Displaying all 11 publications

Abstract:
Sort:
  1. Chua LK, Lim CL, Ling APK, Chye SM, Koh RY
    Plant Foods Hum Nutr, 2019 Mar;74(1):18-27.
    PMID: 30535971 DOI: 10.1007/s11130-018-0704-z
    Cancer is a preventable and treatable disease, however, the incidence rates are on the rise. Classical treatment modalities for cancer include surgery, radiotherapy and chemotherapy. However, these are associated with detrimental side effects such as nausea and emesis. Therefore, researchers currently vest interest in complementary and alternative medicines for cancer treatment and prevention. Plants such as Syzygium sp. are a common basis of complementary medicines due to its abundance of bioactive phytochemicals. Numerous natural compounds derived from Syzygium sp., such as phenolics, oleanolic acids, and betulinic acids, and dimethyl cardamonins, were reported to have anticancer effects. Many possess the ability to inhibit cell proliferation and induce apoptosis. In this review, we discuss the vast potential Syzygium sp. harbours as a source of anticancer natural compounds due to its abundance, easy acceptability, affordability and safety for regular consumption.
    Matched MeSH terms: Oleanolic Acid/pharmacology
  2. Suthar SK, Boon HL, Sharma M
    Eur J Med Chem, 2014 Mar 3;74:135-44.
    PMID: 24457265 DOI: 10.1016/j.ejmech.2013.12.052
    The C-3, C-17 and C-22 congeners of pentacyclic triterpenoids reduced lantadene A (3), B (4) and 22β-hydroxyoleanolic acid (5) were synthesized and were tested in vitro for their NF-κB and IKKβ inhibitory potencies and cytotoxicity against A549 lung cancer cells. The lead congeners 12 and 13 showed IC50 of 0.56 and 0.42 μmol, respectively against TNF-α induced activation of NF-κB. The congeners 12 and 13 exhibited inhibition of IKKβ in a single-digit micromolar dose and at the same time, 12 and 13 showed marked cytotoxicity against A549 lung cancer cells with IC50 of 0.12 and 0.08 μmol, respectively. The lead ester congeners were stable in the acidic pH, while hydrolyzed readily in the human blood plasma to release the active parent moieties.
    Matched MeSH terms: Oleanolic Acid/pharmacology*
  3. Anouar el H, Zakaria NS, Alsalme A, Shah SA
    Mini Rev Med Chem, 2015;15(14):1148-58.
    PMID: 26205959
    A natural pentacyclic triterpenoid oleanolic acid 1 and its biotransformed metabolites 2-3 are potential α-glucosidase inhibitors. To elucidate the inhibitory mechanism of compounds 1, 2 and 3 against α-glucosidase, we calculated (i) their electronic and optical properties using DFT and TD-DFT at the B3LYP/6-31G(d) level in gas and IEF-PCM solvent; and (ii) their binding energies to α-glucosidase via docking study. DFT results showed that the α-glucosidase inhibtion is mainly depend on the polarity parameters of the studied compounds. Docking results revealed that the activity increased with binding energies (i.e. the stability of ligand-receptor complex). The specroscopic data of oleanolic acid 1 and its metabolites 2 and 3 are well predicetd for 13C NMR chemical shifts (R2=99%) and 1H NMR chemical shifts (R2=90%); and for (ii) UV/vis spectra. The assignments and interpretation of NMR chemical shifts and bathochromic shift of λMAX absorption bands are discussed.
    Matched MeSH terms: Oleanolic Acid/pharmacology*
  4. Yeong LT, Abdul Hamid R, Saiful Yazan L, Khaza'ai H, Awang Hamsin DE
    Nat Prod Res, 2014;28(22):2026-30.
    PMID: 24836304 DOI: 10.1080/14786419.2014.917415
    An isomeric mixture of α,β-amyrin (triterpene) and 2-methoxy-6-undecyl-1,4-benzoquinone (quinone) isolated from the Ardisia crispa root hexane (ACRH) extract was reported to possess anti-inflammatory properties in vivo. Considering the close association between inflammation and cancer, on top of the lack of antitumour study on those compounds, this study aimed to determine the potential of both compounds against tumour promotion in vitro, either as single agent or in combination. Triterpene and quinone compounds, as well as triterpene-quinone fraction (TQF) and ACRH were subjected to inhibition of Epstein-Barr virus-early antigen (EBV-EA) activation assay for that purpose. Compared with curcumin (positive control), inhibition against EBV-EA activation occurred in the order: ACRH>TQF ≥ curcumin>α,β-amyrin ≥ 2-methoxy-6-undecyl-1,4-benzoquinone. These findings reported, for the first time, the antitumor-promoting effect of α,β-amyrin and 2-methoxy-6-undecyl-1,4-benzoquinone from the roots of A. crispa, which was enhanced when both compounds act in synergy.
