Displaying all 12 publications

Abstract:
Sort:
  1. Pang SC, Chin SF, Anderson MA
    J Colloid Interface Sci, 2007 Jul 1;311(1):94-101.
    PMID: 17395194
    The effect of pH and redox potential on the redox equilibria of iron oxides in aqueous-based magnetite dispersions was investigated. The ionic activities of each dissolved iron species in equilibrium with magnetite nanoparticles were determined and contoured within the Eh-pH framework of a composite stability diagram. Both standard redox potentials and equilibrium constants for all major iron oxide redox equilibria in magnetite dispersions were found to differ from values reported for noncolloidal systems. The "triple point" position of redox equilibrium among Fe(II) ions, magnetite, and hematite shifted to a higher standard redox potential and an equilibrium constant which was several orders of magnitude higher. The predominant area of magnetite stability was enlarged to cover a wider range of both pH and redox potentials as compared to that of a noncolloidal magnetite system.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry*
  2. Gul K, Sohni S, Waqar M, Ahmad F, Norulaini NAN, A K MO
    Carbohydr Polym, 2016 Nov 05;152:520-531.
    PMID: 27516300 DOI: 10.1016/j.carbpol.2016.06.045
    In the present study, we decorated chitosan (©) with Fe3O4 nanoparticles followed by cross-linking with GO to prepare Fe3O4 supported chitosan-graphene oxide composite (Fe3O4©-GO). Different properties of synthesized material were investigated by SEM, XRD, FTIR, TGA and EDX. Batch adsorption experiments were performed to remove toxic cationic and anionic dyes from industrial wastewater. To maximize removal efficiency of composite material, effect of pH (4-12), time (0-80min), Fe3O4©-GO dosage (2-10mg), initial dye concentration (2-30μgmL̄ (1)) and temperature (303, 313, and 323K) were studied. The uptake of dyes presented relatively fast adsorption kinetics with pseudo-second-order equation as the best fitting model. To understand the interaction of dye with adsorbent, Langmuir and Freundlich isotherm were applied. Thermodynamic studies were conducted to calculate the changes in free energy (ΔG(0)), enthalpy (ΔH(0)) and entropy (ΔS(0)). In view of practical application, the influence of ionic strength, recycling as well as investigations based on percent recoveries from spiked real water samples were also taken into account.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry*
  3. Khandanlou R, Bin Ahmad M, Shameli K, Kalantari K
    Molecules, 2013 Jun 05;18(6):6597-607.
    PMID: 23739066 DOI: 10.3390/molecules18066597
    Small sized magnetite iron oxide nanoparticles (Fe3O4-NPs) with were successfully synthesized on the surface of rice straw using the quick precipitation method in the absence of any heat treatment. Ferric chloride (FeCl3·6H2O), ferrous chloride (FeCl2·4H2O), sodium hydroxide (NaOH) and urea (CH4N2O) were used as Fe3O4-NPs precursors, reducing agent and stabilizer, respectively. The rice straw fibers were dispersed in deionized water, and then urea was added to the suspension, after that ferric and ferrous chloride were added to this mixture and stirred. After the absorption of iron ions on the surface layer of the fibers, the ions were reduced with NaOH by a quick precipitation method. The reaction was carried out under N2 gas. The mean diameter and standard deviation of metal oxide NPs synthesized in rice straw/Fe3O4 nanocomposites (NCs) were 9.93 ± 2.42 nm. The prepared rice straw/Fe3O4-NCS were characterized using powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) and Fourier transforms infrared spectroscopy (FT‒IR). The rice straw/Fe3O4-NCs prepared by this method have magnetic properties.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry*
  4. Hushiarian R, Yusof NA, Abdullah AH, Ahmad SA, Dutse SW
    Molecules, 2014 Apr 09;19(4):4355-68.
