Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Marimuthu S, Menon BS
    Arch Dis Child, 2009 Jun;94(6):477.
    PMID: 19460927 DOI: 10.1136/adc.2008.155713
    Matched MeSH terms: Lipoproteins, LDL/metabolism
  2. Cheng HM, Chamley LW
    Proc. Soc. Exp. Biol. Med., 1998 Sep;218(4):277.
    PMID: 9714070
    Matched MeSH terms: Lipoproteins, LDL/metabolism*
  3. Watts GF, Gidding S, Wierzbicki AS, Toth PP, Alonso R, Brown WV, et al.
    J Clin Lipidol, 2014 Mar-Apr;8(2):148-72.
    PMID: 24636175 DOI: 10.1016/j.jacl.2014.01.002
    Familial hypercholesterolemia (FH) is a dominantly inherited disorder present from birth that markedly elevates plasma low-density lipoprotein cholesterol and causes premature coronary heart disease. There are at least 20 million people with FH worldwide, but the majority remains undetected, and current treatment is often suboptimal. To address this major gap in coronary prevention we present, from an international perspective, consensus-based guidance on the care of FH. The guidance was generated from seminars and workshops held at an international symposium. The recommendations focus on the detection, diagnosis, assessment, and management of FH in adults and children and set guidelines for clinical purposes. They also refer to best practice for cascade screening and risk notifying and testing families for FH, including use of genetic testing. Guidance on treatment is based on risk stratification, management of noncholesterol risk factors, and the safe and effective use of low-density lipoprotein-lowering therapies. Recommendations are given on lipoprotein apheresis. The use of emerging therapies for FH is also foreshadowed. This international guidance acknowledges evidence gaps but aims to make the best use of contemporary practice and technology to achieve the best outcomes for the care of FH. It should accordingly be used to inform clinical judgment and be adjusted for country-specific and local healthcare needs and resources.
    Matched MeSH terms: Lipoproteins, LDL/metabolism*
  4. Saputri FC, Jantan I
    Phytother Res, 2012 Dec;26(12):1845-50.
    PMID: 22422639 DOI: 10.1002/ptr.4667
    The methanol extract of the twigs of Garcinia hombroniana, which showed strong LDL antioxidation and antiplatelet aggregation activities, was subjected to column chromatography to obtain 3,5,3',5'-tetrahydroxy-4-methoxybenzophenone, 1,7-dihydroxyxanthone and eight triterpenoids, garcihombronane B, D, E and F, friedelin, glutin-5-en-3β-ol, stigmasterol and lupeol. The structures of the compounds were elucidated by spectroscopic methods. The compounds were evaluated for their ability to inhibit copper-mediated LDL oxidation and arachidonic acid (AA)-, adenosine diphosphate (ADP)-, collagen-induced platelet aggregation in vitro. Among the compounds tested, 3,5,3',5'-tetrahydroxy-4-methoxybenzophenone and 1,7-dihydroxyxanthone showed strong inhibitory activity on LDL oxidation with half-maximal inhibitory concentration (IC(50)) values of 6.6 and 1.7 µM, respectively. 3,5,3',5'-Tetrahydroxy-4-methoxybenzophenone exhibited strong activity on AA-, ADP- and collagen-induced platelet aggregation with IC(50) values of 53.6, 125.7 and 178.6 µM, respectively, while 1,7 dihydroxyxanthone showed significant and selective inhibitory activity against ADP-induced aggregation with IC(50) value of 5.7 µM. Of the triterpenoids tested, garcihombronane B showed moderate activity against LDL oxidation and garcihombronane D and F showed selective inhibition on ADP-induced platelet aggregation.
    Matched MeSH terms: Lipoproteins, LDL/metabolism*
  5. Rahman MA, Abdullah N, Aminudin N
    Oxid Med Cell Longev, 2015;2015:403023.
