Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Farook MS, Mahmoud O, Ibrahim MA, Berkathullah M
    Biomed Res Int, 2021;2021:6652250.
    PMID: 33628801 DOI: 10.1155/2021/6652250
    Objectives: To evaluate the in vitro effectiveness of desensitizing agents in reducing dentine permeability.

    Methods: The efficacy of desensitizing agents in reducing dentine permeability by occluding dentine tubules was evaluated using a fluid filtration device that conducts at 100 cmH2O (1.4 psi) pressure, and SEM/EDX analyses were evaluated and compared. Forty-two dentine discs (n = 42) of 1 ± 0.2 mm width were obtained from caries-free permanent human molars. Thirty dentine discs (n = 30) were randomly divided into 3 groups (n = 10): Group 1: 2.7% wt. monopotassium-monohydrogen oxalate (Mp-Mh oxalate), Group 2: RMGI XT VAR, and Group 3: LIQ SiO2. Dentine permeability was measured following treatment application after 10 minutes, storage in artificial saliva after 10 minutes and 7 days, and citric acid challenge for 3 minutes. Data were analysed with a repeated measures ANOVA test. Dentine discs (n = 12) were used for SEM/EDX analyses to acquire data on morphological changes on dentine surface and its mineral content after different stages of treatment.

    Results: Desensitizing agents' application on the demineralized dentine discs exhibited significant reduction of permeability compared to its maximum acid permeability values. Mp-Mh oxalate showed a significant reduction in dentine permeability (p < 0.05) when compared to RMGI XT VAR and LIQ SiO2. On SEM/EDX analysis, all the agents formed mineral precipitates that occluded the dentine tubules.

    Conclusions: 2.7% wt. monopotassium-monohydrogen oxalate was significantly effective in reducing dentine permeability compared to RMGI XT VAR and LIQ SiO2.

    Matched MeSH terms: Dentin Permeability/drug effects*
  2. Chan YS, Chong KP
    Molecules, 2022 Jan 27;27(3).
    PMID: 35164103 DOI: 10.3390/molecules27030838
    Some species of Ganoderma, such as G. lucidum, are well-known as traditional Chinese medicine (TCM), and their pharmacological value was scientifically proven in modern days. However, G. boninense is recognized as an oil palm pathogen, and its biological activity is scarcely reported. Hence, this study aimed to investigate the antibacterial properties of G. boninense fruiting bodies, which formed by condensed mycelial, produced numerous and complex profiles of natural compounds. Extract was cleaned up with normal-phase SPE and its metabolites were analyzed using liquid chromatography-mass spectrometry (LCMS). From the disc diffusion and broth microdilution assays, strong susceptibility was observed in methicillin-resistant Staphylococcus aureus (MRSA) in elute fraction with zone inhibition of 41.08 ± 0.04 mm and MIC value of 0.078 mg mL-1. A total of 23 peaks were detected using MS, which were putatively identified based on their mass-to-charge ratio (m/z), and eight compounds, which include aristolochic acid, aminoimidazole ribotide, lysine sulfonamide 11v, carbocyclic puromycin, fenbendazole, acetylcaranine, tigecycline, and tamoxifen, were reported in earlier literature for their antimicrobial activity. Morphological observation via scanning electron microscope (SEM), cell membrane permeability, and integrity assessment suggest G. boninense extract induces irreversible damage to the cell membrane of MRSA, thus causing cellular lysis and death.
    Matched MeSH terms: Cell Membrane Permeability/drug effects*
  3. Nair RS, Nair S
    Curr Drug Deliv, 2015;12(5):517-23.
