Displaying all 14 publications

Abstract:
Sort:
  1. Chong WH, Chan DJC, Liu CZ, Lim J
    Electrophoresis, 2024 Mar;45(5-6):357-368.
    PMID: 38044267 DOI: 10.1002/elps.202300042
    The spatiotemporal accuracy of microscale magnetophoresis has improved significantly over the course of several decades of development. However, most of the studies so far were using magnetic microbead composed of nanosphere particle for magnetophoretic actuation purpose. Here, we developed an in-house method for magnetic sample analysis called quadrupole magnetic steering control (QMSC). QMSC was used to study the magnetophoretic behavior of polystyrene microbeads decorated with iron oxide nanospheres-coated polystyrene microbeads (IONSs-PS) and iron oxide nanorods-coated polystyrene microbeads (IONRs-PS) under the influence of a quadrupole low field gradient. During a 4-s QMSC experiment, the IONSs-PS and IONRs-PS were navigated to perform 180° flip and 90° turn formations, and their kinematic results (2 s before and 2 s after the flip/turn) were measured and compared. The results showed that the IONRs-PS suffered from significant kinematic disproportion, translating a highly uneven amount of kinetic energy from the same magnitude of magnetic control. Combining the kinematic analysis, transmission electron microscopy micrographs, and vibrating sample magnetometry measurements, it was found that the IONRs-PS experienced higher fluid drag force and had lower consistency than the IONSs-PS due to its extensive open fractal nanorod structure on the bead surface and uneven magnetization, which was attributed to its ferrimagnetic nature.
    Matched MeSH terms: Nanospheres*
  2. Wang J, Guo M, Luo Y, Shao D, Ge S, Cai L, et al.
    J Environ Manage, 2021 Jul 01;289:112506.
    PMID: 33831760 DOI: 10.1016/j.jenvman.2021.112506
    Polyelectrolyte composite nanospheres are relatively new adsorbents which have attracted much attention for their efficient pollutant removal and reuse performance. A novel polyelectrolyte nanosphere with magnetic function (SA@AM) was synthesized via the electrostatic reaction between the polyanionic sodium alginate (SA) and the surface of a prepared terminal amino-based magnetic nanoparticles (AMs). SA@AM showed a size of 15-22 nm with 6.85 emu·g-1 of magnetization value, exhibiting a high adsorption capacity on Pb(II) ions representing a common heavy metal pollutant, with a maximum adsorption capacity of 105.8 mg g-1. The Langmuir isotherm adsorption fits the adsorption curve, indicating uniform adsorption of Pb(II) on the SA@AM surfaces. Repeated adsorption desorption experiments showed that the removal ratio of Pb(II) by SA@AM was more than 76%, illustrating improved regeneration performance. These results provide useful information for the production of bio-based green magnetic nano scale adsorption materials for environmental remediation applications.
    Matched MeSH terms: Nanospheres*
  3. Ghaemi F, Abdullah LC, Tahir P
    Polymers (Basel), 2016 Nov 09;8(11).
    PMID: 30974671 DOI: 10.3390/polym8110381
    This paper focuses on the synthesis and mechanism of carbon nanospheres (CNS) coated with few- and multi-layered graphene (FLG, MLG). The graphitic carbon encapsulates the core/shell structure of the Ni/NiO nanoparticles via the chemical vapor deposition (CVD) method. The application of the resulting CNS and hybrids of CNS-FLG and CNS-MLG as reinforcement nanofillers in a polypropylene (PP) matrix were studied from the aspects of mechanical and thermal characteristics. In this research, to synthesize carbon nanostructures, nickel nitrate hexahydrate (Ni(NO₃)₂·6H₂O) and acetylene (C₂H₂) were used as the catalyst source and carbon source, respectively. Besides, the morphology, structure and graphitization of the resulting carbon nanostructures were investigated. On the other hand, the mechanisms of CNS growth and the synthesis of graphene sheets on the CNS surface were studied. Finally, the mechanical and thermal properties of the CNS/PP, CNS-FLG/PP, and CNS-MLG/PP composites were analyzed by applying tensile test and thermogravimetric analysis (TGA), respectively.
    Matched MeSH terms: Nanospheres
  4. Nor Hazliana Harun, Mydin, Rabiatul Basria S.M.N., Sreekantan, Srimala, Khairul Arifah Saharudin, Norfatehah Basiron, Fakrul Radhi, et al.
