Displaying publications 1 - 20 of 51 in total

Abstract:
Sort:
  1. Abdul Manas NH, Md Illias R, Mahadi NM
    Crit Rev Biotechnol, 2018 Mar;38(2):272-293.
    PMID: 28683572 DOI: 10.1080/07388551.2017.1339664
    BACKGROUND: The increasing market demand for oligosaccharides has intensified the need for efficient biocatalysts. Glycosyl hydrolases (GHs) are still gaining popularity as biocatalyst for oligosaccharides synthesis owing to its simple reaction and high selectivity.

    PURPOSE: Over the years, research has advanced mainly directing to one goal; to reduce hydrolysis activity of GHs for increased transglycosylation activity in achieving high production of oligosaccharides.

    DESIGN AND METHODS: This review concisely presents the strategies to increase transglycosylation activity of GHs for oligosaccharides synthesis, focusing on controlling the reaction equilibrium, and protein engineering. Various modifications of the subsites of GHs have been demonstrated to significantly modulate the hydrolysis and transglycosylation activity of the enzymes. The clear insight of the roles of each amino acid in these sites provides a platform for designing an enzyme that could synthesize a specific oligosaccharide product.

    CONCLUSIONS: The key strategies presented here are important for future improvement of GHs as a biocatalyst for oligosaccharide synthesis.

    Matched MeSH terms: Oligosaccharides/chemistry*
  2. Narisetty V, Parhi P, Mohan B, Hakkim Hazeena S, Naresh Kumar A, Gullón B, et al.
    Bioresour Technol, 2022 Feb;346:126590.
    PMID: 34953996 DOI: 10.1016/j.biortech.2021.126590
    Lignocellulosic wastes have the ability to be transformed into oligosaccharides and other value-added products. The synthesis of oligosaccharides from renewable sources bestow to growing bioeconomies. Oligosaccharides are synthesized chemically or biologically from agricultural residues. These oligosaccharides are functional food supplements that have a positive impact on humans and livestock. Non-digestible oligosaccharides, refered as prebiotics are beneficial for the colonic microbiota inhabiting the f the digestive system. These microbiota plays a crucial role in stimulating the host immune system and other physiological responses. The commonly known prebiotics, galactooligosaccharides (GOS), xylooligosaccharides (XOS), fructooligosaccharides (FOS), mannanooligosaccharides (MOS), and isomaltooligosaccharides (IOS) are synthesized either through enzymatic or whole cell-mediated approaches using natural or agricultural waste substrates. This review focusses on recent advancements in biological processes, for the synthesis of oligosaccharides using renewable resources (lignocellulosic substrates) for sustainable circular bioeconomy. The work also addresses the limitations associated with the processes and commercialization of the products.
    Matched MeSH terms: Oligosaccharides*
  3. Abd Rahman NH, Rahman RA, Rahmat Z, Jaafar NR, Puspaningsih NNT, Illias RM
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128260.
    PMID: 38000618 DOI: 10.1016/j.ijbiomac.2023.128260
    Pectinases are outstanding multienzymes, which have the potential to produce new emerging pectic-oligosaccharides (POS) via enzymatic hydrolysis of pectin. However, free pectinase is unable to undergo repeated reaction for the production of POS. This study proposed a sustainable biocatalyst of pectinases known as cross-linked pectinase aggregates (CLPA). Pectinase from Aspergillus aculeatus was successfully precipitated using 2 mg/mL pectinase and 60 % acetone for 20 min at 20 °C, which remained 36.3 % of its initial activity. The prepared CLPA showed the highest activity recovery (85.0 %), under the optimised conditions (0.3 % (v/v) starch and glutaraldehyde mixture (St/Ga), 1.5: 1 of St/Ga, 25 °C, 1.5 h). Furthermore, pectin-degrading enzymes from various sources were used to produce different CLPA. The alteration of pectinase secondary structure gave high stability in acidic condition (pH 4), thermostability, deactivation energy and half-life, and improved storage stability at 4 °C for 30 days. Similarly to their free counterpart, the CLPA exhibited comparable enzymatic reaction kinetics and could be reused eight times with approximately 20 % of its initial activity. The developed CLPA does not only efficaciously produced POS from pectin as their free form, but also exhibited better operational stability and reusability, making it more suitable for POS production.
