Displaying publications 1 - 20 of 103 in total

  1. Abdul Manan SF, Li J, Hsieh CF, Faubion J, Shi YC
    J Sci Food Agric, 2022 Mar 30;102(5):2172-2178.
    PMID: 34498279 DOI: 10.1002/jsfa.11523
    BACKGROUND: Lipids account for 2.0-2.5% of wheat flour by dry weight and affect properties and quality of cereal foods. A new method was developed to extract non-starch lipids from wheat flour. Wheat flour was first hydrolyzed with a protease and followed by extraction of non-starch lipids by water-saturated butanol (WSB).

    RESULT: Protein hydrolysis by protease followed by extraction of non-starch lipids with WSB increased yield to 1.9 ± 0.3% from 1.0 ± 0.1% with no protease treatment. The lipid profile showed a significant increase in phospholipid compounds extracted with protease hydrolysis (5.9 ± 0.8 nmol·g-1 ) versus without enzymatic treatment (2.4 ± 1.3 nmol g-1 ).

    CONCLUSION: Improved lipid extraction yield and phospholipid compounds following protease-assisted extraction method provided additional insight towards the understanding of protein-lipid interaction in wheat flour. The new protease-assisted extraction method may be applied to analyzing non-starch lipids in other types of wheat flours and other cereal flours. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Flour*
  2. Chan KW, Khong NM, Iqbal S, Umar IM, Ismail M
    Int J Mol Sci, 2012;13(7):8987-97.
    PMID: 22942747 DOI: 10.3390/ijms13078987
    Sweet potato is known to be rich in healthful antioxidants, but the stability of its antioxidant properties under gastrointestinal pH is very much unknown. Hence, this study aimed to evaluate the changes in antioxidant properties (total contents of phenolics and flavonoids as well as antioxidant activity) of sweet potato flour (SPF) under simulated gastrointestinal pH conditions. It was found that the yield of SPF crude phenolic extract increased from 0.29 to 3.22 g/100 g SPF upon subjection to gastrointestinal pH conditions (p < 0.05). Also elevated significantly were the total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity of SPF (p < 0.05). In summary, the antioxidant properties of SPF were enhanced under gastrointestinal pH conditions, suggesting that SPF might possess a considerable amount of bound phenolic and other antioxidative compounds. The antioxidant properties of SPF are largely influenced by pH and thus might be enhanced during the in vivo digestive process.
    Matched MeSH terms: Flour*
  3. Malahayati N, Muhammad K, Bakar J, Karim R
    J Nutr Sci Vitaminol (Tokyo), 2020;66(Supplement):S179-S183.
    PMID: 33612590 DOI: 10.3177/jnsv.66.S179
    Vitamin A deficiency is common in many countries where rice is the staple food. Food fortification is an important strategy to address this problem. As rice noodle is the second principal form of rice products widely consumed in Asia, rice noodles could be a potential vehicle for fortification of vitamin A. In this study, rice noodles were prepared from 0, 300, 600, 1,050, and 1,500 μg of vitamin A per 100 g of rice flour. Samples were analyzed for quality, sensory evaluation, and enhancement of vitamin A intakes. Increasing level of vitamin A fortification did not influence quality and sensory properties of the rice noodles, except for the ash content, color, and appearance of the noodles. Rice noodle that was fortified with the highest level of vitamin A was found to be the darkest in color. However, this sample received scores higher than 6 (like slightly) for appearance. Furthermore, sample fortified with the highest level of vitamin A produced rice noodles with the highest level of vitamin A retention suggesting that noodles were good vehicle for vitamin A fortification. Fortification of rice flour with 1,500 μg of vitamin A produced rice noodles with 24.88% of the RDI for vitamin A per serving and provided an effective means of enhancing vitamin A intake.
    Matched MeSH terms: Flour/analysis
  4. Johnston C, Ying Leong S, Teape C, Liesaputra V, Oey I
    Food Res Int, 2023 Dec;174(Pt 1):113630.