    PMID: 26180589 DOI: 10.1155/2015/403023
    Dietary polyphenolic compounds mediate polynomial actions in guarding against multiple diseases. Atherosclerosis is an oxidative stress driven pathophysiological complication where free radical induced oxidative modification of low density lipoprotein (LDL) plays the ground breaking role. Mushrooms have been highly regarded for possessing an antioxidant arsenal. Polyphenolic compounds present in dietary mushrooms seem pertinent in withstanding LDL oxidation en route to controlling atherosclerosis. In this study, the antioxidative effect of five solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ) of Flammulina velutipes was evaluated. M : DCM fraction showed the most potent 2,2-diphenyl-1-picrylhydrazyl radical scavenging effect with IC50 of 0.86 mg/mL and total phenolic content of 56.36 gallic acid equivalent/g fraction. In LDL oxidation inhibitory tests, M : DCM fraction at 1 µg/mL concentration mostly lengthened the lag time (125 mins) of conjugated diene formation and inhibited the formation of thiobarbituric acid reactive substances (48.71%, at 1 mg/mL concentration). LC-MS/MS analyses of M : DCM fraction identified the presence of polyphenolic substances protocatechuic acid, p-coumaric, and ellagic acid. These chain-breaking polyphenolics might impart the antioxidative effects of F. velutipes. Thus, mushroom-based dietary polyphenolic compounds might be implicated in slowing down the progression of atherosclerosis.
    Matched MeSH terms: Lipoproteins, LDL/metabolism
  6. Dianita R, Jantan I
    Molecules, 2019 Apr 13;24(8).
    PMID: 31013947 DOI: 10.3390/molecules24081469
    Many Premna species have been used in traditional medicine to treat hypertension and cardiac insufficiency, and as a tonic for cardiac-related problems. Some have been reported to possess cardiovascular protective activity through several possible mechanisms, but not Premna foetida. In the present study, the methanol extract of P. foetida leaves (PFM) and its isolated compounds were evaluated for their ability to inhibit copper-mediated human low-density lipoprotein (LDL) oxidation and arachidonic acid (AA)- and adenosine diphosphate (ADP)-induced platelet aggregation. Six flavonoids, three triterpenoids, vanillic acid and stigmasterol were successfully isolated from PFM. Of the isolated compounds, quercetin was the most active against LDL oxidation (IC50 4.25 µM). The flavonols were more active than the flavones against LDL oxidation, suggesting that hydroxyl group at C-3 and the catechol moiety at B-ring may play important roles in protecting LDL from oxidation. Most tested flavonoids showed stronger inhibition towards AA-induced than the ADP-induced platelet aggregation with apigenin exhibiting the strongest effect (IC50 52.3 and 127.4 µM, respectively) while quercetin and kaempferol showed moderate activity. The results suggested that flavonoids, especially quercetin, apigenin and kaempferol were among the major constituents of P. foetida responsible for anti-LDL oxidation and anti-platelet aggregation.
    Matched MeSH terms: Lipoproteins, LDL/metabolism*
  7. ElFar OA, Billa N, Lim HR, Chew KW, Cheah WY, Munawaroh HSH, et al.
    Bioengineered, 2022 Jun;13(6):14681-14718.