    Matched MeSH terms: Oligosaccharides/chemistry
  4. Faseleh Jahromi M, Shokryazdan P, Idrus Z, Ebrahimi R, Liang JB
    PLoS One, 2017;12(9):e0184553.
    PMID: 28880894 DOI: 10.1371/journal.pone.0184553
    Palm kernel cake (PKC) is the main byproduct from the palm oil industry in several tropical countries that contains considerable amounts of oligosaccharide. We earlier demonstrated beneficial prebiotic effects of oligosaccharides extract of PKC (OligoPKC) in starter and finisher broiler birds. This study was envisaged to elucidate the effects of in ovo and/or oral administration of the OligoPKC on prenatal and post-hatched broiler chicks. A total of 140 broiler (Cobb500) eggs were randomly divided into two groups (n = 70 each), and on day 12 of incubation, eggs in one group received in ovo injection of 0.1 mL (containing 20 mg) of OligoPKC, while those in the other group received 0.1 mL of saline (placebo) solution. Of these in ovo placebo or OligoPKC injected eggs, after hatching, six chicks from each group were sampled for day-one analysis, while 48 chicks from each group were randomly allocated to two dietary regimes involving either no feeding or feeding of OligoPKC through basal diet for a 14 days experiment forming the experimental groups as: (i) saline-injected (Control, C), (ii) OligoPKC-injected (PREBovo), (iii) saline-injected, but fed 1% OligoPKC (PREBd), and (iv) OligoPKC-injected and also 1% OligoPKC (PREBovo+d). In ovo injection of prebiotic OligoPKC had no effect on body weight and serum immunoglobulins concentrations of day old chicks, except for IgG, which was increased significantly (P<0.05). Body weight and feed conversion ratio of 14 days old chicks were neither affected by in ovo injection nor feeding of OligoPKC. However, populations of cecal total bacteria and major beneficial bacteria of the chicks were markedly enhanced by feeding of OligoPKC (PREBd and PREBovo+d > C and PREBovo), but lesser influenced by in ovo OligoPKC injection. Irrespective of its prior in ovo exposure, chicks fed OligoPKC diets had lower population of pathogenic bacteria. Overall serum immunoglobulin status of birds was improved by feeding of OligoPKC but in ovo OligoPKC injection had minor effect on that. In most cases, in ovo OligoPKC injection and feeding of OligoPKC reduced the expression of nutrient transporters in the intestine and improved antioxidant capacity of liver and serum. It is concluded that in ovo injection of OligoPKC increased IgG production and antioxidant capacity in serum and liver of prenatal chicks and had limited carrying-over effects on the post-hatched chicks comparing to the supplementary feeding of OligoPKC.
    Matched MeSH terms: Oligosaccharides/administration & dosage; Oligosaccharides/pharmacology*; Oligosaccharides/chemistry
  5. Sarbini SR, Kolida S, Gibson GR, Rastall RA
    Br J Nutr, 2013 Jun;109(11):1980-9.