    Matched MeSH terms: Oleanolic Acid/pharmacology
  5. Grace-Lynn C, Darah I, Chen Y, Latha LY, Jothy SL, Sasidharan S
    Molecules, 2012 Sep 19;17(9):11185-98.
    PMID: 22992785
    Lantadenes are pentacyclic triterpenoids present in the leaves of the plant Lantana camara. In the present study, in vitro antioxidant activity and free radical scavenging capacity of lantadene A was evaluated using established in vitro models such as ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picryl-hydrazyl (DPPH•), hydroxyl radical (OH•), nitric oxide radical (NO•), superoxide anion scavenging activities and ferrous ion chelating assay. Interestingly, lantadene A showed considerable in vitro antioxidant, free radical scavenging capacity activities in a dose dependant manner when compared with the standard antioxidant in nitric oxide scavenging, superoxide anion radical scavenging and ferrous ion chelating assay. These findings show that the lantadene A possesses antioxidant activity with different mechanism of actions towards the different free radicals tested. Since lantadene A is a very popular drug in modern medicine, it is a promising candidate for use as an antioxidant and hepatoprotective agent.
    Matched MeSH terms: Oleanolic Acid/pharmacology
  6. Rothan HA, Zhong Y, Sanborn MA, Teoh TC, Ruan J, Yusof R, et al.
    Antiviral Res, 2019 11;171:104590.
    PMID: 31421166 DOI: 10.1016/j.antiviral.2019.104590
    Two major flaviviruses, dengue virus (DENV) and Zika virus (ZIKV), cause severe health and economic burdens worldwide. Recently, genome-wide screenings have uncovered the importance of regulators of the Hrd1 ubiquitin ligase-mediated endoplasmic reticulum (ER)-associated degradation (ERAD) pathway for flavivirus replication in host cells. Here we report the identification of the compound Bardoxolone methyl (CDDO-me) as a potent inhibitor of the Hrd1 ubiquitin ligase-mediated ERAD, which possesses a broad-spectrum activity against both DENV and ZIKV. Cellular thermal shift assay (CETSA) suggested that CDDO-me binds to grp94, a key component of the Hrd1 pathway, at a low nanomolar concentration, whereas interaction was not detected with its paralog Hsp90. CDDO-me and the grp94 inhibitor PU-WS13 substantially suppressed DENV2 replication and the cytopathic effects caused by DENV and ZIKV infection. The antiviral activities of both compounds were demonstrated for all four DENV serotypes and four ZIKV strains in multiple human cell lines. This study defines grp94 as a crucial host factor for flavivirus replication and identified CDDO-me as a potent small molecule inhibitor of flavivirus infection. Inhibition of grp94 may contribute to the antiviral activity of CDDO-me. Further investigation of grp94 inhibitors may lead to a new class of broad-spectrum anti-flaviviral medications.
    Matched MeSH terms: Oleanolic Acid/pharmacology
  7. Chung PY
    Phytomedicine, 2020 Jul 15;73:152933.
    PMID: 31103429 DOI: 10.1016/j.phymed.2019.152933
    BACKGROUND: Staphylococcus aureus is an important pathogen both in community-acquired and healthcare-associated infections, and has successfully evolved numerous strategies for resisting the action to practically all antibiotics. Resistance to methicillin is now widely described in the community setting (CMRSA), thus the development of new drugs or alternative therapies is urgently necessary. Plants and their secondary metabolites have been a major alternative source in providing structurally diverse bioactive compounds as potential therapeutic agents for the treatment of bacterial infections. One of the classes of natural secondary metabolites from plants with the most bioactive compounds are the triterpenoids, which comprises structurally diverse organic compounds. In nature, triterpenoids are often found as tetra- or penta-cyclic structures.