    PMID: 35946342 DOI: 10.1080/21655979.2022.2100863
    Arthrospira platensis (A. platensis) aqueous extract has massive amounts of natural products that can be used as future drugs, such as C-phycocyanin, allophycocyanin, etc. This extract was chosen because of its high adaptability, which reflects its resolute genetic composition. The proactive roles of cyanobacteria, particularly in the medical field, have been discussed in this review, including the history, previous food and drug administration (FDA) reports, health benefits and the various dose-dependent therapeutic functions that A. platensis possesses, including its role in fighting against lethal diseases such as cancer, SARS-CoV-2/COVID-19, etc. However, the remedy will not present its maximal effect without the proper delivery to the targeted place for deposition. The goal of this research is to maximize the bioavailability and delivery efficiency of A. platensis constituents through selected sites for effective therapeutic outcomes. The solutions reviewed are mainly on parenteral and tablet formulations. Moreover, suggested enteric polymers were discussed with minor composition variations applied for better storage in high humid countries alongside minor variations in the polymer design were suggested to enhance the premature release hindrance of basic drugs in low pH environments. In addition, it will open doors for research in delivering active pharmaceutical ingredients (APIs) in femtoscale with the use of various existing and new formulations.Abbrevations: SDGs; Sustainable Development Goals, IL-4; Interleukin-4, HDL; High-Density Lipoprotein, LDL; Low-Density Lipoprotein, VLDL; Very Low-Density Lipoprotein, C-PC; C-Phycocyanin, APC; Allophycocyanin, PE; Phycoerythrin, COX-2; Cyclooxygenase-2, RCTs; Randomized Control Trials, TNF-α; Tumour Necrosis Factor-alpha, γ-LFA; Gamma-Linolenic Fatty Acid, PGs; Polyglycans, PUFAs: Polyunsaturated Fatty Acids, NK-cell; Natural Killer Cell, FDA; Food and Drug Administration, GRAS; Generally Recognized as Safe, SD; Standard Deviation, API; Active Pharmaceutical Ingredient, DW; Dry Weight, IM; Intramuscular, IV; Intravenous, ID; Intradermal, SC; Subcutaneous, AERs; Adverse Event Reports, DSI-EC; Dietary Supplement Information Executive Committee, cGMP; Current Good Manufacturing Process, A. platensis; Arthrospira platensis, A. maxima; Arthrospira maxima, Spirulina sp.; Spirulina species, Arthrospira; Spirulina, Tecuitlatl; Spirulina, CRC; Colorectal Cancer, HDI; Human Development Index, Tf; Transferrin, TfR; Transferrin Receptor, FR; Flow Rate, CPP; Cell Penetrating Peptide, SUV; Small Unilamenar Vesicle, LUV; Large Unilamenar Vesicle, GUV; Giant Unilamenar Vesicle, MLV; Multilamenar Vesicle, COVID-19; Coronavirus-19, PEGylated; Stealth, PEG; Polyethylene Glycol, OSCEs; Objective Structured Clinical Examinations, GI; Gastrointestinal Tract, CAP; Cellulose Acetate Phthalate, HPMCP, Hydroxypropyl Methyl-Cellulose Phthalate, SR; Sustained Release, DR; Delay Release, Poly(MA-EA); Polymethyl Acrylic Co-Ethyl Acrylate, f-DR L-30 D-55; Femto-Delay Release Methyl Acrylic Acid Co-Ethyl Acrylate Polymer, MW; Molecular Weight, Tg; Glass Transition Temperature, SN2; Nucleophilic Substitution 2, EPR; Enhance Permeability and Retention, VEGF; Vascular Endothelial Growth Factor, RGD; Arginine-Glycine-Aspartic Acid, VCAM-1; Vascular Cell Adhesion Molecule-1, P; Coefficient of Permeability, PES; Polyether Sulfone, pHe; Extracellular pH, ζ-potential; Zeta potential, NTA; Nanoparticle Tracking Analysis, PB; Phosphate Buffer, DLS; Dynamic Light Scattering, AFM; Atomic Force Microscope, Log P; Partition Coefficient, MR; Molar Refractivity, tPSA; Topological Polar Surface Area, C log P; Calculated Partition Coefficient, CMR; Calculated Molar Refractivity, Log S; Solubility Coefficient, pka; Acid Dissociation Constant, DDAB; Dimethyl Dioctadecyl Ammonium Bromide, DOPE; Dioleoylphosphatidylethanolamine, GDP; Good Distribution Practice, RES; Reticuloendothelial System, PKU; Phenylketonuria, MS; Multiple Sclerosis, SLE; Systemic Lupus Erythematous, NASA; National Aeronautics and Space Administration, DOX; Doxorubicin, ADRs; Adverse Drug Reactions, SVM; Support Vector Machine, MDA; Malondialdehyde, TBARS; Thiobarbituric Acid Reactive Substances, CRP; C-Reactive Protein, CK; Creatine Kinase, LDH; Lactated Dehydrogenase, T2D; Type 2 Diabetes, PCB; Phycocyanobilin, PBP; Phycobiliproteins, PEB; Phycoerythrobilin, DPP-4; Dipeptidyl Peptidase-4, MTT; 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide, IL-2; Interleukin-2, IL-6; Interleukin-6, PRISMA; Preferred Reporting Items for Systematic Reviews and Meta-Analyses, STATA; Statistics, HepG2; Hepatoblastoma, HCT116; Colon Cancer Carcinoma, Kasumi-1; Acute Leukaemia, K562; Chronic Leukaemia, Se-PC; Selenium-Phycocyanin, MCF-7; Breast Cancer Adenocarcinoma, A375; Human Melanoma, RAS; Renin-Angiotensin System, IQP; Ile-Gln-Pro, VEP; Val-Glu-Pro, Mpro; Main Protease, PLpro; Papin-Like Protease, BMI; Body Mass Index, IC50; Inhibitory Concentration by 50%, LD50; Lethal Dose by 50%, PC12 Adh; Rat Pheochromocytoma Cells, RNS; Reactive Nitrogen Species, Hb1Ac; hemoglobin A1c.