    PMID: 37986480 DOI: 10.1016/j.foodres.2023.113630
    The trend of incorporating faba bean (Vicia faba L.) in breadmaking has been increasing, but its application is still facing technological difficulties. The objective of this study was to understand the influence of substituting the wheat flour (WF) with 10, 20, 30 and 40 % mass of whole bean flour (FBF) or 10 and 20 % mass of faba bean protein-rich fraction (FBPI) on the quality (volume, specific volume, density, colour, and texture), nutritional composition (total starch, free glucose, and protein contents), and kinetics of in vitro starch and protein digestibility (IVSD and IVPD, respectively) of the breads. Automated image analysis algorithm was developed to quantitatively estimate the changes in the crumb (i.e., air pockets) and crust (i.e., thickness) due to the use of FBF or FBPI as part of the partial substitution of wheat flour. Higher levels of both FBF and FBPI substitution were associated with breads having significant (p 
    Matched MeSH terms: Flour/analysis
  5. Ojukwu M, Tan HL, Murad M, Nafchi AM, Easa AM
    Food Sci Technol Int, 2023 Dec;29(8):799-808.
    PMID: 36000280 DOI: 10.1177/10820132221121169
    In a bid to produce rice flour noodles with improved texture and reduced cooking time, rice flour-soy protein isolate noodles (RNS) were structurally enhanced by a combined treatment (COM) of microbial transglutaminase (MTG) with glucono-δ-lactone (GDL). The RNS-COM was either dried using superheated steam (SHS) to yield RNS-COM-SHS or steamed for 10 min (S10) before air drying to produce RNS-COM-S10 noodles. Control samples were SHS-dried rice flour (RN-SHS) and air-dried RN-S10 noodles. In general, textural and microstructural properties indicated higher textural properties and a more robust network in RNS-COM-SHS and RNS-COM-S10 than in other noodles. However, optimum cooking time (P < 0.5) was in the order; RN-SHS, RNS-COM-SHS < RN-S10 < RNS-COM-S10. As a result of the COM treatment, structurally enhanced noodles were more resistant to cooking. As applied in RNS-COM-SHS noodles, SHS was able to improve cooking quality, probably through the formation of bigger and evenly spread pores that had promoted faster gelatinisation of starch, with a high order of relative starch crystallinity.
    Matched MeSH terms: Flour/analysis
  6. Nyam KL, Leao SY, Tan CP, Long K
    J Food Sci Technol, 2014 Dec;51(12):3830-7.
    PMID: 25477650 DOI: 10.1007/s13197-012-0902-x
    Roselle (Hibiscus sabdariffa L.) seed is a valuable food resource as it has an excellent source of dietary fibre. Therefore, this study examined the functional properties of roselle seeds. Replacement of cookie flour with roselle seed powder at levels of 0-30 % was investigated for its effect on functional and nutritional properties of cookies. Among the four formulations cookies, the most preferred by panelists was 20 % roselle seed powder cookie (F3), followed by 10 % roselle seed powder cookie (F2) and 30 % roselle seed powder cookie (F4). The least preferred formulation among all was control cookie (F1). Cookie with 20 % roselle seed powder added showed higher content of total dietary fibre (5.6 g/100 g) as compared with control cookie (0.90 g/100 g). Besides that, cookies incorporated with roselle seed powder exhibited improved antioxidant properties. Thus, roselle seed powder can be used as a dietary fibre source and developed as a functional ingredient in food products.
    Matched MeSH terms: Flour
  7. Norhidayah, M., Noorlaila, A., Nur Fatin Izzati, A.
    The textural and sensorial properties of the cookies prepared by partial substitution of wheat flour with two types of unripe banana flour (UBF) were studied. The green matured unripe banana (Musa x paradisiaca var. Tanduk and Musa acuminata var. Emas) was used to partially substitute the usage of wheat flour at 0% (control), 25% and 50% level in the formulated plain cookies. Textural (hardness) and sensorial properties were conducted on all samples. Substitution of UBF to formulation of cookies had increased the hardness of cookies (ranging from 967 N to 1665 N) compared to the control except for substitution of Emas banana flour (EBF) at 50% which was not significantly difference (p > 0.05) with control sample. The substitution of 25% of Tanduk banana flour (TBF) showed the highest mean score in overall acceptability (6.81 ± 1.18) compared to all treated samples. TBF substitution is feasible up to 50% substitution while for EBF, the substitution only up to 25% level in this study.