    PMID: 25675336
    Mortality rate due to heart diseases increases dramatically with age. Captopril is an angiotensin converting enzyme inhibitor (ACE) used effectively for the management of hypertension. Due to short elimination half-life of captopril the oral dose is very high. Captopril is prone to oxidation and it has been reported that the oxidation rate of captopril in skin tissues is considerably low when compared to intestinal tissues. All these factors make captopril an ideal drug candidate for transdermal delivery. In this research work an effort was made to formulate transdermal films of captopril by utilizing polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) as film formers and polyethylene glycol 400 (PEG400) as a plasticizer. Dimethyl sulfoxide (DMSO) and dimethylformamide (DMF) were used as permeation enhancers. Physicochemical parameters of the films such as appearance, thickness, weight variation and drug content were evaluated. The invitro permeation studies were carried out through excised human cadaver skin using Franz diffusion cells. The in-vitro permeation studies demonstrated that the film (P4) having the polymer ratio (PVP:PVA = 80:20) with DMSO (10%) resulted a promising drug release of 79.58% at 24 hours with a flux of 70.0 µg/cm(2)/hr. No signs of erythema or oedema were observed on the rabbit skin as a result of skin irritation study by Draize test. Based on the stability report it was confirmed that the films were physically and chemically stable, hence the prepared films are very well suited for transdermal application.
    Matched MeSH terms: Permeability/drug effects
  4. Yap PS, Krishnan T, Yiap BC, Hu CP, Chan KG, Lim SH
    J Appl Microbiol, 2014 May;116(5):1119-28.
    PMID: 24779580 DOI: 10.1111/jam.12444
    The aim of this study was to investigate the mode of action of the lavender essential oil (LV) on antimicrobial activity against multi-drug-resistant Escherichia coli J53 R1 when used singly and in combination with piperacillin.
    Matched MeSH terms: Cell Membrane Permeability/drug effects
  5. Sakeena MH, Elrashid SM, Muthanna FA, Ghassan ZA, Kanakal MM, Laila L, et al.
    J Oleo Sci, 2010;59(7):395-400.
    PMID: 20513974
    This study sets out to investigate the in vitro permeation of ketoprofen from the formulated nanoemulsions through excised rat skin. In vitro permeation of ketoprofen nanoemulsion through rat skin was evaluated in Franz diffusion cells and compared with marketed product (Fastum gel). Limonene which has been reported to be a good enhancer for ketoprofen was selected. Moreover the effects of limonene which was added to the nanoemulsion formulations at levels of 1%, 2%, 3% and on rat skin permeation of ketoprofen were also evaluated. The selected optimized formulation was further studied for skin irritation. Utilization of limonene as a penetration enhancer increased the permeation of ketoprofen from the formulated nanoemulsion with increasing concentrations of limonene. The results obtained showed that nanoemulsion with 3% limonene produced similar and comparable skin permeation of ketoprofen with marketed formulation and the skin irritation study on rats showed the optimized formulation prepared was safe.
    Matched MeSH terms: Permeability/drug effects
  6. Yong YK, Chiong HS, Somchit MN, Ahmad Z
    PMID: 26468073 DOI: 10.1186/s12906-015-0901-3
    Histamine is established as a potent inflammatory mediator and it is known to increased endothelial permeability by promoting gap formation between endothelial cells. Previous studies have shown that aqueous extract of Bixa orellana leaves (AEBO) exhibits antihistamine activity in vivo, yet the mechanism of its action on endothelial barrier function remains unclear. Therefore, the current study aimed to determine the protective effect of AEBO against histamine-induced hyperpermeability in vitro.
    Matched MeSH terms: Capillary Permeability/drug effects*
  7. Sharma JN
    Gen. Pharmacol., 1993 Mar;24(2):267-74.
    PMID: 8387049
    1. Bradykinin and related kinins may act on four types of receptors designated as B1, B2, B3 and B4. It seems that the B2 receptors are most commonly found in various vascular and non-vascular smooth muscles, whereas B1 receptors are formed in vitro during trauma, and injury, and are found in bone tissues. 2. These BK receptors are involved in the regulations of various physiological and pathological processes. 3. The mode of kinin actions are based upon the interactions between the kinin and their specific receptors, which can lead to activation of several second-messenger systems. 4. Recently, numerous BK receptors antagonists have been synthesized with prime aim to treat diseases caused by excessive kinin production. 5. These diseases are RA, inflammatory diseases of the bowel, asthma, rhinitis and sore throat, allergic reactions, pain, inflammatory skin disorders, endotoxin and anaphylactic shock and coronary heart diseases. 6. On the other hand, BK receptor antagonists could be contraindicated in hypertension, since these drugs may antagonize the antihypertensive therapy and/or may trigger the hypertensive crisis. 7. It is worth suggesting that the BK receptor agonists might be useful antihypertensive drugs.