    Matched MeSH terms: Lipoproteins, LDL/metabolism
  8. Mat MC, Mohamed AS, Hamid SS
    Lipids Health Dis, 2011;10:216.
    PMID: 22104447 DOI: 10.1186/1476-511X-10-216
    Oxidized low density lipoprotein plays an important role in development of foam cells in atherosclerosis. The study was focused on regulation of primary human monocyte growth and CD11b expression in presence of Nigella sativa oil.
    Matched MeSH terms: Lipoproteins, LDL/metabolism
  9. Adam SK, Das S, Soelaiman IN, Umar NA, Jaarin K
    Tohoku J. Exp. Med., 2008 Jul;215(3):219-26.
    PMID: 18648182
    Repeated heating of soy oil may promote lipid peroxidation. Oxidized unsaturated fatty acids may contribute to the pathogenesis of atherosclerosis, especially in estrogen-deficient states. This study was performed to explore the deleterious effects of repeatedly heated soy oil on the development of atherosclerosis using ovariectomized rats, which represent an estrogen-deficient state. Twenty-four female Sprague-Dawley rats were ovariectomized and were divided equally into four groups. The control group was fed with 2% cholesterol diet without any oil. The three treatment groups each received 2% cholesterol diet fortified with fresh, once-heated or five-times-heated (repeatedly heated) soy oil, respectively. Serum thiobarbituric acid reactive substances (TBARS), lipid profile and homocysteine levels were measured prior to ovariectomy and at the end of four months. Ovariectomized rats treated with repeatedly heated soy oil showed significant increases in lipid peroxidation and low-density lipoprotein (LDL) levels. Treatment with once-heated or repeatedly heated soy oil caused a significant increase in total cholesterol, while fresh soy oil caused significant reduction in homocysteine level as compared to other groups. Repeatedly heated soy oil caused significant increases in TBARS and LDL as compared to fresh oil. The higher level of homocysteine in the ovariectomized rats fed with repeatedly heated oil, as compared to those fed with fresh oil, also suggests the repeatedly heated oil contributes to the development of atherosclerosis. Importantly, the protective effect of the soy oil may be lost once it was being repeatedly heated. In conclusion, the consumption of repeatedly heated oil may predispose to atherosclerosis in estrogen-deficient states.
    Matched MeSH terms: Lipoproteins, LDL/metabolism
  10. Abidin MH, Abdullah N, Abidin NZ
    Int J Med Mushrooms, 2016;18(2):109-21.