    PMID: 24722589 DOI: 10.3390/molecules19044355
    Although nanoparticle-enhanced biosensors have been extensively researched, few studies have systematically characterized the roles of nanoparticles in enhancing biosensor functionality. This paper describes a successful new method in which DNA binds directly to iron oxide nanoparticles for use in an optical biosensor. A wide variety of nanoparticles with different properties have found broad application in biosensors because their small physical size presents unique chemical, physical, and electronic properties that are different from those of bulk materials. Of all nanoparticles, magnetic nanoparticles are proving to be a versatile tool, an excellent case in point being in DNA bioassays, where magnetic nanoparticles are often used for optimization of the hybridization and separation of target DNA. A critical step in the successful construction of a DNA biosensor is the efficient attachment of biomolecules to the surface of magnetic nanoparticles. To date, most methods of synthesizing these nanoparticles have led to the formation of hydrophobic particles that require additional surface modifications. As a result, the surface to volume ratio decreases and nonspecific bindings may occur so that the sensitivity and efficiency of the device deteriorates. A new method of large-scale synthesis of iron oxide (Fe3O4) nanoparticles which results in the magnetite particles being in aqueous phase, was employed in this study. Small modifications were applied to design an optical DNA nanosensor based on sandwich hybridization. Characterization of the synthesized particles was carried out using a variety of techniques and CdSe/ZnS core-shell quantum dots were used as the reporter markers in a spectrofluorophotometer. We showed conclusively that DNA binds to the surface of ironoxide nanoparticles without further surface modifications and that these magnetic nanoparticles can be efficiently utilized as biomolecule carriers in biosensing devices.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry*
  5. Olutoye MA, Hameed BH
    Bioresour Technol, 2013 Mar;132:103-8.
    PMID: 23395762 DOI: 10.1016/j.biortech.2012.12.171
    An active heterogeneous Al2O3 modified MgZnO (MgZnAlO) catalyst was prepared and the catalytic activity was investigated for the transesterification of different vegetable oils (refined palm oil, waste cooking palm oil, palm kernel oil and coconut oil) with methanol to produce biodiesel. The catalyst was characterized by using X-ray diffraction, Fourier transform infrared spectra, thermo gravimetric and differential thermal analysis to ascertain its versatility. Effects of important reaction parameters such as methanol to oil molar ratio, catalyst dosage, reaction temperature and reaction time on oil conversion were examined. Within the range of studied variability, the suitable transesterification conditions (methanol/oil ratio 16:1, catalyst loading 3.32 wt.%, reaction time 6h, temperature 182°C), the oil conversion of 98% could be achieved with reference to coconut oil in a single stage. The catalyst can be easily recovered and reused for five cycles without significant deactivation.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry*
  6. Marsin FM, Wan Ibrahim WA, Nodeh HR, Sanagi MM
    J Chromatogr A, 2020 Feb 08;1612:460638.
    PMID: 31676087 DOI: 10.1016/j.chroma.2019.460638
    Magnetic solid phase extraction (MSPE) employing oil-palm fiber activated carbon (OPAC) modified with magnetite (Fe3O4) and polypyrrole (OPAC-Fe3O4-PPy) was successfully used for the determination of two organochlorine pesticides (OCPs), namely endosulfan and dieldrin in environmental water samples. Analysis was performed using gas chromatography with micro-electron capture detection (GC-μECD). The effects of three preparation variables, namely Fe3O4:OPAC ratio, amount of pyrrole monomer, and amount of FeCl3 oxidant were optimized using Box-Behnken design (BBD) (R2 < 0.99, p-value < 0.001%). The optimum conditions were as follows: Fe3O4:OPAC ratio of 2:1 w/w, 1 g of FeCl3 and 100 μL of pyrrole monomer. The experimental results obtained agreed satisfactorily with the model prediction (> 90% agreement). Optimized OPAC-Fe3O4-PPy composite was characterized using field emission scanning electron microscope, vibrating sample magnetometer and Fourier transform infrared spectroscopy. Four numerical parameters of MSPE procedure was optimized using BBD. The significance of the MSPE parameters were salt addition > sample solution pH > extraction time and desorption time. Under the optimized conditions (extraction time: 90 s, desorption time: 10 min, salt: 0%, and pH: 5.8), the method demonstrated good linearity (25-1000 ng L-1) with coefficients of determination, R2 > 0.991, and low detection limits for both endosulfan (7.3 ng L-1) and dieldrin (8.6 ng L-1). The method showed high analyte recoveries in the range of 98.6-103.5% for environmental water samples. The proposed OPAC-Fe3O4-PPy MSPE method offered good features such as sustainability, simplicity, and rapid extraction.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry
  7. Miyazaki T, Akaike J, Kawashita M, Lim HN
    PMID: 30889741 DOI: 10.1016/j.msec.2019.01.091
    Nanocomposites of magnetite (Fe3O4) and reduced graphene oxide (rGO) generate heat under an alternating magnetic field and therefore have potential applications as thermoseeds for cancer hyperthermia treatment. However, the properties of such nanocomposites as biomaterials have not been sufficiently well characterized. In this study, the osteoconductivity of Fe3O4-rGO nanocomposites of various compositions was evaluated in vitro in terms of their apatite-forming ability in simulated body fluid (SBF). Furthermore, the heat generation of the nanocomposites was measured under an alternating magnetic field. The apatite-forming ability in SBF improved as the Fe3O4 content in the nanocomposite was increased. As the Fe3O4 content was increased, the nanocomposite not only rapidly raised the surrounding temperature to approximately 100 °C, but the specific absorption rate also increased. We assumed that the ionic interaction between the Fe3O4 and rGO was enhanced and that Brown relaxation was suppressed as the proportion of rGO in the nanocomposite was increased. Consequently, a high content of Fe3O4 in the nanocomposite was effective for improving both the osteoconductivity and heat generation characteristics for hyperthermia applications.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry*
  8. Yau XH, Khe CS, Mohamed Saheed MS, Lai CW, You KY, Tan WK
    PLoS One, 2020;15(4):e0232490.