    MyJurnal
    Zinc oxide (ZnO) nanoparticles (NPs) has become as promising candidate for antibacterial agents against Escherichia coli (E.coli), commensal hospital- acquired infections (HAIs). This study investigates the antibacterial action of ZnO NPs in three difference shapes; nanorod, nanoflakes and nanospheres against E.coli ATCC 25922. The antibacterial activity of ZnO NPs was determine through two standard protocols known as Clinical Laboratory Standards Institute (CLSI) MO2-A11 under light conditions of 5.70 w/m2 and American standard test method (ASTM) E-2149. Preliminary screening shows ZnO NPs did not inhibit the growth of E.coli. Further analysis using ASTM E-2149 in dynamic conditions revealed antibacterial activity after 3 hours with 100% reduction for ZnO NPs nanoflakes and 6 hours with 94.63% reduction for ZnO nanospheres, respectively. It demonstrated the ZnO NPs in nanoflakes and nanospheres exerted higher antibacterial activity possibly through release of ios, free radicals, ROS generation and electrostatic collision which contribute to bacterial death. Further analysis is needed to investigate biocompatibility of these samples for future biomedical applications.
    Matched MeSH terms: Nanospheres
  5. Lee SC, Lintang HO, Yuliati L
    Chem Asian J, 2012 Sep;7(9):2139-44.
    PMID: 22733646 DOI: 10.1002/asia.201200383
    A urea precursor was used for the first time to prepare mesoporous carbon nitride (MCN) by a thermal polymerization process with silica nanospheres as a hard template. Although the prepared MCN samples have similar structures and optical properties, it was revealed that the specific surface area, pore-size distribution, and morphology of the MCN samples depend on the initial mass ratio of urea to silica. Compared to the bulk carbon nitride (BCN) that only gave 20% phenol removal (6 h of irradiation), the activities can be enhanced up to 74% on MCN samples for photocatalytic removal of phenol under visible-light irradiation. The highest conversion was obtained on MCN with an initial mass ratio of urea to silica of 5, which has high surface area of 191 m(2) g(-1) and a nanoporous structure with uniform pore-size distribution of 7 nm. In addition to the high activity, the MCN sample also showed high photocatalytic stability.
    Matched MeSH terms: Nanospheres
  6. Anarjan N, Tan CP
    Molecules, 2013 Jan 09;18(1):768-77.
    PMID: 23303336 DOI: 10.3390/molecules18010768
    The effects of selected nonionic emulsifiers on the physicochemical characteristics of astaxanthin nanodispersions produced by an emulsification/evaporation technique were studied. The emulsifiers used were polysorbates (Polysorbate 20, Polysorbate 40, Polysorbate 60 and Polysorbate 80) and sucrose esters of fatty acids (sucrose laurate, palmitate, stearate and oleate). The mean particle diameters of the nanodispersions ranged from 70 nm to 150 nm, depending on the emulsifier used. In the prepared nanodispersions, the astaxanthin particle diameter decreased with increasing emulsifier hydrophilicity and decreasing carbon number of the fatty acid in the emulsifier structure. Astaxanthin nanodispersions with the smallest particle diameters were produced with Polysorbate 20 and sucrose laurate among the polysorbates and the sucrose esters, respectively. We also found that the Polysorbate 80- and sucrose oleate-stabilized nanodispersions had the highest astaxanthin losses (i.e., the lowest astaxanthin contents in the final products) among the nanodispersions. This work demonstrated the importance of emulsifier type in determining the physicochemical characteristics of astaxanthin nano-dispersions.
    Matched MeSH terms: Nanospheres/chemistry*
  7. Raja Jamaluddin RZA, Tan LL, Chong KF, Heng LY
    Nanotechnology, 2020 Nov 27;31(48):485501.
    PMID: 32748805 DOI: 10.1088/1361-6528/abab2e
    Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.
    Matched MeSH terms: Nanospheres/chemistry*
  8. Centeno A, Xie F, Alford N
    IET Nanobiotechnol, 2013 Jun;7(2):50-8.
    PMID: 24046905
    Metal-induced fluorescence enhancement (MIFE) is a promising strategy for increasing the sensitivity of fluorophores used in biological sensors. This study uses the finite-difference time-domain technique to predict the fluorescent enhancement rate of a fluorophore molecule in close proximity to a gold or silver spherical nanoparticle. By considering commercially available fluorescent dyes the computed results are compared with the published experimental data. The results show that MIFE is a complex coupling process between the fluorophore molecule and the metal nanoparticle. Nevertheless using computational electromagnetic techniques to perform calculations it is possible to calculate, with reasonable accuracy, the fluorescent enhancement. Using this methodology it will be possible to consider different shaped metal nanoparticles and any supporting substrate material in the future, an important step in building reliable biosensors capable of detecting low levels of proteins tagged with fluorescence molecules.
