Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Wbin-Wan-Ibrahim WA, Mirza EH, Akbar Ali SF
    Pak J Pharm Sci, 2013 Jul;26(4):823-6.
    PMID: 23811465
    Heavy metals in cigarette tobacco such as iron may cause a serious damage on human health. Surveys showed that the accumulation of certain toxic heavy metals like cadmium, mercury, iron is very often due to the effect of smoking. This work involved 15 volunteers in two randomly divided groups having the habit of cigarette smoking over 15 cigarettes / day. Concentration level of iron in blood and urine before and after treatment using the herbal medicine, widely used in Europe, is analyzed. Determination of Iron concentration in blood and urine was calculated by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) according to the procedure DIN EN ISO 11885 ("E22" from April 1998). The analysis shows that the concentration of iron in blood and urine samples in both groups increased in some volunteers instead of decrease. The independent T-test shows that the mean of iron concentration in the group A and group B had no significant difference (p>0.05). The results suggested that the herbal medicine under test does not have significant influence on reduction of iron concentration levels.
    Matched MeSH terms: Iron/metabolism*
  2. George E, Adeeb N, Ahmad J
    Med J Malaysia, 1980 Dec;35(2):129-30.
    PMID: 7266404
    Serum ferritin concentration has been measured in pregnant women at their first antenatal visit. Results were analysed according to trimesters. With progression of the pregnancy there is a fall in serum ferritin concentrations. Haemoglobin and red cell indices cannot be used to predict iron status supplemental iron therapy raised the serum ferritin levels.
    Matched MeSH terms: Iron/metabolism*
  3. Yong SN, Lee WS, Chieng S, Lim S, Kuan SH
    Appl Microbiol Biotechnol, 2023 Aug;107(15):4789-4801.
    PMID: 37314456 DOI: 10.1007/s00253-023-12622-0
    Conventional techniques to remove Fe impurities in kaolin typically involve high environmental impact and cost. Alternative methods have been focused on the use of bioleaching where Fe in kaolin is reduced with microorganisms. Early results established a noticeable effect of the bacteria on the redox state of Fe, but knowledge gaps persist such as details on the bacterial-kaolin interactions during attachment of bacteria onto kaolin surface, the metabolites produced by bacteria, and changes in Fe(II)/Fe(III) ion equilibria in solution. To bridge these gaps, this study was conducted to determine the detailed physicochemical changes in bacteria and kaolin during bioleaching through surface, structural, and chemical analysis. Bioleaching experiments were conducted for 10 days where each of the three Bacillus sp. was put in contact (at 9 × 108 CFU) with 20 g of kaolin powder using 200 mL of 10 g/L glucose solution. All samples treated with bacteria showed increasing trends in Fe(III) reduction up until day 6 or 8 followed by a slight decrease towards the end of the ten-day period. Examination of scanning electron microscope (SEM) images suggests that bacterial activity damaged the edges of kaolin particles during bioleaching. Ion chromatography (IC) results showed that during bioleaching, Bacillus sp. produced organic acids such as lactic acid, formic acid, malic acid, acetic acid, and succinic acid. EDS analysis of kaolin before and after bioleaching showed Fe removal efficiencies of up to 65.3%. Analyses of color properties of kaolin before and after bioleaching showed an improvement in whiteness index of up to 13.6%. KEY POINTS: • Dissolution of iron oxides by Bacillus species proven with phenanthroline analysis. • Organic acid type and concentration unique to species detected during bioleaching. • Whiteness index of kaolin is improved after bioleaching.
    Matched MeSH terms: Iron/metabolism
  4. Oppenheimer SJ
    Parasitol. Today (Regul. Ed.), 1989 Mar;5(3):77-9.
    PMID: 15463183
    Iron deficiency is common in the developing world; consequently, programmes of presumptive therapy and mass supplementation have been introduced in several countries. In this article Stephen Oppenheimer suggests caution, as recent evidence suggests that these practices may actually increase the likelihood of the subject developing patent malaria in endemic areas. This may be especially significant in infants, who are less likely to be immune to malaria, and in pregnant women, who are often routinely given iron supplements and in whom malaria may damage the foetus.