    PMID: 32353051 DOI: 10.1371/journal.pone.0232490
    Oily wastewater, especially water-oil emulsion has become serious environmental issue and received global attention. Chemical demulsifiers are widely used to treat oil-water emulsion, but the toxicity, non-recyclable and non-environmental friendly characteristic of chemical demulsifiers had limited their practical application in oil-water separation. Therefore, it is imperative to develop an efficient, simple, eco-friendly and recyclable demulsifiers for breaking up the emulsions from the oily wastewater. In this study, a magnetic demulsifier, magnetite-reduced graphene oxide (M-rGO) nanocomposites were proposed as a recyclable demulsifier to break up the surfactant stabilized crude oil-in-water (O/W) emulsion. M-rGO nanocomposites were prepared via in situ chemical synthesis by using only one type Fe salt and GO solid as precursor at room temperature. The prepared composites were fully characterized by various techniques. The effect of demulsifier dosage and pH of emulsion on demulsification efficiency (ED) has been studied in detailed. The demulsification mechanism was also proposed in this study. Results showed that M-rGO nanocomposites were able to demulsify crude O/W emulsion. The ED reaches 99.48% when 0.050 wt.% of M-rGO nanocomposites were added to crude O/W emulsion (pH = 4). Besides, M-rGO nanocomposites can be recycled up to 7 cycles without showing a significant change in terms of ED. Thus, M-rGO nanocomposite is a promising demulsifier for surfactant stabilized crude O/W emulsion.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry
  9. Dorniani D, Hussein MZ, Kura AU, Fakurazi S, Shaari AH, Ahmad Z
    Int J Mol Sci, 2013;14(12):23639-53.
    PMID: 24300098 DOI: 10.3390/ijms141223639
    The preparation of magnetic nanoparticles coated with chitosan-prindopril erbumine was accomplished and confirmed by X-ray diffraction, TEM, magnetic measurements, thermal analysis and infrared spectroscopic studies. X-ray diffraction and TEM results demonstrated that the magnetic nanoparticles were pure iron oxide phase, having a spherical shape with a mean diameter of 6 nm, compared to 15 nm after coating with chitosan-prindopril erbumine (FCPE). Fourier transform infrared spectroscopy study shows that the coating of iron oxide nanoparticles takes place due to the presence of some bands that were emerging after the coating process, which belong to the prindopril erbumine (PE). The thermal stability of the PE in an FCPE nanocomposite was remarkably enhanced. The release study showed that around 89% of PE could be released within about 93 hours by a phosphate buffer solution at pH 7.4, which was found to be of sustained manner governed by first order kinetic. Compared to the control (untreated), cell viability study in 3T3 cells at 72 h post exposure to both the nanoparticles and the pure drug was found to be sustained above 80% using different doses.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry
  10. Markus A, Gbadamosi AO, Yusuff AS, Agi A, Oseh J
    Environ Sci Pollut Res Int, 2018 Dec;25(35):35130-35142.