    Matched MeSH terms: Capillary Permeability/drug effects
  8. Devasvaran K, Tan JJ, Ng CT, Fong LY, Yong YK
    Oxid Med Cell Longev, 2019;2019:1202676.
    PMID: 31531177 DOI: 10.1155/2019/1202676
    Malaysian Tualang honey (TH) is a known therapeutic honey extracted from the honeycombs of the Tualang tree (Koompassia excelsa) and has been reported for its antioxidant, anti-inflammatory, antiproliferative, and wound healing properties. However, the possible vascular protective effect of TH against oxidative stress remains unclear. In this study, the effects of TH on hydrogen peroxide- (H2O2-) elicited vascular hyperpermeability in human umbilical vein endothelial cells (HUVECs) and Balb/c mice were evaluated. Our data showed that TH concentrations ranging from 0.01% to 1.00% showed no cytotoxic effect to HUVECs. Induction with 0.5 mM H2O2 was found to increase HUVEC permeability, but the effect was significantly reversed attenuated by TH (p < 0.05), of which the permeability with the highest inhibition peaked at 0.1%. In Balb/c mice, TH (0.5 g/kg-1.5 g/kg) significantly (p < 0.05) reduced H2O2 (0.3%)-induced albumin-bound Evans blue leak, in a dose-dependent manner. Immunofluorescence staining confirmed that TH reduced actin stress fiber formation while increasing cortical actin formation and colocalization of caveolin-1 and β-catenin in HUVECs. Signaling studies showed that HUVECs pretreated with TH significantly (p < 0.05) decreased intracellular calcium release, while sustaining the level of cAMP when challenged with H2O2. These results suggested that TH could inhibit H2O2-induced vascular hyperpermeability in vitro and in vivo by suppression of adherence junction protein redistribution via calcium and cAMP, which could have a therapeutic potential for diseases related to the increase of both oxidant and vascular permeability.
    Matched MeSH terms: Capillary Permeability/drug effects*
  9. Sahalan AZ, Dixon RA
    Int J Antimicrob Agents, 2008 Mar;31(3):224-7.
    PMID: 18083010
    The role of membrane permeabilisation and disruption in the mechanism of action of some polymyxin analogues against Gram-negative organisms is contentious. The effects of polymyxin B (PMB) and its analogue polymyxin B nonapeptide (PMBN) on Escherichia coli envelopes should correlate, but previous work by other workers suggests that PMBN has a different mode of action. This study has reassessed the biochemical techniques used previously and has shown that, in contrast to previous studies, PMBN (a well-characterised antibacterial synergist) readily releases periplasmic proteins and lipopolysaccharide from treated E. coli at subinhibitory concentrations in normal physiological buffer conditions. We conclude that, when tested with appropriate methodology, PMBN closely correlates with the early effects of PMB on the cell envelope of E. coli and this study shows that it is now consistent with the accepted interactions of membrane-active agents against Gram-negative cells.
    Matched MeSH terms: Cell Membrane Permeability/drug effects*
  10. Kiew SF, Ho YT, Kiew LV, Kah JCY, Lee HB, Imae T, et al.
    Int J Pharm, 2017 Dec 20;534(1-2):297-307.
    PMID: 29080707 DOI: 10.1016/j.ijpharm.2017.10.045
    We synthesized a dextrin (DEX)-conjugated graphene oxide (GO) nanocarrier (GO100-DEX) as a potential drug delivery system to respond to a tumor-associated stimulus, α-amylase, that has high permeability through the fenestrated endothelial barrier to the tumor site. At acidic pH and in the presence of α-amylase to simulate tumor conditions, GO100-DEX released a 1.5-fold higher amount of doxorubicin (DOX) than of GO100. Under the same conditions, the cytotoxic effects of GO100-DEX/DOX were 2-fold greater than those of free DOX and 2.9-fold greater than those of GO100/DOX. Employing an in vitro biomimetic microfluidic blood vessel model lined with human umbilical vein endothelial cells, we evaluated the tumor vasculature endothelial permeation of GO100-DEX and GO100 using dextrans of 10 and 70kDa for comparison and as standards to validate the microfluidic blood vessel model. The results showed that the permeabilities of GO100-DEX and GO100 were 4.3- and 4.9-fold greater than that of 70kDa dextran and 2.7- and 3.1-fold higher than that of 10kDa dextran, thus demonstrating the good permeability of the GO-based nanocarrier through the fenestrated endothelial barrier.