    PMID: 23116939 DOI: 10.1017/S0007114512004205
    The fermentation selectivity of a commercial source of a-gluco-oligosaccharides (BioEcolians; Solabia) was investigated in vitro. Fermentation by faecal bacteria from four lean and four obese healthy adults was determined in anaerobic, pH-controlled faecal batch cultures. Inulin was used as a positive prebiotic control. Samples were obtained at 0, 10, 24 and 36 h for bacterial enumeration by fluorescent in situ hybridisation and SCFA analyses. Gas production during fermentation was investigated in non-pH-controlled batch cultures. a-Gluco-oligosaccharides significantly increased the Bifidobacterium sp. population compared with the control. Other bacterial groups enumerated were unaffected with the exception of an increase in the Bacteroides–Prevotella group and a decrease in Faecalibacterium prausnitzii on both a-gluco-oligosaccharides and inulin compared with baseline. An increase in acetate and propionate was seen on both substrates. The fermentation of a-gluco-oligosaccharides produced less total gas at a more gradual rate of production than inulin. Generally, substrates fermented with the obese microbiota produced similar results to the lean fermentation regarding bacteriology and metabolic activity. No significant difference at baseline (0 h) was detected between the lean and obese individuals in any of the faecal bacterial groups studied.
    Matched MeSH terms: Oligosaccharides/metabolism*; Oligosaccharides/chemistry
  6. Iyngkaran, N., Yadav, M., Boey, G.B., Davis, K.
    MyJurnal
    Estimation of oligosaccharidases in the jejunal mucosa is useful in the diagnosis and evaluation of primary and secondary oligosaccharide intolerance. Until recently these enzymes have been estimated by the method of Dahlgvist.4While the method is accurate and reliable it is tedious and cumbersome. We describe here a semi quantitative method, using the glucose analyser. (Copied from article).
    Matched MeSH terms: Oligosaccharides
  7. Phang, Y.L., Chan, H.K.
    MyJurnal
    A study was done on the feasibility of inulin, a fructooligosaccharides with the health benefits of prebiotic, as partial sugar replacer in “kaya” by investigating the effects of different substitution levels (0%; control, 10%, 30% and 50%) on the sensory properties. The samples were investigated by 10 descriptive panelists for colour, sweetness, smoothness, firmness, adhesiveness and spreadability attributes before further evaluated by 100 consumers for acceptance levels. Consistent with the descriptive panel, the evaluation by the consumers showed formulated samples at 10% and 30% were comparable to the commercial “kaya” being no significant difference (p>0.05) found in acceptability scores. 50% substitution received lower acceptability scores and was significantly different (p
    Matched MeSH terms: Oligosaccharides
  8. Hussain, H., Ngaini, Z., Chong, N.F-M.
    MyJurnal
    The accurate determination of reducing ends of malto-oligosaccharides is essential for calculating the enzyme activities of starch debranching enzymes. The suitability of the 3,5-Dinitrosalicylic acid (DNS) method, the Dygert method, and the Bicinchoninic acid (BCA) method for accurate determination of reducing ends from malto-oligosaccharides of different chain lengths is compared. The results showed that BCA assay was much more accurate than the other assays. The results for the BCA assay showed that different malto-oligosaccharides gave observed (measured) values that were significantly similar to the expected (predetermined) values. In contrast, the DNS and Dygert assays underestimated the amount of reducing sugar present for glucose. Furthermore, both DNS and Dygert methods showed increasing degree of overestimation of the amount of reducing sugar present with the increasing length of the malto-oligosaccharide sugar chains. The BCA assay can suitably quantify reducing sugars even in mixtures of oligosaccharides with different chain lengths. Thus, enzyme activities can be measured without bias towards higher values for enzymes that preferentially cleave the longer chain lengths.
    Matched MeSH terms: Oligosaccharides
  9. Yip YS, Manas NHA, Jaafar NR, Rahman RA, Puspaningsih NNT, Illias RM
    Int J Biol Macromol, 2023 Jul 01;242(Pt 1):124675.
