Displaying all 14 publications

Abstract:
Sort:
  1. Singh L, Rana S, Thakur S, Pant D
    Trends Biotechnol, 2020 05;38(5):469-473.
    PMID: 31932067 DOI: 10.1016/j.tibtech.2019.12.017
    Recent bioinspired efforts of designing novel nanoenzyme-based electrocatalysts are driven by the urgency of making bioelectrofuels more affordable and efficient. Unlike natural enzymes, nanoenzyme-modified electrodes with large surface areas enclose numerous biomimicking active sites to facilitate enhanced microbial growth followed by increased reactant-to-bioelectrofuel conversion.
    Matched MeSH terms: Peroxidase/chemistry
  2. Karim Z, Adnan R, Ansari MS
    PLoS One, 2012;7(7):e41422.
    PMID: 22848490 DOI: 10.1371/journal.pone.0041422
    Chemical synthesis of Ag-NPs was carried out using reduction method. The reduction mechanistic approach of silver ions was found to be a basic clue for the formation of the Ag-NPs. The nanoparticles were characterized by UV-vis, FT-IR and TEM analysis. We had designed some experiments in support of our hypothesis, "low concentrations of novel nanoparticles (silver and gold) increases the activity of plant peroxidases and alter their structure also", we had used Ag-NPs and HRP as models. The immobilization/interaction experiment had demonstrated the specific concentration range of the Ag-NPs and within this range, an increase in HRP activity was reported. At 0.08 mM concentration of Ag-NPs, 50% increase in the activity yield was found. The U.V-vis spectra had demonstrated the increase in the absorbance of HRP within the reported concentration range (0.06-0.12 mM). Above and below this concentration range there was a decrease in the activity of HRP. The results that we had found from the fluorescence spectra were also in favor of our hypothesis. There was a maximum increase in ellipticity and α-helix contents in the presence of 0.08 mM concentration of Ag-NPs, demonstrated by circular dichroism (CD) spectra. Finally, incubation of a plant peroxidase, HRP with Ag-NPs, within the reported concentration range not only enhances the activity but also alter the structure.
    Matched MeSH terms: Horseradish Peroxidase/chemistry*
  3. Azmi NE, Ramli NI, Abdullah J, Abdul Hamid MA, Sidek H, Abd Rahman S, et al.
    Biosens Bioelectron, 2015 May 15;67:129-33.
    PMID: 25113659 DOI: 10.1016/j.bios.2014.07.056
    A novel optical detection system consisting of combination of uricase/HRP-CdS quantum dots (QDs) for the determination of uric acid in urine sample is described. The QDs was used as an indicator to reveal fluorescence property of the system resulting from enzymatic reaction of uricase and HRP (horseradish peroxidase), which is involved in oxidizing uric acid to allaintoin and hydrogen peroxide. The hydrogen peroxide produced was able to quench the QDs fluorescence, which was proportional to uric acid concentration. The system demonstrated sufficient activity of uricase and HRP at a ratio of 5U:5U and pH 7.0. The linearity of the system toward uric acid was in the concentration range of 125-1000 µM with detection limit of 125 µM.
    Matched MeSH terms: Horseradish Peroxidase/chemistry
  4. Zeeshan F, Tabbassum M, Kesharwani P
    Protein J, 2019 10;38(5):551-564.
    PMID: 31054037 DOI: 10.1007/s10930-019-09837-4
    Protein drugs are important therapeutic agents however; they may degrade during formulation processing. The objective of this study was to investigate the correlation between secondary structure alterations and the retentions of biological activity of protein upon the application of thermal stress. Catalase, horseradish peroxidase and α- chymotrypsin were employed as model proteins. Each protein was heated in a solid and solution state at a temperature of 70 °C for 1 h. Attenuated total reflectance Fourier transform infrared spectroscopy, size-exclusion chromatography and biological activity assay were performed. Results showed that heat-exposure of protein solids at 70 °C caused minimum changes in secondary structure and biological activity was almost retained. However, thermal exposure of protein aqueous solution induced significant changes in the secondary structure indicated by area overlap values and caused considerable reduction in the biological activity. The changes in secondary structures were found to be in full alignment with the loss of biological activity for both protein solids as well as aqueous solutions. Catalase lost entire biological activity upon heating in the solution state. In conclusion, the findings of the present study indicate a direct correlation between protein secondary structure alterations and the retention of biological activity which can be taken into account during the development and delivery of protein drugs formulations.
    Matched MeSH terms: Horseradish Peroxidase/chemistry
  5. Mohammad R, Ahmad M, Heng LY
    Sensors (Basel), 2013 Aug 05;13(8):10014-26.
