygenase, Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were shown to have the highest ability to degrade toluene. The toluene monoxygenase activity was analysed by using two calorimetric methods, Horseradish peroxidase (HRP) and indole-indigo. Both of the methods measured the production of catechol by the enzymatic reaction of toluene monooxygenase. In the HRP assay, the highest enzyme activity was 0.274 U/mL, exhibited by Pseudomonas aeruginosa UKMP-14T. However, for indole-indigo assay, Bacillus cereus UKMP-6G produced the highest enzyme activity of 0.291 U/ml. Results from both experiments showed that Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were able to degrade toluene.
    Matched MeSH terms: Enzyme Assays
  10. Sanmugavelan R, Teoh TC, Roslan N, Mohamed Z
    Turk J Biol, 2018;42(3):213-223.
    PMID: 30814883 DOI: 10.3906/biy-1710-107
    In this study, transformation of BrCHS var 2 into B. rotunda cell suspension culture, followed by chalcone synthase enzymatic assay and HPLC analysis was conducted to investigate whether the substrate specificity for BrCHS var 2 is either cinnamoyl-CoA or p-coumaroyl-CoA. The HPLC profile showed an increase in the amount of pinocembrin chalcone when cinnamoyl-CoA and malonyl-CoA were added but not p-coumaroyl-CoA. Molecular docking was performed to explore the binding of cinnamoyl-CoA and p-coumaroyl-CoA to BrCHS var 2 receptor and the docking results showed that cinnamoyl-CoA formed numerous hydrogen bonds and more negative docked energy than p-coumaroyl-CoA. Cinnamoyl-CoA showed good interactions with Cys 164 to initiate the subsequent formation of pinocembrin chalcone, whereas the hydroxyl group of p-coumaroyl-CoA formed an unfavorable interaction with Gln 161 that caused steric hindrance to subsequent formation of naringenin chalcone. Docked conformation analysis results also showed that malonyl-CoA formed hydrogen bonding with Cys 164, His 303, and Asn 336 residues in BrCHS var 2. The results show that cinnamoyl-CoA is the preferred substrate for BrCHS var 2.
    Matched MeSH terms: Enzyme Assays
  11. Khan D, Khan HU, Khan F, Khan S, Badshah S, Khan AS, et al.
    PLoS One, 2014;9(4):e94952.
    PMID: 24733024 DOI: 10.1371/journal.pone.0094952
    A phytochemical investigation on the ethyl acetate soluble fraction of Lonicera quinquelocularis (whole plant) led to the first time isolation of one new phthalate; bis(7-acetoxy-2-ethyl-5-methylheptyl) phthalate (3) and two new benzoates; neopentyl-4-ethoxy-3, 5-bis (3-methyl-2-butenyl benzoate (4) and neopentyl-4-hydroxy-3, 5-bis (3-methyl-2-butenyl benzoate (5) along with two known compounds bis (2-ethylhexyl phthalate (1) and dioctyl phthalate (2). Their structures were established on the basis of spectroscopic analysis and by comparison with available data in the literature. All the compounds (1-5) were tested for their acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities in dose dependent manner. The IC50 (50% inhibitory effect) values of compounds 3 and 5 against AChE were 1.65 and 3.43 µM while the values obtained against BChE were 5.98 and 9.84 µM respectively. Compounds 2 and 4 showed weak inhibition profile.
    Matched MeSH terms: Enzyme Assays
  12. Kong WM, Chik Z, Ramachandra M, Subramaniam U, Aziddin RE, Mohamed Z
    Molecules, 2011 Aug 29;16(9):7344-56.
    PMID: 21876481 DOI: 10.3390/molecules16097344
    The extract from Mitragyna speciosa has been widely used as an opium substitute, mainly due to its morphine-like pharmacological effects. This study investigated the effects of M. speciosa alkaloid extract (MSE) on human recombinant cytochrome P450 (CYP) enzyme activities using a modified Crespi method. As compared with the liquid chromatography-mass spectrometry method, this method has shown to be a fast and cost-effective way to perform CYP inhibition studies. The results indicated that MSE has the most potent inhibitory effect on CYP3A4 and CYP2D6, with apparent half-maximal inhibitory concentration (IC(50)) values of 0.78 µg/mL and 0.636 µg/mL, respectively. In addition, moderate inhibition was observed for CYP1A2, with an IC(50) of 39 µg/mL, and weak inhibition was detected for CYP2C19. The IC(50) of CYP2C19 could not be determined, however, because inhibition was <50%. Competitive inhibition was found for the MSE-treated CYP2D6 inhibition assay, whereas non-competitive inhibition was shown in inhibition assays using CYP3A4, CYP1A2 and CYP2C19. Quinidine (CYP2D6), ketoconazole (CYP3A4), tranylcypromine (CYP2C19) and furafylline (CYP1A2) were ACCESSused as positive controls throughout the experiments. This study shows that MSE may contribute to an herb-drug interaction if administered concomitantly with drugs that are substrates for CYP3A4, CYP2D6 and CYP1A2.
    Matched MeSH terms: Enzyme Assays
  13. Riswanto FDO, Rawa MSA, Murugaiyah V, Salin NH, Istyastono EP, Hariono M, et al.
    Med Chem, 2021;17(5):442-452.
    PMID: 31808389 DOI: 10.2174/1573406415666191206095032
    BACKGROUND: Chalcones, originated from natural product, have been broadly studied their biological activity against various proteins which at the molecular level, are responsible for the progress of the diseases in cancer (e.g. kinases), inflammation (oxidoreductases), atherosclerosis (cathepsins receptor), and diabetes (e.g. α-glucosidase).