    PMID: 37127056 DOI: 10.1016/j.ijbiomac.2023.124675
    Maltooligosaccharides (MOS) are functional oligosaccharides that can be synthesized through enzymatic cascade reaction between cyclodextrin glucanotransferase (CGTase) and maltogenic amylase (Mag1) from Bacillus lehensis G1. To address the problems of low operational stability and non-reusability of free enzymes, both enzymes were co-immobilized as combined cross-linked enzyme aggregates (Combi-CLEAs-CM) with incorporation of bovine serum albumin (BSA) and Tween 80 (Combi-CLEAs-CM-add). Combi-CLEAs-CM and Combi-CLEAs-CM-add showed activity recoveries of 54.12 % and 69.44 %, respectively after optimization. Combi-CLEAs-CM-add showed higher thermal stability at higher temperatures (40 °C) with longer half-life (46.20 min) as compared to those of free enzymes (36.67 min) and Combi-CLEAs-CM (41.51 min). Both combi-CLEAs also exhibited higher pH stability over pH 5 to pH 9, and displayed excellent reusability with >50 % of initial activity retained after four cycles. The reduction in Km value of about 22.80 % and 1.76-fold increase in starch hydrolysis in comparison to Combi-CLEAs-CM attested the improvement of enzyme-substrate interaction by Tween 80 and pores formation by BSA in Combi-CLEAs-CM-add. The improved product specificity of Combi-CLEAs-CM-add also produced the highest yield of MOS (492 mg/g) after 3 h. Therefore, Combi-CLEAs-CM-add with ease of preparation, excellent reusability and high operational stability is believed to be highly efficacious biocatalyst for MOS production.
    Matched MeSH terms: Oligosaccharides
  10. Chuah KH, Mahadeva S
    J Gastroenterol Hepatol, 2024 Feb;39(2):217-218.
    PMID: 38238032 DOI: 10.1111/jgh.16487
    Matched MeSH terms: Oligosaccharides
  11. Sukri SSM, Mimi Sakinah AM
    Appl Biochem Biotechnol, 2018 Jan;184(1):278-290.
    PMID: 28676961 DOI: 10.1007/s12010-017-2542-0
    The present study explores the utilisation of a new raw material from lignocellulose biomass, Meranti wood sawdust (MWS) for high commercial value xylooligosaccharides (XOS) production using immobilised xylanase. The xylanase was immobilised by a combination of entrapment and covalent binding techniques. The hemicellulosic xylan from MWS was extracted using a standard chlorite delignification method. The production of total and derivatives of XOS from the degradation of the hemicellulosic xylan of MWS were compared to the production from the commercial xylan from Beechwood. The utilisation of the extracted xylan from MWS yielded 0.36 mg/mL of total XOS after 60 h of hydrolysis. During the hydrolysis reaction, the immobilised xylanase released a lower degree of polymerisation (DP) of XOS, mainly X2 and X3, which were the major products of xylan degradation by xylanase enzymes. The production of XOS with a lower DP from MWS demonstrated the biotechnological potential of the MWS in the future. The XOS production retained about 70% of its initial XOS production during the second cycle. This is also the first report on the utilisation of MWS wastes in enzymatic hydrolysis using immobilised xylanase for XOS production.
    Matched MeSH terms: Oligosaccharides/chemical synthesis*
  12. Shamsudin N, Tan AL, Wimmer FL, Young DJ, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Sep 1;71(Pt 9):1026-31.
    PMID: 26396840 DOI: 10.1107/S2056989015014280
    The asymmetric unit of the title compound, 2[Zn(C32H16N8)(C7H9N)]·3C7H9N, comprises two independent complex mol-ecules and three benzyl-amine solvent mol-ecules. Each complex mol-ecule features a penta-coordinated Zn(2+) ion within a square-pyramidal geometry, whereby the N5 donor set is defined by four atoms of the phthalocyaninate dianion (PC) and an N-bound benzyl-amine mol-ecule; it is the relative orientations of the latter that differentiate between the independent complex mol-ecules. The uncoordinated benzyl-amine mol-ecules display different conformations in the structure, with syn-Car-Car-Cm-N (ar = aromatic, m = methyl-ene) torsion angles spanning the range -28.7 (10) to 35.1 (14)°. In the crystal, N-H⋯N and N-H⋯π inter-actions lead to supra-molecular layers in the ab plane. The layers have a zigzag topology, have the coordinating and non-coordinating benzyl-amine mol-ecules directed to the inside, and present the essentially flat PC resides to the outside. This arrangement enables adjacent layers to associate via π-π inter-actions [inter-centroid distance between pyrrolyl and fused-benzene rings = 3.593 (2) Å] so that a three-dimensional architecture is formed.