    Matched MeSH terms: Capillary Permeability/drug effects
  11. Bakri MM, Hossain MZ, Razak FA, Saqina ZH, Misroni AA, Ab-Murat N, et al.
    Aust Dent J, 2017 Jun;62(2):186-191.
    PMID: 27813093 DOI: 10.1111/adj.12484
    BACKGROUND: Dentine hypersensitivity is a common problem attributed by patent dentinal tubules. Ingredients incorporated in toothpastes aim to occlude patent dentinal tubules to minimize the dentine hypersensitivity. However, frequent consumption of acidic soft drinks may reverse the dentinal tubules' occlusion. In this in vitro study, the efficacy of dentinal tubules occluded by commercially available toothpastes to withstand different durations of an acidic soft drink challenge was investigated.

    METHODS: One hundred and twenty dentine discs were divided into three groups. The discs from each group were brushed with toothpaste containing bioactive glass, arginine and control toothpaste. Each group was then divided into four subgroups and exposed to acidic soft drink over four different time durations.

    RESULTS: The scoring and the percentage of occluded dentinal tubules by Novamin-containing toothpaste was significantly better compared with arginine or the control toothpaste. Acidic soft drink challenge reduced the extent of dentinal tubules occlusion along with time. Dentinal tubules occluded by Novamin-containing toothpaste withstand the acidic challenge comparatively for a longer period.

    CONCLUSIONS: The findings demonstrated that occlusion of dentinal tubules is more efficient by the bioactive glass-containing toothpaste and thus may contribute to its better resistance to acidic soft drink challenge.

    Matched MeSH terms: Dentin Permeability/drug effects
  12. Yang SK, Yusoff K, Mai CW, Lim WM, Yap WS, Lim SE, et al.
    Molecules, 2017 Nov 04;22(11).
    PMID: 29113046 DOI: 10.3390/molecules22111733
    Combinatory therapies have been commonly applied in the clinical setting to tackle multi-drug resistant bacterial infections and these have frequently proven to be effective. Specifically, combinatory therapies resulting in synergistic interactions between antibiotics and adjuvant have been the main focus due to their effectiveness, sidelining the effects of additivity, which also lowers the minimal effective dosage of either antimicrobial agent. Thus, this study was undertaken to look at the effects of additivity between essential oils and antibiotic, via the use of cinnamon bark essential oil (CBO) and meropenem as a model for additivity. Comparisons between synergistic and additive interaction of CBO were performed in terms of the ability of CBO to disrupt bacterial membrane, via zeta potential measurement, outer membrane permeability assay and scanning electron microscopy. It has been found that the additivity interaction between CBO and meropenem showed similar membrane disruption ability when compared to those synergistic combinations which was previously reported. Hence, results based on our studies strongly suggest that additive interaction acts on a par with synergistic interaction. Therefore, further investigation in additive interaction between antibiotics and adjuvant should be performed for a more in depth understanding of the mechanism and the impacts of such interaction.
    Matched MeSH terms: Cell Membrane Permeability/drug effects*
  13. Singh S, Agarwal R, Razak ZA, Ngu R, Nyein LL, Vasudevan S, et al.
    J Ocul Pharmacol Ther, 2018 01 17;34(1-2):214-223.
    PMID: 29341837 DOI: 10.1089/jop.2017.0098
    PURPOSE: Pseudomonas aeruginosa is the most common causative organism for contact lens-associated corneal ulcer and is commonly treated with fluoroquinolones. With the emergence of resistant strains, it is important to investigate alternative therapies. Despite well-established efficacy of tazocin against systemic Pseudomonas infections, its topical use for the treatment of Pseudomonas keratitis has not been described, hence this study was aimed to find the ocular permeation of Tazocin and its efficacy in treating keratitis in rabbit eyes.