    Matched MeSH terms: Flour
  8. See, E.F., Wan Nadiah, W.A., Noor Aziah, A.A.
    The objective of this project was to determine the physico-chemical and sensory characteristics of bread supplemented with four different levels (control, 5%, 10%, and 15%) of pumpkin flour. The physical (weight, loaf volume, specific volume and oven spring) and chemical (moisture, protein, fat, fibre and ash) attributes were determined in the raw pumpkin, pumpkin flour (PF), control and supplemented breads. Sensory attributes were conducted on the control and supplemented breads. Increasing the level of substitution from 5% to 15% pumpkin flour significantly (p
    Matched MeSH terms: Flour
  9. Cheng, Y.F., Rajeev Bhat
    In this study, physicochemical and sensory qualities of substituting jering seed flour into wheat chapatis (unleavened Indian flat bread) were evaluated at different proportions (5, 10, 15, 20 and 100% of jering seed flour). Chapati prepared with 100% of wheat flour was served as control. Results showed wheat-jering composite chapatis had significantly higher protein (12.68-15.55%), ash (1.78-2.32%) and carbohydrate contents (50.78-54.50%) than that of wheat chapatis which served as control (11.49, 1.77% and 51.62%, respectively). As for the fat content, this ranged from 1.19% to 1.03%, corresponding to the levels of jering seed flour substitution. In terms of physical characteristics, the puffed height and extensibility of the composite chapatis decreased progressively as the level of jering seed flour substitution increased. On the other hand, the peak load required to rupture chapatis showed an inverse trend. It increased significantly from 3.26 to 15.96 N. Further, the colour values of composite chapatis showed significant changes when the level of jering seed flour substitution was increased. The L* and b* values decreased while a* value increased. Regarding sensory properties, control wheat chapatis had better acceptability than the composite chapatis. However, all the composite chapatis had significantly higher nutritional values. Based on the generated results, novel chapatis could be formulated by substituting wheat with jering seed flour.
    Matched MeSH terms: Flour
  10. Nurul, H., Boni, I., Noryati, I.
    The objective of this study was to examine the effect of different ratios of fish to tapioca flour on the linear expansion, oil absorption, colour, and crispiness of fish crackers. Four different ratios of fish to tapioca flour were used in the formulation of the fish crackers. The results showed that protein and fat content increased with the increase in the ratio of the fish. On the other hand, linear expansion and oil absorption decreased with an increase in the ratio of the fish. Hardness also increased with the increase in the ratio of the fish. The colour measurement showed that the lightness value decreased with an increase in the ratio of fish and this decrease is seen more clearly with the fried fish crackers.
    Matched MeSH terms: Flour
  11. Fatemeh, S. R., Saifullah, R., Abbas, F. M. A., Azhar, M. E.
    The influence of variety (Cavendish and Dream), stage of ripeness (green and ripe) and parts (pulp and peel) on antioxidative compounds and antioxidant activity of banana fruit was investigated. The TPC and TFC ranged widely from 75.01 to 685.57 mg GAE/100 g and 39.01 to 389.33 mg CEQ/100 g of dry matter respectively. Cavendish banana flour contained higher TPC and TFC compared to Dream variety. TPC and TFC values of banana peel were higher than those of banana pulp. Also, green banana showed higher TPC and TFC values than those of ripe fruit. Radical scavenging activities (inhibition of DPPH) of the extracts ranged from 26.55 to 52.66%. Although Dream banana peel extracts appeared to have low TPC and TFC, its antioxidant activities were ranked moderate to high. This implies that antioxidative compounds other than phenolics and flavonoids were probably responsible for inhibition of DPPH.
    Matched MeSH terms: Flour
  12. Foo, W.T., Yew, H.S., Liong, M.T., Azhar, M.E.
    The physical attributes (pH and colour), cooking yield, textural and mechanical properties (firmness, tensile and texture profiles analyses) and structural breakdown properties (multiple extrusion cell with added artificial saliva) of five yellow alkaline noodle (YAN) formulations were studied. Samples used were noodles with (a) typical formulation (control), (b) soy protein isolate (SPI), (c) soy protein isolate plus microbial transglutaminase enzyme (SPI/MTGase), (d) green banana pulp flour (GBPu) and (e) green banana peel flour (GBPe). Compared to other noodles SPI/MTGase noodle showed significantly (P < 0.05) higher values in terms of textural, mechanical and breakdown properties. Incorporating SPI, banana pulp and peel flours into the noodles had imposed some differences on most of the mechanical and textural parameters from the control YAN. However, these noodles could not be clearly distinguished in term of structural breakdown properties.