    Matched MeSH terms: Nanospheres/chemistry*
  9. Lim J, Yeap SP, Leow CH, Toh PY, Low SC
    J Colloid Interface Sci, 2014 May 1;421:170-7.
    PMID: 24594047 DOI: 10.1016/j.jcis.2014.01.044
    Magnetophoresis of iron oxide magnetic nanoparticle (IOMNP) under low magnetic field gradient (<100 T/m) is significantly enhanced by particle shape anisotropy. This unique feature of magnetophoresis is influenced by the particle concentration and applied magnetic field gradient. By comparing the nanosphere and nanorod magnetophoresis at different concentration, we revealed the ability for these two species of particles to achieve the same separation rate by adjusting the field gradient. Under cooperative magnetophoresis, the nanorods would first go through self- and magnetic field induced aggregation followed by the alignment of the particle clusters formed with magnetic field. Time scale associated to these two processes is investigated to understand the kinetic behavior of nanorod separation under low field gradient. Surface functionalization of nanoparticles can be employed as an effective strategy to vary the temporal evolution of these two aggregation processes which subsequently influence the magnetophoretic separation time and rate.
    Matched MeSH terms: Nanospheres
  10. Nor Hazliana Harun, Rabiatul Basria S. M. N. Mydin, Khairul Arifah Saharudin, Sreekantan, Srimala, Khor Yong Ling, Norfatehah Basiron, et al.
    MyJurnal
    There is a growing concern in using zinc oxide nanoparticles (ZnO NPs) for medical devices as alternative options in reducing hospital-acquired infections (HAIs). The commensal HAIs; Staphylococcus aureus (S.aureus) infect patients and lead to increased rates of morbidity and mortality. This study aims to investigate the antibacterial action of ZnO NPs in three different shapes; nanorod, nanoflakes and nanospheres impregnated in low-density polyethylene (LDPE) against S.aureus ATCC 25923. Methods: The antibacterial efficiency of ZnO NPs was studied through two standard test methods included were based on Clinical Laboratory Standards Institute (CLSI) guidelines MO2-A11 under light conditions of 5.70 w/m2 and American standard test method (ASTM) E-2149. Results: Preliminary screening did show a significant growth inhibition against S.aureus with ZnO NPs nanorod and nanoflakes, approximately in 7 to 8 mm zones of inhibition. Further analysis using ASTM E-2149 in dynamic conditions revealed variable activity depending on incubation treatment periods. It demonstrated the ZnO NPs in nanoflakes and nanosphere shape showed better inhibition against S.aureus with maximum reduction (100%). The FESEM results strongly suggest that the structure of ZnO nanoflakes and nanosphere played an importance role in nanomaterial-bacteria interaction which consequently cause cell membrane damage. Additionally, the irradiation under light treatment also enhance the generation of ROS and free radicals which helps the bactericidal activity against S.aureus. Conclusion: This study provides new insights for the antibacterial action of ZnO NPs/LDPE thin films in future biomedical appliances to reduce HAIs risks.
    Matched MeSH terms: Nanospheres
  11. Ibrahim I, Lim HN, Huang NM, Pandikumar A
    PLoS One, 2016;11(5):e0154557.
    PMID: 27176635 DOI: 10.1371/journal.pone.0154557
    A photoelectrochemical (PEC) sensor with excellent sensitivity and detection toward copper (II) ions (Cu2+) was developed using a cadmium sulphide-reduced graphene oxide (CdS-rGO) nanocomposite on an indium tin oxide (ITO) surface, with triethanolamine (TEA) used as the sacrificial electron donor. The CdS nanoparticles were initially synthesized via the aerosol-assisted chemical vapor deposition (AACVD) method using cadmium acetate and thiourea as the precursors to Cd2+ and S2-, respectively. Graphene oxide (GO) was then dip-coated onto the CdS electrode and sintered under an argon gas flow (50 mL/min) for the reduction process. The nanostructured CdS was adhered securely to the ITO by a continuous network of rGO that also acted as an avenue to intensify the transfer of electrons from the conduction band of CdS. The photoelectrochemical results indicated that the ITO/CdS-rGO photoelectrode could facilitate broad UV-visible light absorption, which would lead to a higher and steady-state photocurrent response in the presence of TEA in 0.1 M KCl. The photocurrent decreased with an increase in the concentration of Cu2+ ions. The photoelectrode response for Cu2+ ion detection had a linear range of 0.5-120 μM, with a limit of detection (LoD) of 16 nM. The proposed PEC sensor displayed ultra-sensitivity and good selectivity toward Cu2+ ion detection.