    OBJECTIVE: Here we synthesize 10 chalcone derivatives to be evaluated their in vitro enzymatic inhibition activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE).

    METHODS: The synthesis was carried out using Claissen-Schimdt condensation and the in vitro assay was conducted using Ellman Method.

    RESULTS: Compounds 2b and 4b demonstrated as the best IC50 of 9.3 μM and 68.7 μM respectively, towards AChE and BChE inhibition. Molecular docking studies predicted that this activity might be due to the interaction of the chalcones with important amino acid residues in the binding site of AChE such as SER200 and in that of BChE, such as TRP82, SER198, TRP430, TYR440, LEU286 and VAL288.

    CONCLUSION: Chalcone can be used as the scaffold for cholinesterase inhibitor, in particularly either fluorine or nitro group to be augmented at the para-position of Ring B, whereas the hydrophobic chain is necessary at the meta-position of Ring B.

    Matched MeSH terms: Enzyme Assays
  14. Halmi, M.I.E., Baskaran Gunasekaran, Othman, A.R., Shukor, M.Y., Kamaruddin, K., Dahalan, F.A., et al.
    MyJurnal
    The volume of contaminated rivers in Malaysia continues to keep rising through the years. The
    cost of instrumental monitoring is uneconomical and prohibits schedule monitoring of
    contaminants particularly heavy metals. In this work, a rapid enzyme assay utilizing the
    molybdenum-reducing enzyme as an inhibitive assay, prepared in crude form from the
    molybdenum-reducing bacterium Serratia sp. strain DRY5 has been developed for monitoring
    the heavy metals mercury, silver, copper and chromium in contaminated waters in the Juru
    Industrial Estate. The crude enzyme extract transformed soluble molybdenum
    (phosphomolybdate) into a deep blue solution, which is inhibited by heavy metals such as
    mercury, silver, copper and chromium. The IC50 and Limits of Detection (LOD) values for
    mercury, copper, silver and cadmium were 0.245, 0.298, 0.367, 0.326, and 0.124, 0.086, 0.088
    and 0.094 mg L-1, respectively. The assay is rapid, and can be carried out in less than 10 minutes.
    In addition, the assay can be carried out at ambient temperature. The IC50 values for these heavy
    metals are more sensitive than several established assays. Water samples from various locations
    in the month of November from the Juru Industrial Estate (Penang) were tested for the presence
    of heavy metals using the developed assay. Enzyme activity was nearly inhibited for water
    samples from several locations. The presence of heavy metals was confirmed instrumentally
    using Atomic Emission Spectrometry and a Flow Injection Mercury System. The assay is rapid
    and simple and can be used as a first screening method for large scale monitoring of heavy
    metals.
    Matched MeSH terms: Enzyme Assays
  15. Abbasi MA, Raza H, Rehman AU, Siddiqui SZ, Nazir M, Mumtaz A, et al.
    Drug Res (Stuttg), 2019 Feb;69(2):111-120.
    PMID: 30086567 DOI: 10.1055/a-0654-5074