    Matched MeSH terms: Iron Metabolism Disorders
  5. Jing H, Liu Z, Kuan SH, Chieng S, Ho CL
    Molecules, 2021 May 21;26(11).
    PMID: 34064160 DOI: 10.3390/molecules26113084
    Recently, microbial-based iron reduction has been considered as a viable alternative to typical chemical-based treatments. The iron reduction is an important process in kaolin refining, where iron-bearing impurities in kaolin clay affects the whiteness, refractory properties, and its commercial value. In recent years, Gram-negative bacteria has been in the center stage of iron reduction research, whereas little is known about the potential use of Gram-positive bacteria to refine kaolin clay. In this study, we investigated the ferric reducing capabilities of five microbes by manipulating the microbial growth conditions. Out of the five, we discovered that Bacillus cereus and Staphylococcus aureus outperformed the other microbes under nitrogen-rich media. Through the biochemical changes and the microbial behavior, we mapped the hypothetical pathway leading to the iron reduction cellular properties, and found that the iron reduction properties of these Gram-positive bacteria rely heavily on the media composition. The media composition results in increased basification of the media that is a prerequisite for the cellular reduction of ferric ions. Further, these changes impact the formation of biofilm, suggesting that the cellular interaction for the iron(III)oxide reduction is not solely reliant on the formation of biofilms. This article reveals the potential development of Gram-positive microbes in facilitating the microbial-based removal of metal contaminants from clays or ores. Further studies to elucidate the corresponding pathways would be crucial for the further development of the field.
    Matched MeSH terms: Iron/metabolism*
  6. Krishnamoorthy A, Hadi FA, Naidu A, Sathar J
    Med J Malaysia, 2017 02;72(1):53-54.
    PMID: 28255141
    Anaemia is a common condition in Malaysia, and is mostly due to iron deficiency. In many cases, allogeneic blood transfusion (ABT) is administered unnecessarily to treat anaemia. Patient blood management (PBM) is a concept whereby a patient becomes his or her "own blood bank", instead of receiving ABT. The concept encompasses three pillars namely optimising erythropoiesis, minimising blood loss and harnessing human physiological reserve. We present a safe and fruitful outcome of managing severe anaemia without utilising any ABT, made possible with the PBM approach including administration of intravenous iron.
    Matched MeSH terms: Iron Metabolism Disorders
  7. Azemin WA, Alias N, Ali AM, Shamsir MS
    J Biomol Struct Dyn, 2023 Feb;41(2):681-704.
    PMID: 34870559 DOI: 10.1080/07391102.2021.2011415
    Hepcidin is a principal regulator of iron homeostasis and its dysregulation has been recognised as a causative factor in cancers and iron disorders. The strategy of manipulating the presence of hepcidin peptide has been used for cancer treatment. However, this has demonstrated poor efficiency and has been short-lived in patients. Many studies reported using minihepcidin therapy as an alternative way to treat hepcidin dysregulation, but this was only applied to non-cancer patients. Highly conserved fish hepcidin protein, HepTH1-5, was investigated to determine its potential use in developing a hepcidin replacement for human hepcidin (Hepc25) and as a therapeutic agent by targeting the tumour suppressor protein, p53, through structure-function analysis. The authors found that HepTH1-5 is stably bound to ferroportin, compared to Hepc25, by triggering the ferroportin internalisation via Lys42 and Lys270 ubiquitination, in a similar manner to the Hepc25 activity. Moreover, the residues Ile24 and Gly24, along with copper and zinc ligands, interacted with similar residues, Lys24 and Asp1 of Hepc25, respectively, showing that those molecules are crucial to the hepcidin replacement strategy. HepTH1-5 interacts with p53 and activates its function through phosphorylation. This finding shows that HepTH1-5 might be involved in the apoptosis signalling pathway upon a DNA damage response. This study will be very helpful for understanding the mechanism of the hepcidin replacement and providing insights into the HepTH1-5 peptide as a new target for hepcidin and cancer therapeutics.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: Iron/metabolism
  8. Pandrangi SL, Chittineedi P, Chalumuri SS, Meena AS, Neira Mosquera JA, Sánchez Llaguno SN, et al.
    Molecules, 2022 May 07;27(9).