    PMID: 27279533 DOI: 10.1615/IntJMedMushrooms.v18.i2.20
    This study evaluated the in vitro antioxidant capacities of extracts from Pleurotus pulmonarius via Folin-Ciocalteu, 1,1-diphenyl-2-picrylhydrazyl free radical scavenging, metal chelating, cupric ion reducing antioxidant capacity, and lipid peroxidation inhibition assays. Extract compositions were determined by phenol-sulfuric acid; Coomassie Plus (Bradford) protein; Spectroquant zinc, copper, and manganese test assays; and liquid chromatography-tandem mass spectrometry (LC/MS/MS) and gas chromatography-mass spectrometry (GC/MS). Methanol-dichloromethane extract, water fraction, hot water, aqueous extract and hexane fraction exhibited the most potent extracts in the antioxidant activities. LC/MS/MS and GC/MS showed that the extracts contained ergothioneine, ergosterol, flavonoid, and phenolic compounds. The selected potent extracts were evaluated for their inhibitory effect against oxidation of human low-density lipoproteins and protective effects against hydrogen peroxide-induced cytotoxic injury in human aortic endothelial cells. The crude aqueous extract was deemed most potent for the prevention of human low-density lipoprotein oxidation and endothelial membrane damage. Ergothioneine might be the compound responsible for the activities, as supported by previous reports. Thus, P. pulmonarius may be a valuable antioxidant ingredient in functional foods or nutraceuticals.
    Matched MeSH terms: Lipoproteins, LDL/metabolism*
  11. Jantan I, Saputri FC
    Phytochemistry, 2012 Aug;80:58-63.
    PMID: 22640928 DOI: 10.1016/j.phytochem.2012.05.003
    Three benzophenones, 2,6,3',5'-tetrahydroxybenzophenone (1), 3,4,5,3',5'-pentahydroxybenzophenone (3) and 3,5,3',5'-tetrahydroxy-4-methoxybenzophenone (4), as well as a xanthone, 1,3,6-trihydroxy-5-methoxy-7-(3'-methyl-2'-oxo-but-3'-enyl)xanthone (9), were isolated from the twigs of Garcinia cantleyana var. cantleyana. Eight known compounds, 3,4,5,3'-tetrahydroxy benzophenone (2), 1,3,5-trihydroxyxanthone (5), 1,3,8-trihydroxyxanthone (6), 2,4,7-trihydroxyxanthone (7), 1,3,5,7-tetrahydroxyxanthone (8), quercetin, glutin-5-en-3β-ol and friedelin were also isolated. The structures of the compounds were elucidated by spectroscopic methods. The compounds were investigated for their ability to inhibit low-density lipoprotein (LDL) oxidation and platelet aggregation in human whole blood in vitro. Most of the compounds showed strong antioxidant activity with compound 8 showing the highest inhibition with an IC₅₀ value of 0.5 μM, comparable to that of probucol. Among the compounds tested, only compound 4 exhibited strong inhibitory activity against platelet aggregation induced by arachidonic acid (AA), adenosine diphosphate (ADP) and collagen. Compounds 3, 5 and 8 showed selective inhibitory activity on platelet aggregation induced by ADP.
    Matched MeSH terms: Lipoproteins, LDL/metabolism*
  12. Sambanthamurthi R, Tan Y, Sundram K, Abeywardena M, Sambandan TG, Rha C, et al.
    Br J Nutr, 2011 Dec;106(11):1655-63.
    PMID: 21736792 DOI: 10.1017/S0007114511002121
    Waste from agricultural products represents a disposal liability, which needs to be addressed. Palm oil is the most widely traded edible oil globally, and its production generates 85 million tons of aqueous by-products annually. This aqueous stream is rich in phenolic antioxidants, which were investigated for their composition and potential in vitro biological activity. We have identified three isomers of caffeoylshikimic acid as major components of oil palm phenolics (OPP). The 2,2-diphenyl-1-picrylhydrazyl assay confirmed potent free radical scavenging activity. To test for possible cardioprotective effects of OPP, we carried out in vitro LDL oxidation studies as well as ex vivo aortic ring and mesenteric vascular bed relaxation measurements. We found that OPP inhibited the Cu-mediated oxidation of human LDL. OPP also promoted vascular relaxation in both isolated aortic rings and perfused mesenteric vascular beds pre-contracted with noradrenaline. To rule out developmental toxicity, we performed teratological studies on rats up to the third generation and did not find any congenital anomalies. Thus, these initial studies suggest that OPP is safe and may have a protective role against free radical damage, LDL oxidation and its attendant negative effects, as well as vascular constriction in mitigating atherosclerosis. Oil palm vegetation liquor thus represents a new source of phenolic bioactives.