    AIM: This review highlights the anti-staphylococcal activities of pentacyclic triterpenoids, particularly α-amyrin (AM), betulinic acid (BA) and betulinaldehyde (BE). These compounds are based on a 30-carbon skeleton comprising five six-membered rings (ursanes and lanostanes) or four six-membered rings and one five-membered ring (lupanes and hopanes).

    METHODS: Electronic databases such as ScienceDirect, PubMed and Scopus were used to search scientific contributions until March 2018, using relevant keywords. Literature focusing on the antimicrobial and antibiofilms of effects of pentacyclic triterpenoids on S. aureus were identified and summarized.

    RESULTS: Pentacyclic triterpenoids can be divided into three representative classes, namely ursane, lupane and oleananes. This class of compounds have been shown to exhibit analgesic, immunomodulatory, anti-inflammatory, anticancer, antioxidant, antifungal and antibacterial activities. In studies of the antimicrobial activities and targets of AM, BA and BE in sensitive and multidrug-resistant S. aureus, these compounds acted synergistically and have different targets from the conventional antibiotics.

    CONCLUSION: The inhibitory mechanisms of S. aureus in novel targets and pathways should stimulate further researches to develop AM, BA and BE as therapeutic agents for infections caused by S. aureus. Continued efforts to identify and exploit synergistic combinations by the three compounds and peptidoglycan inhibitors, are also necessary as alternative treatment options for S. aureus infections.

    Matched MeSH terms: Oleanolic Acid/pharmacology
  8. Chung PY, Chung LY, Navaratnam P
    Fitoterapia, 2014 Apr;94:48-54.
    PMID: 24508863 DOI: 10.1016/j.fitote.2014.01.026
    The evolution of antibiotic resistance in Staphylococcus aureus showed that there is no long-lasting remedy against this pathogen. The limited number of antibacterial classes and the common occurrence of cross-resistance within and between classes reinforce the urgent need to discover new compounds targeting novel cellular functions not yet targeted by currently used drugs. One of the experimental approaches used to discover novel antibacterials and their in vitro targets is natural product screening. Three known pentacyclic triterpenoids were isolated for the first time from the bark of Callicarpa farinosa Roxb. (Verbenaceae) and identified as α-amyrin [3β-hydroxy-urs-12-en-3-ol], betulinic acid [3β-hydroxy-20(29)-lupaene-28-oic acid], and betulinaldehyde [3β-hydroxy-20(29)-lupen-28-al]. These compounds exhibited antimicrobial activities against reference and clinical strains of methicillin-resistant (MRSA) and methicillin-sensitive S. aureus (MSSA), with minimum inhibitory concentration (MIC) ranging from 2 to 512 μg/mL. From the genome-wide transcriptomic analysis to elucidate the antimicrobial effects of these compounds, multiple novel cellular targets in cell division, two-component system, ABC transporters, fatty acid biosynthesis, peptidoglycan biosynthesis, aminoacyl-tRNA synthetases, ribosomes and β-lactam resistance pathways are affected, resulting in destabilization of the bacterial cell membrane, halt in protein synthesis, and inhibition of cell growth that eventually lead to cell death. The novel targets in these essential pathways could be further explored in the development of therapeutic compounds for the treatment of S. aureus infections and help mitigate resistance development due to target alterations.
    Matched MeSH terms: Oleanolic Acid/pharmacology
  9. Mooi LY, Yew WT, Hsum YW, Soo KK, Hoon LS, Chieng YC
    Asian Pac J Cancer Prev, 2012;13(4):1177-82.
    PMID: 22799301
    Protein kinase C (PKC) has been implicated in carcinogenesis and displays variable expression profiles during cancer progression. Studies of dietary phytochemicals on cancer signalling pathway regulation have been conducted to search for potent signalling regulatory agents. The present study was designed to evaluate any suppressive effect of maslinic acid on PKC expression in human B-lymphoblastoid cells (Raji cells), and to identify the PKC isoforms expressed. Effects of maslinic acid on PKC activity were determined using a PepTag assay for non-radioactive detection of PKC. The highest expression in Raji cells was obtained at 20 nM PMA induced for 6 hours. Suppressive effects of maslinic acid were compared with those of four PKC inhibitors (H- 7, rottlerin, sphingosine, staurosporine) and two triterpenes (oleanolic acid and ursolic acid). The IC₅₀ values achieved for maslinic acid, staurosporine, H-7, sphingosine, rottlerin, ursolic acid and oleanolic acid were 11.52, 0.011, 0.767, 2.45, 5.46, 27.93 and 39.29 μM, respectively. Four PKC isoforms, PKC βI, βII, δ, and ζ, were identified in Raji cells via western blotting. Maslinic acid suppressed the expression of PKC βI, δ, and ζ in a concentration-dependent manner. These preliminary results suggest promising suppressive effects of maslinic acid on PKC activity in Raji cells. Maslinic acid could be a potent cancer chemopreventive agent that may be involved in regulating many downstream signalling pathways that are activated through PKC receptors.