    PMID: 35566360 DOI: 10.3390/molecules27093011
    Iron is a crucial element required for the proper functioning of the body. For instance, hemoglobin is the vital component in the blood that delivers oxygen to various parts of the body. The heme protein present in hemoglobin comprises iron in the form of a ferrous state which regulates oxygen delivery. Excess iron in the body is stored as ferritin and would be utilized under iron-deficient conditions. Surprisingly, cancer cells as well as cancer stem cells have elevated ferritin levels suggesting that iron plays a vital role in protecting these cells. However, apart from the cytoprotective role iron also has the potential to induce cell death via ferroptosis which is a non-apoptotic cell death dependent on iron reserves. Apoptosis a caspase-dependent cell death mechanism is effective on cancer cells however little is known about its impact on cancer stem cell death. This paper focuses on the molecular characteristics of apoptosis and ferroptosis and the importance of switching to ferroptosis to target cancer stem cells death thereby preventing cancer relapse. To the best of our knowledge, this is the first review to demonstrate the importance of intracellular iron in regulating the switching of tumor cells and therapy resistant CSCs from apoptosis to ferroptosis.
    Matched MeSH terms: Iron/metabolism
  9. Giemza-Stokłosa J, Islam MA, Kotyla PJ
    Curr Pharm Des, 2019;25(27):2909-2918.
    PMID: 31686632 DOI: 10.2174/1381612825666190709202804
    BACKGROUND: Ferritin is a molecule that plays many roles being the storage for iron, signalling molecule, and modulator of the immune response.

    METHODS: Different electronic databases were searched in a non-systematic way to find out the literature of interest.

    RESULTS: The level of ferritin rises in many inflammatory conditions including autoimmune disorders. However, in four inflammatory diseases (i.e., adult-onset Still's diseases, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and sepsis), high levels of ferritin are observed suggesting it as a remarkable biomarker and pathological involvement in these diseases. Acting as an acute phase reactant, ferritin is also involved in the cytokine-associated modulator of the immune response as well as a regulator of cytokine synthesis and release which are responsible for the inflammatory storm.

    CONCLUSION: This review article presents updated information on the role of ferritin in inflammatory and autoimmune diseases with an emphasis on hyperferritinaemic syndrome.

    Matched MeSH terms: Iron Metabolism Disorders/blood*
  10. Jabeen S, Yap HY, Abdullah FFJ, Zakaria Z, Isa NM, Tan YC, et al.
    Genes (Basel), 2019 01 25;10(2).
    PMID: 30691021 DOI: 10.3390/genes10020081
    Although more than 100 genome sequences of Pasteurella multocida are available, comprehensive and complete genome sequence analysis is limited. This study describes the analysis of complete genome sequence and pathogenomics of P. multocida strain PMTB2.1. The genome of PMTB2.1 has 2176 genes with more than 40 coding sequences associated with iron regulation and 140 virulence genes including the complete tad locus. The tad locus includes several previously uncharacterized genes such as flp2, rcpC and tadV genes. A transposable phage resembling to Mu phages was identified in P. multocida that has not been identified in any other serotype yet. The multi-locus sequence typing analysis assigned the PMTB2.1 genome sequence as type ST101, while the comparative genome analysis showed that PMTB2.1 is closely related to other P. multocida strains with the genomic distance of less than 0.13. The expression profiling of iron regulating-genes of PMTB2.1 was characterized under iron-limited environment. Results showed significant changes in the expression profiles of iron-regulating genes (p < 0.05) whereas the highest expression of fecE gene (281 fold) at 30 min suggests utilization of the outer-membrane proteins system in iron acquisition at an early stage of growth. This study showed the phylogenomic relatedness of P. multocida and improved annotation of important genes and functional characterization of iron-regulating genes of importance to the bacterial growth.