    Matched MeSH terms: Flour
  13. Akanbi, T.O., Nazamid, S., Adebowale, A.A., Farooq, A., Olaoye, A.O.
    Proximate compositions, culinary and sensory properties of noodles prepared from proportionate combinations of breadfruit starch and wheat flour were investigated. Breadfruit starch (BS) isolated from matured breadfruit (Artocarpus altilis) was used to produce noodles in combination with hard red wheat flour (WF) at a ratio of 100% WF:0% BS, 80% WF:20% BS, 60% WF:40% BS, 40% WF:60% BS, 20% WF:80% BS. The protein, fat, ash, crude fibre and moisture contents of the Breadfruit starch-Wheat flour (BSWF) noodles prepared from the above blends ranged from 0.65 to 10.88%, 0.35 to 3.15%, 1.28 to 2.25%, 1.18 to 1.45% and 4.65 to 5.45%, respectively. The contents of protein, fat, ash and crude fibre increased as the percentage breadfruit starch decreased. However, values of moisture content did not follow the same trend, instead higher values were found for 100% BS:0% WF (5.35%) and 20% BS:80% WF (5.45%). The cooking yield of the BSWF noodles ranged from 21.02 (60% BS:40% WF) to 23.75 g (100% BS:0% WF), cooking loss ranged from 5.49 (20% BS:80% WF) to 9.19% (100% BS:0% WF), while swelling index ranged from 3.1 (20% BS:80% WF) to 3.4 (100% BS:0% WF). Throughout the study, noodles produced from blends of 20% breadfruit starch and 80% wheat flour showed superior proximate, culinary and sensory attributes.
    Matched MeSH terms: Flour
  14. Mamat, H., Hill, S.E.
    Biscuit is a popular food product where it is produced using wheat flour, sugar and fat as its main ingredients. Wheat flour is the major material used in biscuit production and within the flour starch is the principal component. The details of starch properties such as pasting properties, gelatinisation properties, crystallinity were discussed in this review. Starch is the major structural element in many foods, with the fat or sugar also playing key roles. Sugar gives sweetness, colour, add volumes and influence the texture of a biscuit. Besides that, it shows significant impact on starch gelatinization properties. Fat plays an important role in biscuit production and the type of fat used determines the quality of the final product. In this article, the functional properties of major ingredients of biscuit were also reviewed with emphasis on wheat flour, sugar and fat.
    Matched MeSH terms: Flour
  15. Mohd Afandi P. Mohammed
    Sains Malaysiana, 2014;43:451-457.
    This paper investigates the application of visco-hyperelastic model to soft rubberlike material, that is gluten. Gluten is a major protein in wheat flour dough (a mixture of flour and water) which exists as long network fibers and undergo large deformation under uniaxial tension and compression. The visco-hyperelastic model is represented by a combination of the viscoelastic Prony series and the hyperelastic extended tube model. Calibration of the visco-hyperelastic model to gluten tests result suggests that gluten can be modelled as a finite viscoelastic material.
    Matched MeSH terms: Flour
  16. Gammoh S, Alu'datt MH, Alhamad MN, Tranchant CC, Rababah T, Al-U'datt D, et al.
    Molecules, 2023 Aug 11;28(16).
    PMID: 37630264 DOI: 10.3390/molecules28166012
    This research aimed to determine the biofunctional properties of wheat flour (WF) protein fractions and modifications to the antioxidant, anti-α-amylase and anti-angiotensin-I converting enzyme (ACE) activities induced by the action of digestive endopeptidases in vitro. A molecular characterization of the most abundant protein fractions, i.e., albumins, glutelins-1, glutelins-2 and prolamins, showed that low- and high-MW polypeptides rich in cysteine, glutamic acid and leucine were present in albumins and glutelins, whereas low-MW subunits with a high proportion of polar amino acids prevailed in prolamins. Prolamins exhibited the second-highest water holding capacity (54%) after WF (84%), while albumins provided superior foam stability (76%). Prolamins, glutenins-1 and globulins demonstrated the highest antioxidant activity (up to 95%, 68% and 59%, respectively) both before and after hydrolysis with pepsin (P-H) or trypsin-chymotrypsin (TC-H). Prolamins, globulins and WF strongly inhibited α-amylase (>90%) before and after TC-H, and before P-H (55-71%). Moreover, P-H significantly increased α-amylase inhibition by albumins from 53 to 74%. The fractions with strong ACE inhibitory activity (70-89%) included prolamins and globulins after TC-H or P-H, as well as globulins before TC-H and WF before P-H. This novel evidence indicates that WF protein fractions and their peptide-enriched P and TC hydrolysates are excellent sources of multifunctional bioactives with antioxidant, antihyperglycemic and antihypertensive potential.
    Matched MeSH terms: Flour
  17. Ho LH, Abdul Aziz NA, Azahari B
    Food Chem, 2013 Aug 15;139(1-4):532-9.
