CONCLUSIONS: HMGB1 plays multiple roles in promoting the pathogenesis of colorectal cancer, despite a few contradicting studies. HMGB1 may differentially regulate disease-related processes, depending on the redox status of the protein in colorectal cancer. Binding of HMGB1 to various protein partners may alter the impact of HMGB1 on disease progression. As HMGB1 is heavily implicated in the pathogenesis of colorectal cancer, it is crucial to further improve our understanding of the functional roles of HMGB1 not only in colorectal cancer, but ultimately in all types of cancers.
SETTINGS AND DESIGN: Case-control study at Rheumatology Clinic of Universiti Sains Malaysia Hospital.
SUBJECTS AND METHODS: The sera of SLE patients and HCs were tested for the presence of anti-CLIC2 and anti-HMGB1 autoantibodies using human recombinant proteins and ELISA methodologies. Other serological parameters were evaluated according to routine procedures, and patients' demographic and clinical data were obtained.
STATISTICAL ANALYSIS: Mann-Whitney U-test, Chi-square test, Fisher's exact test, and receiver operating characteristic analysis.
RESULTS: Anti-CLIC2 autoantibody levels were significantly higher in SLE patients compared to HCs (P = 0.0035), whereas anti-HMGB1 autoantibody levels were not significantly elevated (P = 0.7702). Anti-CLIC2 and anti-HMGB1 autoantibody levels were not associated with ANA pattern, anti-dsDNA, and CRP. Interestingly, SLEDAI score (≥6) was associated with anti-CLIC2 (P = 0.0046) and with anti-HMGB1 (P = 0.0091) autoantibody levels.
CONCLUSION: Our findings support the potential of using anti-CLIC2 autoantibodies as a novel biomarker for SLE patients. Both anti-CLIC2 and anti-HMGB1 autoantibody levels demonstrated potential in monitoring SLE disease activity.
Methods: We have employed high-throughput RNA-Seq technology to uncover the transcriptome changes of P. monodon hepatopancreas when challenged with VpAHPND. The shrimps were challenged with VpAHPND through immersion method with dissected hepatopancreas samples for the control group (APm-CTL) and treatment group at 3 (APm-T3), 6 (APm-T6), and 24 (APm-T24) hours post-AHPND infection sent for RNA-Seq. The transcriptome de novo assembly and Unigene expression determination were conducted using Trinity, Tgicl, Bowtie2, and RSEM software. The differentially expressed transcripts were functionally annotated mainly through COG, GO, and KEGG databases.
Results: The sequencing reads generated were filtered to obtain 312.77 Mb clean reads and assembled into 48662 Unigenes. Based on the DEGs pattern identified, it is inferred that the PAMPs carried by VpAHPND or associated toxins are capable of activating PRRs, which leads to subsequent pathway activation, transcriptional modification, and antibacterial responses (Phagocytosis, AMPs, proPO system). DAMPs are released in response to cell stress or damage to further activate the sequential immune responses. The comprehensive interactions between VpAHPND, chitin, GbpA, mucin, chitinase, and chitin deacetylase were postulated to be involved in bacterial colonization or antibacterial response.
Conclusions: The outcomes of this research correlate the different stages of P. monodon immune response to different time points of AHPND infection. This finding supports the development of biomarkers for the detection of early stages of VpAHPND colonization in P. monodon through host immune expression changes. The potential genes to be utilized as biomarkers include but not limited to C-type lectin, HMGB1, IMD, ALF, serine proteinase, and DSCAM.
MATERIALS AND METHODS: The PBMC (n = 7) were cultured either in RPMI-1640 containing L-glutamine and 50 units/ml Penicillin-Streptomycin (BM) or in BM with either AuHS or FBS. Viability, proliferation and differentiation of PBMC were evaluated. Paracrine factors present in the secretomes (n = 6) were analysed using ProcartaPlex Human Cytokine panel (17 plex). Ingenuity Pathway Analysis (IPA) was performed to predict activation or inhibition of biological functions related to tissue regeneration.
RESULTS: The viability of PBMC that were cultured with FBS supplement was significantly reduced at 96 h compared to those at 0 and 24 h (P