    Matched MeSH terms: Iron/metabolism*
  11. V K, Neela VK
    Virulence, 2020 Dec;11(1):104-112.
    PMID: 31957553 DOI: 10.1080/21505594.2020.1713649
    This study investigates the twitching ability of 28 clinical and five environmental strains of S. maltophilia grown under iron-depleted condition through in-silico, phenotypic and proteomics approaches. Rapid Annotations using Subsystem Technology (RAST) analysis revealed the presence of 21 targets of type IV pilus shared across S. maltophilia strains K279a, R551-3, D457 and JV3. The macroscopic twitching assay showed that only clinical isolates produced a zone of twitching with a mean of 22.00 mm under normal and 25.00 mm under iron-depleted conditions. (p = 0.002). Environmental isolates did not show any significant twitching activity in both conditions tested. Isobaric Tags for Relative and Absolute Quantification (ITRAQ) analysis showed altered expression of twitching motility protein PilT (99.08-fold change), flagellar biosynthesis protein FliC (20.14-fold change), and fimbrial protein (0.70-fold change) in response to iron-depleted condition. Most of the strains that have the ability to twitch under the normal condition, exhibit enhanced twitching during iron limitation.
    Matched MeSH terms: Iron/metabolism*
  12. Choi SB, Lew LC, Hor KC, Liong MT
    Appl Biochem Biotechnol, 2014 May;173(1):129-42.
    PMID: 24648139 DOI: 10.1007/s12010-014-0822-5
    This study aimed at optimizing the production of hyaluronic acid by Lactobacillus acidophilus FTDC 1231 using response surface methodology and evaluating the effects of divalent metal ions along the production pathway using molecular docking. Among different divalent metal ions that were screened, only iron (II) sulphate and copper (II) sulphate significantly (P iron (II) sulphate and 0.16 mol L(-1) of copper (II) sulphate (103 % increase compared to absence of divalent metal ions). Data from molecular docking showed Fe(2+) improved the binding affinity of UDP-pyrophophorylase towards glucose-1-phosphate, while Cu(2+) contributed towards the interaction between UDP-glucose dehydrogenase and UDP-glucose. We have demonstrated that lactobacilli could produce hyaluronic acid at increased concentration upon facilitation by specific divalent metal ions, via specific targets of enzymes and substrates along pentose phosphate pathway.
    Matched MeSH terms: Iron/metabolism*
  13. Aris A, Sharratt PN
    Environ Technol, 2006 Oct;27(10):1153-61.
    PMID: 17144264
    The effect of initial dissolved oxygen concentration (IDOC) on Fenton's reagent degradation of a dyestuff, Reactive Black 5 was explored in this study. The study was designed, conducted and analysed based on Central Composite Rotatable Design using a 3-1 lab-scale reactor. The participation of O2 in the process was experimentally observed and appears to be affected by the dosage of the reagents used in the study. The IDOC was found to have a significant influence on the process. Reducing the IDOC from 7.5 mg l(-1) to 2.5 mg l(-1) increased the removal of TOC by an average of about 10%. Reduction of IDOC from 10 mg l(-1) to 0 mg l(-1) enhanced the TOC removal by about 30%. The negative influence of IDOC is likely to be caused by the competition between the O2 and the reagents for the organoradicals. A model describing the relationship between initial TOC removal, reagent dosage and IDOC has also been developed.
    Matched MeSH terms: Iron/metabolism*
  14. Foong LC, Imam MU, Ismail M
    J Agric Food Chem, 2015 Oct 21;63(41):9029-36.
    PMID: 26435326 DOI: 10.1021/acs.jafc.5b03420
    The present study was aimed at utilizing defatted rice bran (DRB) protein as an iron-binding peptide to enhance iron uptake in humans. DRB samples were treated with Alcalase and Flavourzyme, and the total extractable peptides were determined. Furthermore, the iron-binding capacities of the DRB protein hydrolysates were determined, whereas iron bioavailability studies were conducted using an in vitro digestion and absorption model (Caco-2 cells). The results showed that the DRB protein hydrolysates produced by combined Alcalase and Flavourzyme hydrolysis had the best iron-binding capacity (83%) after 90 min of hydrolysis. The optimal hydrolysis time to produce the best iron-uptake in Caco-2 cells was found to be 180 min. The results suggested that DRB protein hydrolysates have potent iron-binding capacities and may enhance the bioavailability of iron, hence their suitability for use as iron-fortified supplements.