    Matched MeSH terms: Oleanolic Acid/pharmacology
  10. Monika, Sharma A, Suthar SK, Aggarwal V, Lee HB, Sharma M
    Bioorg Med Chem Lett, 2014 Aug 15;24(16):3814-8.
    PMID: 25027934 DOI: 10.1016/j.bmcl.2014.06.068
    The new series of pentacyclic triterpenoids reduced lantadene A (3), B (4), and 22β-hydroxy-3-oxo-olean-12-en-28-oic acid (5) analogs were synthesized and tested in vitro for their NF-κB and IKKβ inhibitory potencies and cytotoxicity against A549 lung cancer cells. The lead analog (11) showed sub-micromolar activity against TNF-α induced activation of NF-κB and exhibited inhibition of IKKβ in a single-digit micromolar dose. At the same time, 11 showed promising cytotoxicity against A549 lung cancer cells with IC50 of 0.98 μM. The Western blot analysis further showed that the suppression of NF-κB activity by the lead analog 11 was due to the inhibition of IκBα degradation, a natural inhibitor of NF-κB. The physicochemical evaluation demonstrated that the lead analog 11 was stable in the simulated gastric fluid of pH 2, while hydrolyzed at a relatively higher rate in the human blood plasma to release the active parent moieties. Molecular docking analysis showed that 11 was hydrogen bonded with the Arg-31 and Gln-110 residues of the IKKβ.
    Matched MeSH terms: Oleanolic Acid/pharmacology
  11. Hsum YW, Yew WT, Hong PL, Soo KK, Hoon LS, Chieng YC, et al.
    Planta Med, 2011 Jan;77(2):152-7.
    PMID: 20669087 DOI: 10.1055/s-0030-1250203
    Chronic inflammation is one of the predisposing factors for neoplastic transformation. Targeting inflammation through suppression of the pro-inflammatory pathway by dietary phytochemicals provides an important strategy for cancer prevention. Maslinic acid is a novel natural triterpenoid known to inhibit proliferation and induce apoptosis in some tumor cell lines. Although maslinic acid has cytotoxic and pro-apoptotic effects on cancer cells, the underlying mechanisms of its effects on the inflammatory pathway have yet to be elucidated. It has been reported that abnormal expression of pro-inflammatory enzyme cyclooxygenase-2 (COX-2) causes promotion of cellular proliferation, suppression of apoptosis, enhancement of angiogenesis and invasiveness. In the present study, the suppressive effect of maslinic acid on COX-2 expression and the binding activity of upstream transcription factors NF- κB and AP-1, which are known to regulate COX-2 transcriptional activation, were assessed using Raji cells. The anti-inflammatory action of maslinic acid was benchmarked against oleanolic acid and other standard drugs. Western blot analysis and electrophoretic mobility shift assay (EMSA) were employed to analyze COX-2 expression as well as NF- κB and AP-1 binding activity. Our results showed that maslinic acid suppresses COX-2 expression in a concentration-dependent manner. Likewise, the constitutive nuclear NF- κB (p65) activity as well as phorbol 12-myristate 13-acetate (PMA)- and sodium N-butyrate (SnB)-induced AP-1 binding activity in Raji cells were significantly reduced following treatment with maslinic acid. Since maslinic acid suppresses COX-2 expression in Raji cells at concentrations that also lowered the NF- κB (p65) and AP-1 binding activity, it is possible that the suppression of COX-2 by this natural triterpenoid might be achieved, at least in part, via the NF- κB and AP-1 signaling pathways.
    Matched MeSH terms: Oleanolic Acid/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links