    Matched MeSH terms: Lipoproteins, LDL/metabolism
  13. Salleh MN, Runnie I, Roach PD, Mohamed S, Abeywardena MY
    J Agric Food Chem, 2002 Jun 19;50(13):3693-7.
    PMID: 12059144
    Twelve edible plant extracts rich in polyphenols were screened for their potential to inhibit oxidation of low-density lipoprotein (LDL) in vitro and to modulate LDL receptor (LDLr) activity in cultured HepG2 cells. The antioxidant activity (inhibition of LDL oxidation) was determined by measuring the formation of conjugated dienes (lag time) and thiobarbituric acid reagent substances (TBARS). Betel leaf (94%), cashew shoot (63%), Japanese mint (52%), semambu leaf (50%), palm frond (41%), sweet potato shoot, chilli fruit, papaya shoot, roselle calyx, and maman showed significantly increased lag time (>55 min, P < 0.05) and inhibition of TBARS formation (P < 0.05) compared to control. LDLr was significantly up-regulated (P < 0.05) by Japanese mint (67%), semambu (51%), cashew (50%), and noni (49%). Except for noni and betel leaf, most plant extracts studied demonstrated a positive association between antioxidant activity and the ability to up-regulate LDL receptor. Findings suggest that reported protective actions of plant polyphenols on lipoprotein metabolism might be exerted at different biochemical mechanisms.
    Matched MeSH terms: Lipoproteins, LDL/metabolism
  14. Abeywardena M, Runnie I, Nizar M, Suhaila M, Head R, Suhaila Momamed
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S467-72.
    PMID: 12492636
    Plant-based polyphenolic compounds have been reported to possess cardiovascular health benefits. Several dietary sources, including herbs and spices, fruits and vegetables, and tea and wine, contain an array of biologically active compounds that have been shown to be effective in retarding oxidation of low-density lipoproteins (LDL) and promoting vascular relaxation. In the present study four different plant sources, both edible and non-edible, were evaluated for potential activity. Organic extracts enriched in polyphenols were prepared from palm fronds (Elaesis guineensis); lemongrass (Cymbopogon citrates); papaya shoots (Carica papaya) and green chilli (Capsicum frutescenes) and tested for their ability to prevent in vitro oxidation of LDL, and for potential vascular relaxation actions. Rings of rat thoracic aorta and isolated perfused mesenteric vascular beds were mounted in organ baths, contracted using a half-maximal dose of noradrenaline and exposed to cumulative additions of test extracts. Palm frond extract resulted in considerable relaxation (>75%) in both preparations and was found to be endothelium-dependent as removal of endothelium or inhibition of endogenous nitric oxide (NO) led to a total loss in relaxant activity. Lemongrass extract caused a greater relaxation action in the mesenteric preparation compared to aortic rings, and appears to be mediated via NO-independent and non-prostanoid mechanisms. Of the extracts tested, palm fronds also demonstrated the highest antioxidant capacity, as determined by the ferric reducing activity/potential assay, and resulted in a significant delay (P < 0.05) in the oxidation of LDL. Collectively, these preliminary findings lend further support to the potential cardiovascular actions of plant polyphenols and also identify oil palm fronds as containing constituents that promote vascular relaxation via endothelium-dependent mechanisms.
    Matched MeSH terms: Lipoproteins, LDL/metabolism*
  15. Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM
    Horm Mol Biol Clin Investig, 2020 Jun 29;41(4).
    PMID: 32598308 DOI: 10.1515/hmbci-2020-0009
    BACKGROUND: Cardiovascular disease (CVD) is one of the major cause of mortality in diabetic patients. Evidence suggests that hyperglycemia in diabetic patients contributes to increased risk of CVD. This study is to investigate the therapeutic effects of melatonin on glucose-treated human umbilical vein endothelial cells (HUVEC) and provide insights on the underlying mechanisms.