    Matched MeSH terms: Oligosaccharides
  13. Kang, O.L., Yong, P.F., Ma’aruf, A.G., Osman, H., Nazaruddin, R.
    MyJurnal
    In this work, oven-dried, freeze-dried and spray-dried agaro-oligosaccharide powders were characterized to investigate their physicochemical and antioxidant properties. Agaro-oligosaccharide powders were shown to exhibit high water solubility index (88.73 – 95.88%), water absorption capacity (0.96 – 2.57 g/g) and oil absorption capacity (0.40 – 0.45 g/g). Agaro-oligosaccharide powders were shown to possess moderate DPPH radical scavenging activity (10.65 – 14.59%), ABTS radical scavenging activity (44 .47 – 65.61%) and ferric reducing antioxidant activity (0.165 – 0.353). Agaro-oligosaccharide powders were further characterized with respect to thermal and pH stability. Agaro-oligosaccharide powders were shown to exhibit high temperature resistance (≤ 100oC) and acid/alkaline resistance.
    Matched MeSH terms: Oligosaccharides
  14. Hajar-Azhari S, Hafiz Abd Rahim M, Razid Sarbini S, Muhialdin BJ, Olusegun L, Saari N
    Food Res Int, 2021 11;149:110677.
    PMID: 34600679 DOI: 10.1016/j.foodres.2021.110677
    Fructooligosaccharides can be produced by direct enzymatic conversion from sucrose-rich sugarcane syrup (SS) consisting of 58.93% sucrose yielding 21.28 g FOS/100 g sucrose. This study evaluated the prebiotic effect of unpurified/purified SS containing FOS for the modulation of the human intestinal microbial composition and short-chain fatty acid production. The unpurified and purified FOS substrates, which were a mixture of 1-kestose, nystose and 1F-fructosylnystose, were supplemented into human faecal culture using a pH-controlled batch fermentation system and significantly increased the Bifidobacterium counts after 5 h fermentation, while Bacteroides/Prevotella counts were highest throughout 24 h fermentation. Meanwhile, Lactobacillus/Enterococcus exhibited a slight increase after 5 h fermentation before reaching a plateau afterwards. The steady Bacteroides/Prevotella growth and increased Bifidobacterium population promoted an increase in the production of short-chain fatty acids acetate (58 ± 2.70 mM), propionate (9.19 ± 5.94 mM) and butyrate (7.15 ± 2.28 mM). These results provide evidence that representative gut microbiota could utilise the enzymatically synthesised FOS to generate short-chain fatty acids as metabolites in pH-controlled conditions, thus FOS from SS are a potential prebiotic ingredient for foods and health drinks.
    Matched MeSH terms: Oligosaccharides
  15. Ahmad Z, Don MM, Mortan SH, Noor RA
    Bioprocess Biosyst Eng, 2010 Jun;33(5):599-606.
    PMID: 19915872 DOI: 10.1007/s00449-009-0381-2
    Recently, the increased demand of fructooligosaccharides (FOS) as a functional food has alarmed researchers to screen and identify new strains capable of producing fructosyltransferase (FTase). FTase is the enzyme that converts the substrate (sucrose) to glucose and fructose. The characterization of complex sugar such as table sugar, brown sugar, molasses, etc. will be carried out and the sugar that contained the highest sucrose concentration will be selected as a substrate. Eight species of macro-fungi will be screened for its ability to produce FTase and only one strain with the highest FTase activity will be selected for further studies. In this work, neural networks (NN) have been chosen to model the process based on their excellent 'resume' in coping with nonlinear process. Bootstrap re-sampling method has been utilized in re-sampling the data in this work. This method has successfully modeled the process as shown in the results.