    METHODS: We investigated the ocular permeation of topical tazocin after single drop application in normal rabbit eyes by estimating piperacillin and tazobactam concentrations in cornea, aqueous, and vitreous using a validated LC-MS/MS method. Furthermore, we determined the efficacy of repeated dose administration of tazocin against experimentally induced P. aeruginosa keratitis in rabbits in comparison to moxifloxacin. To determine the efficacy, clinical examination, histopathological examination, and estimation of bacterial load and inflammatory cytokines in cornea were done.

    RESULTS: Significant corneal concentration of piperacillin and tazobactam was detected in normal rabbit corneas after single dose treatment with tazocin. In rabbits with Pseudomonas-induced keratitis, topical tazocin caused significant clinical and histopathological improvement. This improvement was associated with reduction in corneal bacterial load and inflammatory cytokines. Compared to moxifloxacin 0.5%, tazocin treated group showed greater clinical response which was associated with higher interleukin (IL)-1β, lower tumor necrosis factor (TNF)-α, a comparable level of IL-8, greater reduction in corneal bacterial load, and lesser inflammatory cell infiltration.

    CONCLUSION: Tazocin showed good ocular penetration and was effective in treatment of Pseudomonas induced keratitis in rabbits.

    Matched MeSH terms: Permeability/drug effects
  14. Hassan F, El-Hiti GA, Abd-Allateef M, Yousif E
    Saudi Med J, 2017 Apr;38(4):359-365.
    PMID: 28397941 DOI: 10.15537/smj.2017.4.17061
    OBJECTIVES: To investigate the cytotoxic effect of anastrozole on breast (MCF7), liver hepatocellular (HepG2), and prostate (PC3) cancer cells. Methods: This is a prospective study. Anastrozole's mechanism of apoptosis in living cells was also determined by high content screening (HCS) assay. Methylthiazol tetrazolium (MTT) assay was carried out at the Centre of Biotechnology Research's, Al-Nahrain University, Baghdad, Iraq between July 2015 and October 2015. The HCS assay was performed at the Centre for Natural Product Research  and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia between November 2015 and February 2016. Results: The most significant cytotoxic effect of anastrozole towards 3 cancer cell lines was obtained when its concentration was 400 µg/mL. The MCF7 cells were more sensitive to anastrozole compared with the HepG2 and PC-3 cells. There was a significant increase in membrane permeability, cytochrome c and nuclear intensity when anastrozole (200 µg/mL) was used compared with doxorubicin (20 µg/mL) as a standard. Also, there was a significant decrease in cell viability and mitochondrial membrane permeability when anastrozole (200 µg/mL) was used compared with positive control. Conclusion: Anastrozole showed cytotoxic effects against the MCF7, HepG2, and PC3 cell lines as determined in-vitro by the MTT assay. The HCS technique also showed toxic effect towards MCF7. It is evident that anastrozole inhibits the aromatase enzyme preventing the aromatization mechanism; however, it has a toxic effect.
    Matched MeSH terms: Cell Membrane Permeability/drug effects
  15. Yoke Keong Y, Arifah AK, Sukardi S, Roslida AH, Somchit MN, Zuraini A
    Med Princ Pract, 2011;20(2):142-6.
    PMID: 21252569 DOI: 10.1159/000319907
    The present study was conducted to assess the anti-inflammatory effect of a crude aqueous extract of Bixa orellana leaves (AEBO) and to examine the possible involvement of nitric oxide (NO) in its anti-inflammatory mechanism.
    Matched MeSH terms: Capillary Permeability/drug effects
  16. Aziz NF, Ramalingam A, Latip J, Zainalabidin S
    Life Sci, 2021 Mar 15;269:119080.