    In this study, a new series of sulfonamides derivatives was synthesized and their inhibitory effects on DPPH and jack bean urease were evaluated. The in silico studies were also applied to ascertain the interactions of these molecules with active site of the enzyme. Synthesis was initiated by the nucleophilic substitution reaction of 2-(4-methoxyphenyl)-1-ethanamine (1: ) with 4-(acetylamino)benzenesulfonyl chloride (2): in aqueous sodium carbonate at pH 9. Precipitates collected were washed and dried to obtain the parent molecule, N-(4-{[(4-methoxyphenethyl)amino]sulfonyl}phenyl)acetamide (3): . Then, this parent was reacted with different alkyl/aralkyl halides, (4A-M: ), using dimethylformamide (DMF) as solvent and LiH as an activator to produce a series of new N-(4-{[(4-methoxyphenethyl)-(substituted)amino]sulfonyl}phenyl)acetamides (5A-M: ). All the synthesized compounds were characterized by IR, EI-MS, 1H-NMR, 13C-NMR and CHN analysis data. All of the synthesized compounds showed higher urease inhibitory activity than the standard thiourea. The compound 5 F: exhibited very excellent enzyme inhibitory activity with IC50 value of 0.0171±0.0070 µM relative to standard thiourea having IC50 value of 4.7455±0.0546 µM. Molecular docking studies suggested that ligands have good binding energy values and bind within the active region of taget protein. Chemo-informatics properties were evaluated by computational approaches and it was found that synthesized compounds mostly obeyed the Lipinski' rule.
    Matched MeSH terms: Enzyme Assays/methods
  16. Lim CS, Krishnan G, Sam CK, Ng CC
    Clin Chim Acta, 2013 Jan 16;415:158-61.
    PMID: 23043757 DOI: 10.1016/j.cca.2012.08.031
    Because blocking agent occupies most binding surface of a solid phase, its ability to prevent nonspecific binding determines the signal-to-noise ratio (SNR) and reliability of an enzyme-linked immunosorbent assay (ELISA).
    Matched MeSH terms: Enzyme Assays/standards*
  17. Goh LL, Lim CW, Sim WC, Toh LX, Leong KP
    PLoS One, 2017;12(1):e0169233.
    PMID: 28046094 DOI: 10.1371/journal.pone.0169233
    BACKGROUND: Genetic determinants of drug response remain stable throughout life and offer great promise to patient-tailored drug therapy. The adoption of pharmacogenetic (PGx) testing in patient care requires accurate, cost effective and rapid genotyping with clear guidance on the use of the results. Hence, we evaluated a 32 SNPs panel for implementing PGx testing in clinical laboratories.

    METHODS: We designed a 32-SNP panel for PGx testing in clinical laboratories. The variants were selected using the clinical annotations of the Pharmacogenomics Knowledgebase (PharmGKB) and include polymorphisms of CYP2C9, CYP2C19, CYP2D6, CYP3A5 and VKORC1 genes. The CYP2D6 gene allele quantification was determined simultaneously with TaqMan copy number assays targeting intron 2 and exon 9 regions. The genotyping results showed high call rate accuracy according to concordance with genotypes identified by independent analyses on Sequenome massarray and droplet digital PCR. Furthermore, 506 genomic samples across three major ethnic groups of Singapore (Malay, Indian and Chinese) were analysed on our workflow.