    Matched MeSH terms: Nanospheres/ultrastructure
  12. Ayub AD, Chiu HI, Mat Yusuf SNA, Abd Kadir E, Ngalim SH, Lim V
    Artif Cells Nanomed Biotechnol, 2019 Dec;47(1):353-369.
    PMID: 30691309 DOI: 10.1080/21691401.2018.1557672
    The application of layer-by-layer (LbL) approach on nanoparticle surface coating improves the colon-specific drug delivery of insoluble drugs. Here, we aimed to formulate a self-assembled cysteamine-based disulphide cross-linked sodium alginate with LbL self-assembly to improve the delivery of paclitaxel (PCX) to colonic cancer cells. Cysteamine was conjugated to the backbone of oxidized SA to form a core of self-assembled disulphide cross-linked nanospheres. P3DL was selected for PCX loading and fabricated LbL with poly(allylamine hydrochloride) (PAH) and poly(4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSCMA) resulting from characterization and drug release studies. P3DL-fabricated PCX-loaded nanospheres (P3DL/PAH/PSSCMA) exhibited an encapsulation efficiency of 77.1% with cumulative drug release of 45.1%. Dynamic light scattering analysis was reported at 173.6 ± 2.5 nm with polydispersity index of 0.394 ± 0.105 (zeta potential= -58.5 mV). P3DL/PAH/PSSCMA demonstrated a pH-dependent swelling transition; from pH 1 to 7 (102.2% increase). The size increased by 33.0% in reduction response study after incubating with 10 mM glutathione (day 7). HT-29 cells showed high viabilities (86.7%) after treatment with the fabricated nanospheres at 0.8 µg/mL. Cellular internalization was successful with more than 70.0% nanospheres detected in HT-29 cells. Therefore, this fabricated nanospheres may be considered as potential nanocarriers for colon cancer-targeted chemotherapeutic drug delivery.
    Matched MeSH terms: Nanospheres/chemistry
  13. Abdul Manaf SA, Hegde G, Mandal UK, Wui TW, Roy P
    Curr Drug Deliv, 2017;14(8):1071-1077.
    PMID: 27745545 DOI: 10.2174/1567201813666161017130612
    BACKGROUND: Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application.

    OBJECTIVE: The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications.

    METHODS: This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques.

    RESULTS: The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure.

    CONCLUSION: Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications.

    Matched MeSH terms: Nanospheres/chemistry*
  14. Botelho D, Leo BF, Massa C, Sarkar S, Tetley T, Chung KF, et al.
    Front Pharmacol, 2018;9:213.
    PMID: 29632485 DOI: 10.3389/fphar.2018.00213
    Here we examine the organ level toxicology of both carbon black (CB) and silver nanoparticles (AgNP). We aim to determine metal-specific effects to respiratory function, inflammation and potential interactions with lung lining fluid (LLF). C57Bl6/J male mice were intratracheally instilled with saline (control), low (0.05 μg/g) or high (0.5 μg/g) doses of either AgNP or CB 15 nm nanospheres. Lung histology, cytology, surfactant composition and function, inflammatory gene expression, and pulmonary function were measured at 1, 3, and 7 days post-exposure. Acutely, high dose CB resulted in an inflammatory response, increased neutrophilia and cytokine production, without alteration in surfactant composition or respiratory mechanics. Low dose CB had no effect. Neither low nor high dose AgNPs resulted in an acute inflammatory response, but there was an increase in work of breathing. Three days post-exposure with CB, a persistent neutrophilia was noted. High dose AgNP resulted in an elevated number of macrophages and invasion of lymphocytes. Additionally, AgNP treated mice displayed increased expression of IL1B, IL6, CCL2, and IL10. However, there were no significant changes in respiratory mechanics. At day 7, inflammation had resolved in AgNP-treated mice, but tissue stiffness and resistance were significantly decreased, which was accompanied by an increase in surfactant protein D (SP-D) content. These data demonstrate that the presence of metal alters the response of the lung to nanoparticle exposure. AgNP-surfactant interactions may alter respiratory function and result in a delayed immune response, potentially due to modified airway epithelial cell function.
    Matched MeSH terms: Nanospheres
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links