    PMID: 33465387 DOI: 10.1016/j.lfs.2021.119080
    S-Allylcysteine (SAC) is an extensively studied natural product which has been proven to confer cardioprotection. This potentiates SAC into many clinical relevance possibilities, hence, the use of it ought to be optimally elucidated. To further confirm this, an ischemia/reperfusion model has been used to determine SAC at 10 mM and 50 mM on cardiac function, cardiac marker, and mitochondrial permeability. Using Langendorff setup, 24 adult male Wistar rats' hearts were isolated to be perfused with Kreb-Henseleit buffer throughout the ischemia/reperfusion method. After 20 min of stabilization, global ischemia was induced by turning off the perfusion for 35 min followed by 60 min of reperfusion with either Kreb-Henseleit buffer or SAC with the dose of 10 mM or 50 mM. The cardiac function was assessed and coronary effluent was collected at different timepoints throughout the experiment for lactate dehydrogenase (LDH) measurement. The harvested hearts were then used to measure glutathione while isolated mitochondria for mPTP analysis. SAC-reperfused hearts were shown to prevent the aggravation of cardiac function after I/R induction. It also dose-dependently upregulated glutathione reductase and glutathione level and these were also accompanied by significant reduction of LDH leakage and preserved mitochondrial permeability. Altogether, SAC dose-dependently was able to recover the post-ischemic cardiac function deterioration alongside with improvement of glutathione metabolism and mitochondrial preservation. These findings highly suggest that SAC when sufficiently supplied to the heart would be able to prevent the deleterious complications after the ischemic insult.
    Matched MeSH terms: Cell Membrane Permeability/drug effects*
  17. Yang SK, Yusoff K, Thomas W, Akseer R, Alhosani MS, Abushelaibi A, et al.
    Sci Rep, 2020 01 21;10(1):819.
    PMID: 31964900 DOI: 10.1038/s41598-019-55601-0
    Misuse of antibiotics in the clinical and agricultural sectors has caused the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae which contributes a threat to human health. In this study, we assessed the feasibility of lavender essential oil (LVO) as an antimicrobial agent in combinatory therapy with meropenem in suppressing the growth of carbapenemase-producing K. pneumoniae (KPC-KP). Synergistic interactions between LVO and meropenem were detected, which significantly reduce the inhibitory concentration of both LVO and meropenem by 15 and 4-fold respectively. Comparative proteomic profiling identified a disruption in the bacterial membrane via oxidative stress that was indicated by loss of membrane and cytoplasmic proteins and the upregulation of oxidative regulators. As a proof of concept, zeta potential measurements showed a change in cell surface charge while outer membrane permeability measurement indicated an increase in membrane permeability following exposure to LVO. This was indicative of a disrupted outer membrane. Ethidium bromide influx/efflux assays demonstrated no significant efflux pump inhibition by LVO, and scanning electron microscopy revealed irregularities on the cell surface after exposure to LVO. Oxidative stress was also detected with increased level of ROS and lipid peroxidation in LVO-treated cells. In conclusion, our data suggest that LVO induced oxidative stress in K. pneumoniae which oxidizes the outer membrane, enabling the influx of generated ROS, LVO and meropenem into the bacterial cells, causing damage to the cells and eventually death.
    Matched MeSH terms: Cell Membrane Permeability/drug effects*
  18. Haque ST, Islam RA, Gan SH, Chowdhury EH
    Int J Mol Sci, 2020 Sep 14;21(18).
    PMID: 32937817 DOI: 10.3390/ijms21186721
    Background: The limitations of conventional treatment modalities in cancer, especially in breast cancer, facilitated the necessity for developing a safer drug delivery system (DDS). Inorganic nano-carriers based on calcium phosphates such as hydroxyapatite (HA) and carbonate apatite (CA) have gained attention due to their biocompatibility, reduced toxicity, and improved therapeutic efficacy. Methods: In this study, the potential of goose bone ash (GBA), a natural derivative of HA or CA, was exploited as a pH-responsive carrier to successfully deliver doxorubicin (DOX), an anthracycline drug into breast cancer cells (e.g., MCF-7 and MDA-MB-231 cells). GBA in either pristine form or in suspension was characterized in terms of size, morphology, functional groups, cellular internalization, cytotoxicity, pH-responsive drug (DOX) release, and protein corona analysis. Results: The pH-responsive drug release study demonstrated the prompt release of DOX from GBA through its disintegration in acidic pH (5.5-6.5), which mimics the pH of the endosomal and lysosomal compartments as well as the stability of GBA in physiological pH (pH 7.5). The result of DOX binding with GBA indicated an increment in binding affinity with increasing concentrations of DOX. Cell viability and cytotoxicity analysis showed no innate toxicity of GBA particles. Both qualitative and quantitative cellular uptake analysis in both cell lines displayed an enhanced cellular internalization of DOX-loaded GBA compared to free DOX molecules. The protein corona spontaneously formed on the surface of GBA particles exhibited its affinity toward transport proteins, structural proteins, and a few other selective proteins. The adsorption of transport proteins could extend the circulation half-life in biological environment and increase the accumulation of the drug-loaded NPs through the enhanced permeability and retention (EPR) effect at the tumor site. Conclusion: These findings highlight the potential of GBA as a DDS to successfully deliver therapeutics into breast cancer cells.