    PMID: 23561142 DOI: 10.1016/j.foodchem.2013.01.039
    The physico-chemical and sensorial properties of the control (BCtr), commercial wheat flour (CWF) bread substituted with 10% BPF (banana pseudo-stem flour) (B10BPF) and B10BPF with added 0.8% w/w (flour weight basis) xanthan gum (XG) or sodium carboxymethylcellulose (CMC) (B10BPFXG and B10BPFCMC, respectively) were examined. The proximate analyses revealed that the composite bread had significantly higher moisture, ash, crude fibre, soluble, insoluble and total dietary fibre contents but lower protein, fat and carbohydrate contents than the BCtr. Bread incorporated with BPF resulted in a lower volume, darker crumb and lighter crust colour than the BCtr. The addition of CMC improved the bread volume. All breads containing BPF had greater total phenolics, and antioxidant properties than the control bread. Sensory evaluation indicated that the B10BPFCMC bread had the highest acceptability.
    Matched MeSH terms: Flour/analysis*
  18. Chan KW, Khong NM, Iqbal S, Ismail M
    Int J Mol Sci, 2012;13(6):7496-507.
    PMID: 22837707 DOI: 10.3390/ijms13067496
    The present study was conducted to evaluate the antioxidant properties of wheat and rice flours under simulated gastrointestinal pH condition. After subjecting the wheat and rice flour slurries to simulated gastrointestinal pH condition, both slurries were centrifuged to obtain the crude phenolic extracts for further analyses. Extraction yield, total contents of phenolic and flavonoids were determined as such (untreated) and under simulated gastrointestinal pH condition (treated). 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(•)) scavenging activity, 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) radical cation (ABTS(•+)) scavenging activity, ferric reducing antioxidant power (FRAP), beta-carotene bleaching (BCB) and iron chelating activity assays were employed for the determination of antioxidant activity of the tested samples. In almost all of the assays performed, significant improvements in antioxidant properties (p < 0.05) were observed in both flours after treatment, suggesting that wheat and rice flours contain considerably heavy amounts of bound phenolics, and that their antioxidant properties might be improved under gastrointestinal digestive conditions.
    Matched MeSH terms: Flour*
  19. Bhat R, Sridhar KR, Karim AA, Young CC, Arun AB
    J Agric Food Chem, 2009 Oct 28;57(20):9524-31.
    PMID: 19778060 DOI: 10.1021/jf902287e
    In the present study, we investigated the physicochemical and functional properties of lotus seed flour exposed to low and high doses of gamma-radiation (0-30 kGy; the dose recommended for quarantine and hygienic purposes). The results indicated raw seed flour to be rich in nutrients with minimal quantities of antinutritional factors. Irradiation resulted in a dose-dependent increase in some of the proximal constituents. The raw and gamma-irradiated seeds meet the Food and Agricultural Organization-World Health Organization recommended pattern of essential amino acids. Some of the antinutritional factors (phytic acid, total phenolics, and tannins) were lowered with gamma-irradiation, while the seed flours were devoid of lectins, L-3,4-dihydroxyphenylalanine, and polonium-210. The functional properties of the seed flour were significantly improved with gamma-radiation. gamma-radiation selectively preserved or improved the desired nutritional and functional traits of lotus seeds, thus ensuring a safe production of appropriate nutraceutically valued products.
    Matched MeSH terms: Flour/analysis*
  20. Asmeda R, Noorlaila A, Norziah MH
    Food Chem, 2016 Jan 15;191:45-51.
    PMID: 26258700 DOI: 10.1016/j.foodchem.2015.05.095
    This research was conducted to investigate the effects of different grinding techniques (dry, semi-wet and wet) of milled rice grains on the damaged starch and particle size distribution of flour produced from a new variety, MR263, specifically related to the pasting and thermal profiles. The results indicated that grinding techniques significantly (p<0.05) affected starch damage content and particle size distribution of rice flour. Wet grinding process yields flour with lowest percentage of starch damage (7.37%) and finest average particle size (8.52μm). Pasting and gelatinization temperature was found in the range of 84.45-89.63°C and 59.86-75.31°C, respectively. Dry ground flour attained the lowest pasting and gelatinization temperature as shown by the thermal and pasting profiles. Correlation analysis revealed that percentage of damaged starch granules had a significant, negative relationship with pasting temperature while average particle size distribution had a significant, strong negative relationship with gelatinization temperature.
    Matched MeSH terms: Flour/analysis*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links