    Matched MeSH terms: Iron/metabolism*
  15. Bhat IU, Mauris EN, Khanam Z
    Int J Phytoremediation, 2016 Sep;18(9):918-23.
    PMID: 26940261 DOI: 10.1080/15226514.2016.1156637
    The accumulation and removal efficiency of Fe by Centella asiatica was carried out at various Fe concentrations in soil treatments (0, 50, 100, 150 and 200 mg Fe/kg soil). Iron accumulation in different parts of C. asiatica (leaf, stem and root) was analyzed by atomic absorption spectrophotometer (AAS). Factorial experiment with a completely randomized design and Duncan's test were used for data analyses. The results revealed that C. asiatica have the ability to uptake and accumulate Fe significantly (p 1 and <1, respectively, further supporting its metal hyperaccumulator properties.
    Matched MeSH terms: Iron/metabolism*
  16. Chen CY, Lee PJ, Tan CH, Lo YC, Huang CC, Show PL, et al.
    Biotechnol J, 2015 Jun;10(6):905-14.
    PMID: 25865941 DOI: 10.1002/biot.201400594
    Fish meal is currently the major protein source for commercial aquaculture feed. Due to its unstable supply and increasing price, fish meal is becoming more expensive and its availability is expected to face significant challenges in the near future. Therefore, feasible alternatives to fish meal are urgently required. Microalgae have been recognized as the most promising candidates to replace fish meal because the protein composition of microalgae is similar to fish meal and the supply of microalgae-based proteins is sustainable. In this study, an indigenous microalga (Chlorella vulgaris FSP-E) with high protein content was selected, and its feasibility as an aquaculture protein source was explored. An innovative photobioreactor (PBR) utilizing cold cathode fluorescent lamps as an internal light source was designed to cultivate the FSP-E strain for protein production. This PBR could achieve a maximum biomass and protein productivity of 699 and 365 mg/L/day, respectively, under an optimum urea and iron concentration of 12.4 mM and 90 μM, respectively. In addition, amino acid analysis of the microalgal protein showed that up to 70% of the proteins in this microalgal strain consist of indispensable amino acids. Thus, C. vulgaris FSP-E appears to be a viable alternative protein source for the aquaculture industry.
    Matched MeSH terms: Iron/metabolism
  17. Arumugam K
    Hum Reprod, 1994 Jun;9(6):1153-7.
    PMID: 7962392
    Endometriosis and infertility are commonly associated. This study investigated the role of accelerated lipid peroxidation of spermatozoa by the peritoneal fluid of patients with endometriosis as a cause for this association. It proposes that the increased iron concentration present in the fluid of these patients acts as a catalyst for the process. Peritoneal fluid from 25 patients with endometriosis and 25 matched controls was obtained at laparoscopy. Spermatozoa were incubated in the fluid from both groups and the subsequent acrosome reaction rates analysed. The relationship between these results and iron concentration in the fluid was examined. A significant decrease in the acrosome reaction rate was seen in the endometriotic group (P = 0.034). Overall, a decrease in the acrosome reaction rate was associated with an increased iron concentration in the fluid (18 of the 25 pairs). In mild disease, (six of 11 pairs), the relationship was not as marked as that in severe disease (12 of 14 pairs). These results suggest that the peritoneal fluid in patients with endometriosis has a detrimental action on the acrosome reaction of spermatozoa in vitro.
    Matched MeSH terms: Iron/metabolism*
  18. Arumugam K, Yip YC
    Fertil. Steril., 1995 Jul;64(1):62-4.
    PMID: 7789581
    OBJECTIVE: To show that raised iron levels in the peritoneal fluid (PF) of patients with endometriosis catalyze free radical reactions that results in the tissue destruction and fibrosis seen in these patients.