    RESULTS: We found that 98% of our study subjects carry one or more CPIC actionable variants. The major alleles detected include CYP2C9*3, CYP2C19*2, CYP2D6*10, CYP2D6*36, CYP2D6*41, CYP3A5*3 and VKORC1*2. These translate into a high percentage of intermediate (IM) and poor metabolizer (PM) phenotypes for these genes in our population.

    CONCLUSION: Genotyping may be useful to identify patients who are prone to drug toxicity with standard doses of drug therapy in our population. The simplicity and robustness of this PGx panel is highly suitable for use in a clinical laboratory.

    Matched MeSH terms: Enzyme Assays
  18. Taha M, Imran S, Rahim F, Wadood A, Khan KM
    Bioorg Chem, 2018 02;76:273-280.
    PMID: 29223804 DOI: 10.1016/j.bioorg.2017.12.001
    Inhibition of α-glucosidase is an effective strategy for controlling post-prandial hyperglycemia in diabetic patients. Beside these α-glucosidase inhibitors has been also used as anti-obesity and anti-viral drugs. Keeping in view the greater importance of α-glucosidase inhibitors here in this study we are presenting oxindole based oxadiazoles hybrid analogs (1-20) synthesis, characterized by different spectroscopic techniques including 1H NMR and EI-MS and their α-glucosidase inhibitory activity. All compounds were found potent inhibitors for the enzyme with IC50 values ranging between 1.25 ± 0.05 and 268.36 ± 4.22 µM when compared with the standard drug acarbose having IC50 value 895.09 ± 2.04 µM. Our study identifies novel series of potent α-glucosidase inhibitors and further investigation on this may led to the lead compounds. A structure activity relationship has been established for all compounds. The interactions of the active compounds and enzyme active site were established with the help of molecular docking studies.
    Matched MeSH terms: Enzyme Assays
  19. Yusof NA, Hashim NH, Beddoe T, Mahadi NM, Illias RM, Bakar FD, et al.
    Cell Stress Chaperones, 2016 Jul;21(4):707-15.
    PMID: 27154490 DOI: 10.1007/s12192-016-0696-2
    The ability of eukaryotes to adapt to an extreme range of temperatures is critically important for survival. Although adaptation to extreme high temperatures is well understood, reflecting the action of molecular chaperones, it is unclear whether these molecules play a role in survival at extremely low temperatures. The recent genome sequencing of the yeast Glaciozyma antarctica, isolated from Antarctic sea ice near Casey Station, provides an opportunity to investigate the role of molecular chaperones in adaptation to cold temperatures. We isolated a G. antarctica homologue of small heat shock protein 20 (HSP20), GaSGT1, and observed that the GaSGT1 mRNA expression in G. antarctica was markedly increased following culture exposure at low temperatures. Additionally, we demonstrated that GaSGT1 overexpression in Escherichia coli protected these bacteria from exposure to both high and low temperatures, which are lethal for growth. The recombinant GaSGT1 retained up to 60 % of its native luciferase activity after exposure to luciferase-denaturing temperatures. These results suggest that GaSGT1 promotes cell thermotolerance and employs molecular chaperone-like activity toward temperature assaults.
    Matched MeSH terms: Enzyme Assays
  20. George A, Chinnappan S, Chintamaneni M, Kotak C V, Choudhary Y, Kueper T, et al.
    PMID: 25252832 DOI: 10.1186/1472-6882-14-355
    The study was aimed to evaluate the anti-inflammatory activity of ethanolic and aqueous extracts of Polygonum minus (Huds) using in vitro and in vivo approaches.
    Matched MeSH terms: Enzyme Assays
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links