TRIAL DESIGN: The study is a randomized, placebo-controlled, adaptive clinical trial with parallel group design, superiority framework with an allocation ratio of 1:1 among experimental (HNS) and placebo group. An interim analysis will be done when half of the patients have been recruited to evaluate the need to adapt sample size, efficacy, and futility of the trial.
PARTICIPANTS: All asymptomatic patients with hospital or community based COVID-19 exposure will be screened if they have had 4 days exposure to a confirmed case. Non-pregnant adults with significant exposure level will be enrolled in the study High-risk exposure (<6 feet distance for >10min without face protection) Moderate exposure (<6 feet distance for >10min with face protection) Subjects with acute or chronic infection, COVID-19 vaccinated, and allergy to HNS will be excluded from the study. Recruitment will be done at Shaikh Zayed Post-Graduate Medical Institute, Ali Clinic and Doctors Lounge in Lahore (Pakistan).
INTERVENTION AND COMPARATOR: In this clinical study, patients will receive either raw natural honey (0.5 g) and encapsulated organic Nigella sativa seeds (40 mg) per kg body weight per day or empty capsule with and 30 ml of 5% dextrose water as a placebo for 14 days. Both the natural products will be certified for standardization by Government College University (Botany department). Furthermore, each patient will be given standard care therapy according to version 3.0 of the COVID-19 clinical management guidelines by the Ministry of National Health Services of Pakistan.
MAIN OUTCOMES: Primary outcome will be Incidence of COVID-19 cases within 14 days of randomisation. Secondary endpoints include incidence of COVID-19-related symptoms, hospitalizations, and deaths along with the severity of COVID-19-related symptoms till 14th day of randomization.
RANDOMISATION: Participants will be randomized into experimental and control groups (1:1 allocation ratio) via the lottery method. There will be stratification based on high risk and moderate risk exposure.
BLINDING (MASKING): Quadruple blinding will be ensured for the participants, care providers and outcome accessors. Data analysts will also be blinded to avoid conflict of interest. Site principal investigator will be responsible for ensuring masking.
NUMBERS TO BE RANDOMISED (SAMPLE SIZE): 1000 participants will be enrolled in the study with 1:1 allocation.
TRIAL STATUS: The final protocol version 1.4 was approved by institutional review board of Shaikh Zayed Post-Graduate Medical Complex on February 15, 2021. The trial recruitment was started on March 05, 2021, with a trial completion date of February 15, 2022.
TRIAL REGISTRATION: Clinical trial was registered on February 23, 2021, www.clinicaltrials.gov with registration ID NCT04767087 .
FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). With the intention of expediting dissemination of this trial, the conventional formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines.
AIMS: This study aimed at developing and characterizing the ethanolic vesicular hydrogel system of Nigella sativa (NS) oil (NS EV hydrogel) for the enhancement of anti-psoriatic activity.
OBJECTIVE: The objective of this study was to develop NS EV hydrogel and evaluate its anti-psoriatic activity.
METHODS: The identification and quantification of TQ content in different NS seed extracts and marketed oil were measured by an HPTLC method using n-hexane and ethyl acetate as solvent systems. Preparation of ethanolic vesicles (EVs) was performed by solvent injection method, while its antipsoriatic activity was evaluated employing an Imiquad (IMQ)-induced plaque psoriasis animal model.
RESULTS: A compact HPTLC band was obtained for TQ at an Rf value of 0.651. The calibration plot was linear in the range of 1-10 μg/spot, and the correlation coefficient of 0.990 was indicative of good linear dependence of peak area on concentration. From the different NS sources, the high TQ content was obtained in the marketed cold press oil, i.e., 1.45±0.08 mg/ml. Out of various NS oilloaded EVs, the F6 formulation revealed the smallest particle size (278.1 nm), with log-normal size distribution (0.459) and adequate entrapment efficiency. A non-uniform shape was observed in the transmission electron microscopy. The viscosity of F6 formulation hydrogel was 32.34 (Pa·s), which exhibited plastic behavior. In vivo, efficacy studies demonstrated decreased inflammation of the epidermis and dermis and a marked decrease in the levels of IL-17 by NS EV hydrogel compared to plain NS oil and standard drugs (Betamethasone and Dr. JRK Psorolin Oil).
CONCLUSION: It may be concluded from the findings that NS-loaded EV gel was as good as betamethasone cream but more efficacious than the other treatments.
Methods: The TQ-PLGA NPs were prepared and characterized for size, zeta potential, encapsulation efficiency, and release profile.
Results: The particle size was 147.2 nm, with 22.1 positive zeta potential and 96.8% encapsulation efficiency. The NPs released 45.6% of the encapsulated TQ within 3 h followed by characteristic sustained release over 7 days with a total of 69.7% cumulative release. TQ-PLGA NPs were taken up effectively by the cells in a time-dependent manner up to 24 h. Higher cell toxicity was determined within the first 24 h in melanoma cells due to the rapid release of TQ from the NPs and its low stability in the cell culture media.
Conclusion: TQ-PLGA NPs is a potential anticancer agent taking advantage of the sustained release and tailored size that allows accumulation in the cancer tissue by the enhanced permeability and retention effect. However, stability problems of the active ingredient were address in this study and requires further investigation.
METHODS: This systematic review was conducted by performing searches for relevant publications on two databases (PubMed and Scopus). The publication period was limited from January 2011 to December 2021. Cochrane collaboration tools were used for the risk of bias assessment of each trial.
RESULT: Six out of 8 randomised controlled trials (n:776) demonstrated a significant improvement in lipid profile (p <0.05), 5 out of 7 trials (n:701) showed a significant reduction in glycaemic indices (p <0.05), 1 out of 5 trials (n:551) demonstrated significant improvements in blood pressure (p <0.05), and 2 out of 7 trials (n:705) showed a significant reduction in anthropometric measurements (p <0.05).
CONCLUSION: Nigella Sativa has proved to have a significant positive effect on lipid profile and glycaemic index. The results showed in the parameters of blood pressure and anthropometric indices are less convincing, as results were inconsistent across studies. Nigella Sativa can therefore be recommended as an adjunct therapy for metabolic syndrome.