    Matched MeSH terms: Oligosaccharides/chemical synthesis*; Oligosaccharides/chemistry
  16. Nawawi NN, Hashim Z, Rahman RA, Murad AMA, Bakar FDA, Illias RM
    Int J Biol Macromol, 2020 May 01;150:80-89.
    PMID: 32035147 DOI: 10.1016/j.ijbiomac.2020.02.032
    Maltooligosaccharides (MOSs) are emerging oligosaccharides in food-based applications and can be synthesized through the enzymatic synthesis of maltogenic amylase from Bacillus lehensis G1 (Mag1). However, the lack of enzyme stability makes this approach unrealistic for industrial applications. The formation of cross-linked enzyme aggregates (CLEAs) is a promising tool for improving enzyme stability, and the substrate accessibility problem of CLEA formation was overcome by the addition of porous agents to generate porous CLEAs (p-CLEAs). However, p-CLEAs exhibited high enzyme leaching and low solvent tolerance. To address these problems, p-CLEAs of Mag1 (Mag1-p-CLEAs) were entrapped in calcium alginate beads (CA). Mag1-p-CLEAs-CA prepared with 2.5% (w/v) sodium alginate and 0.6% (w/v) calcium chloride yielded 53.16% (17.0 U/mg) activity and showed a lower deactivation rate and longer half-life than those of entrapped free Mag1 (Mag1-CA) and entrapped non-porous Mag1-CLEAs (Mag1-CLEAs-CA). Moreover, Mag1-p-CLEAs-CA exhibited low enzyme leaching and high tolerance in various solvents compared to Mag1-p-CLEAs. A kinetic study revealed that Mag1-p-CLEAs-CA exhibited relatively high affinity towards beta-cyclodextrin (β-CD) (Km = 0.62 mM). MOSs (300 mg/g) were synthesized by Mag1-p-CLEAs-CA at 50 °C. Finally, the reusability of Mag1-p-CLEAs-CA makes them as a potential biocatalyst for the continuous synthesis of MOSs.
    Matched MeSH terms: Oligosaccharides/biosynthesis*; Oligosaccharides/chemistry
  17. Abd Rahman NH, Jaafar NR, Abdul Murad AM, Abu Bakar FD, Shamsul Annuar NA, Md Illias R
    Int J Biol Macromol, 2020 Sep 15;159:577-589.
    PMID: 32380107 DOI: 10.1016/j.ijbiomac.2020.04.262
    Short-chain fructooligosaccharides (scFOSs) can be produced from the levan hydrolysis using levanase. Levanase from Bacillus lehensis G1 (rlevblg1) is an enzyme that specifically converts levan to scFOSs. However, the use of free levanase presents a lack of stability and reusability, thus hindering the synthesis of scFOSs for continuous reactions. Here, CLEAs for rlevblg1 were prepared and characterized. Cross-linked levanase aggregates using glutaraldehyde (CLLAs-ga) and bovine albumin serum (CLLAs-ga-bsa) showed the best activity recovery of 92.8% and 121.2%, respectively. The optimum temperature of CLLAs-ga and CLLAs-ga-bsa was increased to 35 °C and 40 °C, respectively, from its free rlevblg1 (30 °C). At high temperature (50 °C), the half-life of CLLAs-ga-bsa was higher than that of free rlevblg1 and CLLAs-ga. Both CLLAs exhibited higher stability at pH 9 and pH 10. Hyperactivation of CLLAs-ga-bsa was achieved with an effectiveness factor of more than 1 and with improved catalytic efficiency. After 3 h reaction, CLLAs-ga-bsa produced the highest total scFOSs yield of 35.4% and total sugar of 60.4% per gram levan. Finally, the reusability of CLLAs for 8 cycles with more than 50% activity retained makes them as a potential synthetic catalyst to be explored for scFOSs synthesis.
    Matched MeSH terms: Oligosaccharides/chemical synthesis*; Oligosaccharides/chemistry
  18. Zaman SA, Sarbini SR
    Crit Rev Biotechnol, 2016 Jun;36(3):578-84.