    Matched MeSH terms: Permeability/drug effects
  19. Hiu JJ, Yap MKK
    Int J Biol Macromol, 2021 Aug 01;184:776-786.
    PMID: 34174307 DOI: 10.1016/j.ijbiomac.2021.06.145
    Naja sumatrana venom cytotoxin (sumaCTX) is a basic protein which belongs to three-finger toxin family. It has been shown to induce caspase-dependent, mitochondrial-mediated apoptosis in MCF-7 cells at lower concentrations. This study aimed to investigate the alteration of secretome in MCF-7 cells following membrane permeabilization by high concentrations of sumaCTX, using label-free quantitative (LFQ) approach. The degree of membrane permeabilization of sumaCTX was determined by lactate dehydrogenase (LDH) assay and calcein-propidium iodide (PI) assays. LDH and calcein-PI assays revealed time-dependent membrane permeabilization within a narrow concentration range. However, as toxin concentrations increased, prolonged exposure of MCF-7 cells to sumaCTX did not promote the progression of membrane permeabilization. The secretome analyses showed that membrane permeabilization was an event preceding the release of intracellular proteins. Bioinformatics analyses of the LFQ secretome revealed the presence of 105 significantly distinguished proteins involved in metabolism, structural supports, inflammatory responses, and necroptosis in MCF-7 cells treated with 29.8 μg/mL of sumaCTX. Necroptosis was presumably an initial stress response in MCF-7 cells when exposed to high sumaCTX concentration. Collectively, sumaCTX-induced the loss of membrane integrity in a concentration-dependent manner, whereby the cell death pattern of MCF-7 cells transformed from apoptosis to necroptosis with increasing toxin concentrations.
    Matched MeSH terms: Cell Membrane Permeability/drug effects
  20. Ng CT, Fong LY, Low YY, Ban J, Hakim MN, Ahmad Z
    Physiol Res, 2016 12 13;65(6):1053-1058.
    PMID: 27539106
    The endothelial barrier function is tightly controlled by a broad range of signaling cascades including nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway. It has been proposed that disturbances in NO and cGMP production could interfere with proper endothelial barrier function. In this study, we assessed the effect of interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, on NO and cGMP levels and examined the mechanisms by which NO and cGMP regulate the IFN-gamma-mediated HUVECs hyperpermeability. The flux of fluorescein isothiocyanate-labeled dextran across cell monolayers was used to study the permeability of endothelial cells. Here, we found that IFN-gamma significantly attenuated basal NO concentration and the increased NO levels supplied by a NO donor, sodium nitroprusside (SNP). Besides, application of IFN-gamma also significantly attenuated both the basal cGMP concentration and the increased cGMP production donated by a cell permeable cGMP analogue, 8-bromo-cyclic GMP (8-Br-cGMP). In addition, exposure of the cell monolayer to IFN-gamma significantly increased HUVECs basal permeability. However, L-NAME pretreatment did not suppress IFN-gamma-induced HUVECs hyperpermeability. L-NAME pretreatment followed by SNP or SNP pretreatment partially reduced IFN-gamma-induced HUVECs hyperpermeability. Pretreatment with a guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), led to a further increase in IFN-gamma-induced HUVECs hyperpermeability. The findings suggest that the mechanism underlying IFN-gamma-induced increased HUVECs permeability is partly related to the inhibition of NO production.
    Matched MeSH terms: Capillary Permeability/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links