    MATERIALS AND METHODS: Cell viability was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Reactive oxygen species (ROS) and membrane potential was detected using 2',7'-dichlorofluorescein diacetate and 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1) dye staining, respectively. While, cell apoptosis was determined by Annexin-V staining and protein expression was measured using Western blot.

    RESULTS: Our results suggested that melatonin inhibited glucose-induced ROS elevation, mitochondria dysfunction and apoptosis on HUVEC. Melatonin inhibited glucose-induced HUVEC apoptosis via PI3K/Akt signaling pathway. Activation of Akt further activated BcL-2 pathway through upregulation of Mcl-1 expression and downregulation Bax expression in order to inhibit glucose-induced HUVEC apoptosis. Besides that, melatonin promoted downregulation of oxLDL/LOX-1 in order to inhibit glucose-induced HUVEC apoptosis.

    CONCLUSIONS: In conclusion, our results suggested that melatonin exerted vasculoprotective effects against glucose-induced apoptosis in HUVEC through PI3K/Akt, Bcl-2 and oxLDL/LOX-1 signaling pathways.

    Matched MeSH terms: Lipoproteins, LDL/metabolism
  16. Nagappan H, Pee PP, Kee SHY, Ow JT, Yan SW, Chew LY, et al.
    Food Res Int, 2017 Sep;99(Pt 2):950-958.
    PMID: 28847432 DOI: 10.1016/j.foodres.2017.01.023
    Two Malaysian brown seaweeds, Sargassum siliquosum and Sargassum polycystum were first extracted using methanol to get the crude extract (CE) and further fractionated to obtain fucoxanthin-rich fraction (FRF). Samples were evaluated for their phenolic, flavonoid, and fucoxanthin contents, as well as their inhibitory activities towards low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase. In LDL oxidation assay, an increasing trend in antioxidant activity was observed as the concentration of FRF (0.04-0.2mg/mL) and CE (0.2-1.0mg/mL) increased, though not statistically significant. As for serum oxidation assay, significant decrease in antioxidant activity was observed as concentration of FRF increased, while CE showed no significant difference in inhibitory activity across the concentrations used. The IC50 values for ACE inhibitory activity of CE (0.03-0.42mg/mL) were lower than that of FRF (0.94-1.53mg/mL). When compared to reference drug Voglibose (IC50 value of 0.61mg/mL) in the effectiveness in inhibiting α-amylase, CE (0.58mg/mL) gave significantly lower IC50 values while FRF (0.68-0.71mg/mL) had significantly higher IC50 values. The α-glucosidase inhibitory activity of CE (IC50 value of 0.57-0.69mg/mL) and FRF (IC50 value of 0.50-0.53mg/mL) were comparable to that of reference drug (IC50 value of 0.54mg/mL). Results had shown the potential of S. siliquosum and S. polycystum in reducing cardiovascular diseases related risk factors following their inhibitory activities on ACE, α-amylase and α-glucosidase. In addition, it is likelihood that FRF possessed antioxidant activity at low concentration level.
    Matched MeSH terms: Lipoproteins, LDL/metabolism*
  17. Rahman MA, Abdullah N, Aminudin N
    Biomed Res Int, 2014;2014:828149.
    PMID: 24959591 DOI: 10.1155/2014/828149
    Oxidation of low-density lipoprotein (LDL) has been strongly suggested as the key factor in the pathogenesis of atherosclerosis. Mushrooms have been implicated in having preventive effects against chronic diseases due especially to their antioxidant properties. In this study, in vitro inhibitory effect of Hericium erinaceus on LDL oxidation and the activity of the cholesterol biosynthetic key enzyme, 3-hydroxy-3-methyl glutaryl coenzyme A (HMG Co-A) reductase, was evaluated using five liquid-liquid solvent fractions consisting of methanol : dichloromethane (M : DCM), hexane (HEX), dichloromethane (DCM), ethyl acetate (EA), and aqueous residue (AQ). The hexane fraction showed the highest inhibition of oxidation of human LDL as reflected by the increased lag time (100 mins) for the formation of conjugated diene (CD) at 1 µg/mL and decreased production (68.28%, IC50 0.73 mg/mL) of thiobarbituric acid reactive substances (TBARS) at 1 mg/mL. It also mostly inhibited (59.91%) the activity of the HMG Co-A reductase at 10 mg/mL. The GC-MS profiling of the hexane fraction identified the presence of myconutrients: inter alia, ergosterol and linoleic acid. Thus, hexane fraction of Hericium erinaceus was found to be the most potent in vitro inhibitor of both LDL oxidation and HMG Co-A reductase activity having therapeutic potential for the prevention of oxidative stress-mediated vascular diseases.