    PMID: 30328041 DOI: 10.1007/s11356-018-3402-3
    In this study, a new magnetic adsorbent based on magnetite-sporopollenin/graphene oxide (Fe3O4-SP/GO) was successfully developed. The adsorbent was applied for magnetic solid phase extraction (MSPE) of three selected polar organophosphorus pesticides (OPPs), namely, dimethoate, phenthoate, and phosphamidon, prior to gas chromatography analysis with electron capture detection (GC-μECD). The Fe3O4-SP/GO adsorbent combines the advantages of superior adsorption capability of the modified sporopollenin (SP) with graphene oxide (GO) and magnetite (Fe3O4) for easy isolation from sample solution. Several MSPE parameters were optimized. Under optimized conditions, excellent linearity (R2 ≥ 0.9994) was achieved using matrix match calibration in the range of 0.1 to 500 ng mL-1. The limit of detection (LOD) method (S/N = 3) was from 0.02 to 0.05 ng mL-1. The developed Fe3O4-SP/GO MSPE method was successfully applied for the determination of these three polar OPPs in cucumber, long beans, bell pepper, and tomato samples. Good recoveries (81.0-120.0%) and good relative standard deviation (RSD) (1.4-7.8%, n = 3) were obtained for the spiked OPPs (1 ng mL-1) from real samples. This study is beneficial for adsorptive removal of toxic pesticide compounds from vegetable samples.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry*
  11. Yew YP, Shameli K, Mohamad SE, Lee KX, Teow SY
    Int J Mol Sci, 2020 Jul 09;21(14).
    PMID: 32659939 DOI: 10.3390/ijms21144851
    Discovery of a novel anticancer drug delivery agent is important to replace conventional cancer therapies which are often accompanied by undesired side effects. This study demonstrated the synthesis of superparamagnetic magnetite nanocomposites (Fe3O4-NCs) using a green method. Montmorillonite (MMT) was used as matrix support, while Fe3O4 nanoparticles (NPs) and carrageenan (CR) were used as filler and stabilizer, respectively. The combination of these materials resulted in a novel nanocomposite (MMT/CR/Fe3O4-NCs). A series of characterization experiments was conducted. The purity of MMT/CR/Fe3O4-NCs was confirmed by X-ray diffraction (XRD) analysis. High resolution transmission electron microscopy (HRTEM) analysis revealed the uniform and spherical shape of Fe3O4 NPs with an average particle size of 9.3 ± 1.2 nm. Vibrating sample magnetometer (VSM) analysis showed an Ms value of 2.16 emu/g with negligible coercivity which confirmed the superparamagnetic properties. Protocatechuic acid (PCA) was loaded onto the MMT/CR/Fe3O4-NCs and a drug release study showed that 15% and 92% of PCA was released at pH 7.4 and 4.8, respectively. Cytotoxicity assays showed that both MMT/CR/Fe3O4-NCs and MMT/CR/Fe3O4-PCA effectively killed HCT116 which is a colorectal cancer cell line. Dose-dependent inhibition was seen and the killing was enhanced two-fold by the PCA-loaded NCs (IC50-0.734 mg/mL) compared to the unloaded NCs (IC50-1.5 mg/mL). This study highlights the potential use of MMT/CR/Fe3O4-NCs as a biologically active pH-responsive drug delivery agent. Further investigations are warranted to delineate the mechanism of cell entry and cancer cell killing as well as to improve the therapeutic potential of MMT/CR/Fe3O4-NCs.
    Matched MeSH terms: Ferrosoferric Oxide/chemistry
  12. Musa M, Wan Ibrahim WA, Mohd Marsin F, Abdul Keyon AS, Rashidi Nodeh H
    Food Chem, 2018 Nov 01;265:165-172.
    PMID: 29884368 DOI: 10.1016/j.foodchem.2018.04.020
    Graphene-magnetite composite (G-Fe3O4) was successfully synthesized and applied as adsorbent for magnetic solid phase extraction (MSPE) of two phenolic acids namely 4-hydroxybenzoic acid (4-HB) and 3,4-dihydroxybenzoic acid (3,4-DHB) from stingless bee honey prior to analysis using high performance liquid chromatography with ultraviolet-visible detection (HPLC-UV/Vis). Several MSPE parameters affecting extraction of these two acids were optimized. Optimum MSPE conditions were 50 mg of G-Fe3O4 adsorbent, 5 min extraction time at 1600 rpm, 30 mL sample volume, sample solution pH 0.5, 200 µL methanol as desorption solvent (5 min sonication assisted) and 5% w/v NaCl. The LODs (3 S/N) calculated for 4-HB and 3,4-DHB were 0.08 and 0.14 µg/g, respectively. Good relative recoveries (72.6-110.6%) and reproducibility values (RSD 
    Matched MeSH terms: Ferrosoferric Oxide/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links