    DESIGN: A case-controlled study of the iron levels (microgram/mL) in the pelvic PF of 12 patients with moderate-to-severe disease, 15 patients with minimal-to-mild disease and in 17 women with normal pelvises were compared. As an index of free radical reactions through lipid peroxidation, the levels of malondialdehyde levels (ng/mL) were assessed simultaneously in the same specimens.

    RESULTS: Controlling for the phase of the menstrual cycle, significantly higher levels of iron were seen in patients with endometriosis, the levels being correlated with the severity of the disease. However no such corresponding relationship was seen in the malondialdehyde levels in the PF.

    CONCLUSIONS: These results suggest that raised iron levels in the PF do not play a role in catalyzing free radical reactions as judged by the degree of lipid peroxidation.

    Matched MeSH terms: Iron/metabolism*
  19. Wong CT, Saha N
    Ann Nutr Metab, 1985;29(5):267-73.
    PMID: 4051449
    The concentrations of non-haem iron, ferritin and ferritin-iron were measured in the livers of 137 adults and children collected at necropsy. The concentrations of non-haem and ferritin iron were found to be 146.6 +/- 95.2 micrograms/g and 61.6 +/- 32.4 micrograms/g, respectively, in males and 108.0 +/- 61.7 micrograms/g and 60.6 +/- 26.4 micrograms/g, respectively, in females. The values for males in Singapore were lower than those reported in developed Western countries. No correlation was observed between storage iron and age, or ferritin concentration and age. Concentrations of non-haem iron and ferritin were similar for persons dying from accident and coronary heart disease. The non-haem iron concentration in Chinese (187.9 +/- 101.0 micrograms/g) was significantly greater than that in Indians (103.1 +/- 65.8 micrograms/g), while the ferritin concentration in Chinese (6.18 +/- 2.37 mg/g) was significantly greater than either Malays (3.81 +/- 1.8 mg/g) or Indians (3.52 +/- 1.6 mg/g). A significant positive correlation was observed between the non-haem iron and ferritin and also ferritin-iron in Chinese males (r values of 0.678 and 0.598, respectively) and Indian males (r values of 0.576 and 0.612, respectively). However, the correlation between these indices was not significant in the case of Malay males. In premenopausal women the non-haem iron correlated well with ferritin (r = 0.737) and ferritin iron (r = 0.826) while the correlation was lacking in postmenopausal women.
    Matched MeSH terms: Iron/metabolism*
  20. Jatuponwiphat T, Chumnanpuen P, Othman S, E-Kobon T, Vongsangnak W
    Microb Pathog, 2019 Feb;127:257-266.
    PMID: 30550841 DOI: 10.1016/j.micpath.2018.12.013
    Pasteurella multocida causes respiratory infectious diseases in a multitude of birds and mammals. A number of virulence-associated genes were reported across different strains of P. multocida, including those involved in the iron transport and metabolism. Comparative iron-associated genes of P. multocida among different animal hosts towards their interaction networks have not been fully revealed. Therefore, this study aimed to identify the iron-associated genes from core- and pan-genomes of fourteen P. multocida strains and to construct iron-associated protein interaction networks using genome-scale network analysis which might be associated with the virulence. Results showed that these fourteen strains had 1587 genes in the core-genome and 3400 genes constituting their pan-genome. Out of these, 2651 genes associated with iron transport and metabolism were selected to construct the protein interaction networks and 361 genes were incorporated into the iron-associated protein interaction network (iPIN) consisting of nine different iron-associated functional modules. After comparing with the virulence factor database (VFDB), 21 virulence-associated proteins were determined and 11 of these belonged to the heme biosynthesis module. From this study, the core heme biosynthesis module and the core outer membrane hemoglobin receptor HgbA were proposed as candidate targets to design novel antibiotics and vaccines for preventing pasteurellosis across the serotypes or animal hosts for enhanced precision agriculture to ensure sustainability in food security.
    Matched MeSH terms: Iron/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links