    Matched MeSH terms: Lipoproteins, LDL/metabolism*
  18. Abdul Wahab N, Ahdan R, Ahmad Aufa Z, Kong KW, Johar MH, Shariff Mohd Z, et al.
    J Sci Food Agric, 2015 Oct;95(13):2704-11.
    PMID: 25410129 DOI: 10.1002/jsfa.7006
    Diverse plants species in the forest remain under-utilised and they are mainly consumed only by local people. However, increasing issues in food security prompted the present study, which explores the nutritional and antioxidant aspects of Malaysian under-utilised vegetables. The studied vegetables were Paku Nyai (Stenochlaena palustris), Cemperai (Champereia manillana), Maman Pasir (Cleome viscose), Dudung (Erechtites valerianifolia) and Semambuk (Ardisia pendula).
    Matched MeSH terms: Lipoproteins, LDL/metabolism
  19. Khoo HE, Azlan A, Ismail A, Abas F, Hamid M
    PLoS One, 2014;9(1):e81447.
    PMID: 24416130 DOI: 10.1371/journal.pone.0081447
    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+) and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.
    Matched MeSH terms: Lipoproteins, LDL/metabolism
  20. Manogaran M, Vuanghao L, Mohamed R
    J Ethnopharmacol, 2020 Mar 01;249:112410.
    PMID: 31747560 DOI: 10.1016/j.jep.2019.112410
    ETHNOPHARMACOLOGY RELEVANCE: Gynura procumbens (Lour.) Merr. displayed cardio-protective effect that may prevent atherogenesis. The primary underlying pathological process of cardiovascular disease is atherosclerosis. Atherosclerotic lesion composed of macrophages, T cells and other immune cells which incorporated with cholesterol that infiltrates from the blood.

    AIM OF THE STUDY: The present study was performed to determine underlying mechanism of G. procumbens ethanol extract and its fractions such as aqueous, chloroform, ethyl acetate and hexane affect macrophage derived foam cell formation.

    MATERIALS AND METHODS: Lipid droplets accumulation in treated macrophages were visualized by Oil Red O staining while the total cholesterol present in the treated macrophages were measured using Cholestryl Ester quantification assay kit. Enzyme-Linked Immunosorbent Assay (ELISA) were used to detect TNF-α and IL-1β secretion in the supernatant of treated macrophages. Gene expression of Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and ATP-binding cassette transporter A-1 (ABCA-1) in treated macrophages were analyzed using Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR).

    RESULTS: G. procumbens ethanol extract and its fractions reduced lipid droplet accumulation and total cholesterol in oxLDL-treated macrophages together with significantly reduction of TNF-α and IL-1β secretions in supernatant oxLDL-treated macrophages. LOX-1 gene expression was significantly reduced when G. procumbens ethanol extract and its fractions were added in oxDL-treated macrophages. In contrast, G. procumbens ethanol extract and its fractions significantly increased the expression of ABCA-1 gene in oxLDL-treated macrophages.

    CONCLUSION: In conclusion, G. procumbens ethanol extract and its fractions inhibit the formation of macrophage derived foam cell by reducing TNF-α and IL-1β expression, which usually highly expressed in atherosclerotic plaques, suppressing scavenger receptor LOX-1 gene that binds oxLDL but induced ABCA-1 gene that mediate lipid efflux from macrophages.

    Matched MeSH terms: Lipoproteins, LDL/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links