    PMID: 25582732 DOI: 10.3109/07388551.2014.993590
    Resistant starch is defined as the total amount of starch and the products of starch degradation that resists digestion in the small intestine. Starches that were able to resist the digestion will arrive at the colon where they will be fermented by the gut microbiota, producing a variety of products which include short chain fatty acids that can provide a range of physiological benefits. There are several factors that could affect the resistant starch content of a carbohydrate which includes the starch granule morphology, the amylose-amylopectin ratio and its association with other food component. One of the current interests on resistant starch is their potential to be used as a prebiotic, which is a non-digestible food ingredient that benefits the host by stimulating the growth or activity of one or a limited number of beneficial bacteria in the colon. A resistant starch must fulfill three criterions to be classified as a prebiotic; resistance to the upper gastrointestinal environment, fermentation by the intestinal microbiota and selective stimulation of the growth and/or activity of the beneficial bacteria. The market of prebiotic is expected to reach USD 198 million in 2014 led by the export of oligosaccharides. Realizing this, novel carbohydrates such as resistant starch from various starch sources can contribute to the advancement of the prebiotic industry.
    Matched MeSH terms: Oligosaccharides
  19. Ab Razak S, Mad Radzuan S, Mohamed N, Nor Azman NHE, Abd Majid AM, Ismail SN, et al.
    Heliyon, 2020 Sep;6(9):e05077.
    PMID: 33024864 DOI: 10.1016/j.heliyon.2020.e05077
    The trend of microsatellite marker discovery and development revolved as a result of the advancement of next generation sequencing (NGS) technology as it has developed numerous microsatellites within a short period of time at a low cost. This study generated microsatellite markers using RAD sequencing technologies for the understudied Nephelium lappaceum. A total of 1403 microsatellite markers were successfully designed, which consisted of 853 di-, 525 tri-, 17 tetra-, 5 penta-, and 3 hexanucleotide microsatellite markers. Subsequently, selection of 39 microsatellites was made for the evaluation of genetic diversity of the selected 22 rambutan varieties. Twelve microsatellites, which exhibited high call rates across the samples, were used to assess the diversity of the aforementioned rambutan varieties. The analysis of 12 microsatellites revealed the presence of 72 alleles and six alleles per locus in average. Furthermore, the polymorphic information content (PIC) value ranged from 0.326 (NlaSSR20) to 0.832 (NlaSSR32), which included an average of 0.629 per locus, while the generated Neighbour Joining dendrogram showed two major clusters. The pairwise genetic distance of shared alleles exhibited a range of values from 0.046 (R134↔R170) to 0.818 (R5↔R170), which suggested highest dissimilarity detected between R5 and R170. Notably, these research findings would useful for varietal identification, proper management and conservation of the genetic resources, and exploitation and utilization in future breeding programs.
    Matched MeSH terms: Oligosaccharides
  20. Yusof Nurhayati, Abdul Manaf Ali
    MyJurnal
    Many researchers have focused chitosan as a source of potential bioactive material during the past few decades. However, chitosan has several drawbacks to be utilised in biological applications, including poor solubility under physiological conditions. Therefore, a new interest has recently emerged on partially hydrolysed chitosan, chitosan oligosaccharides (COS). In this study, degradation of chitosan was performed by Cellulase from Trichoderma reesei® 1.5L and Response Surface Methodology (RSM) were employed to optimize the hydrolysis temperature, pH, enzyme concentration and substrate concentration. Optimization of cellulase T. reesei® using central composite design (CCD) was to obtain optimum parameters and all the factors showed significant effects (p˂0.05). The maximum response, Celluclast® activity (1.268 U) was obtained by assaying the process at 49.79oC, pH 4.5, 3% (v/w) of enzyme concentration and 25% (w/v) concentration of chitosan for 24 hours.
    Matched MeSH terms: Oligosaccharides
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links