    PMID: 23921830 DOI: 10.3390/s130810014
    Chili hotness is very much dependent on the concentration of capsaicin present in the chili fruit. A new biosensor based on a horseradish peroxidase enzyme-capsaicin reaction mediated by ferrocene has been successfully developed for the amperometric determination of chili hotness. The amperometric biosensor is fabricated based on a single-step immobilization of both ferrocene and horseradish peroxidase in a photocurable hydrogel membrane, poly(2-hydroxyethyl methacrylate). With mediation by ferrocene, the biosensor could measure capsaicin concentrations at a potential 0.22 V (vs. Ag/AgCl), which prevented potential interference from other electroactive species in the sample. Thus a good selectivity towards capsaicin was demonstrated. The linear response range of the biosensor towards capsaicin was from 2.5-99.0 µM with detection limit of 1.94 µM. A good relative standard deviation (RSD) for reproducibility of 6.4%-9.9% was obtained. The capsaicin biosensor demonstrated long-term stability for up to seven months. The performance of the biosensor has been validated using a standard method for the analysis of capsaicin based on HPLC.
    Matched MeSH terms: Horseradish Peroxidase/chemistry*
  6. Tan TC, Cheng LH, Bhat R, Rusul G, Easa AM
    Food Chem, 2014 Jan 1;142:121-8.
    PMID: 24001821 DOI: 10.1016/j.foodchem.2013.07.040
    Composition, physicochemical properties and enzyme inactivation kinetics of coconut water were compared between immature (IMC), mature (MC) and overly-mature coconuts (OMC). Among the samples studied, pH, turbidity and mineral contents for OMC water was the highest, whereas water volume, titratable acidity, total soluble solids and total phenolics content for OMC water were the lowest. Maturity was found to affect sugar contents. Sucrose content was found to increase with maturity, and the reverse trend was observed for fructose and glucose. Enzyme activity assessment showed that polyphenol oxidase (PPO) in all samples was more heat resistant than peroxidase (POD). Compared to IMC and MC, PPO and POD from OMC water showed the lowest thermal resistance, with D83.3°C=243.9s (z=27.9°C), and D83.3°C=129.9s (z=19.5°C), respectively.
    Matched MeSH terms: Peroxidase/chemistry*
  7. Karimi S, Abdulkhani A, Karimi A, Ghazali AH, Ahmadun FL
    Environ Technol, 2010 Apr 1;31(4):347-56.
    PMID: 20450108 DOI: 10.1080/09593330903473861
    The efficiency of advanced oxidation processes (AOPs), enzymatic treatment and combined enzymatic/AOP sequences for the colour remediation of soda and chemimechanical pulp and paper mill effluent was investigated. The results indicated that under all circumstances, the AOP using ultraviolet irradiation (photo-Fenton) was more efficient in the degradation of effluent components in comparison with the dark reaction. It was found that both versatile peroxidase (VP) from Bjerkandera adusta and laccase from Trametes versicolor, as pure enzymes, decolorize the deep brown effluent to a clear light-yellow solution. In addition, it was found that in the laccase treatment, the decolorization rates of both effluents were enhanced in the presence of 2, 2'-azinobis (3-ethylbenzthiazoline-6-sulfonate), while in the case of VP, Mn(+2) decreased the efficiency of the decolorization treatment. The concomitant use of enzymes and AOPs imposes a considerable effect on the colour remediation of effluent samples.
    Matched MeSH terms: Peroxidase/chemistry*
  8. Tabbassum M, Zeeshan F
    Pharm Dev Technol, 2019 Jun;24(5):649-662.
    PMID: 30474456 DOI: 10.1080/10837450.2018.1551902
    This study was conducted to investigate the influence of formulation development methods on the stability (secondary structure, aggregation, and biological activity) of protein drugs embedded in lipid matrices. Catalase, horseradish peroxidase, and α-chymotrypsin were employed as model proteins, while Precirol® AT05 (glyceryl palmitostearate) was used as lipid matrix. Protein-loaded lipid matrices were prepared using melting and mixing and wet granulation methods. Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy, size exclusion chromatography (SEC) and biological activity analyses were performed. ATR FT-IR analysis indicated significant interference of the lipid with the protein amide-I band, which was eliminated using spectral subtraction. Wet granulation method induced more changes in protein secondary structure compared to melting and mixing method. SEC analysis gave evidence of protein aggregation for catalase upon adopting the wet granulation method. The biological activity of catalase was found to reduce significantly than other two proteins upon using wet granulation method, which might be ascribed to both secondary structure alterations and the formation of aggregates. Horseradish peroxidase and α-chymotrypsin did not form any soluble aggregates. In conclusion, melting and mixing method emerged as a better incorporation method compared to wet granulation because of better stability shown by the formulated proteins.
    Matched MeSH terms: Horseradish Peroxidase/chemistry
  9. Jamadon NK, Busairi N, Syahir A
    Protein Pept Lett, 2018;25(1):90-95.
    PMID: 29237368 DOI: 10.2174/0929866525666171214111503
    BACKGROUND: Mercury (II) ion, Hg2+ is among the most common pollutants with the ability to affect the environment. The implications of their elevation in the environment are mainly due to the industrialization and urbanization process. Current methods of Hg2+ detection primarily depend on sophisticated and expensive instruments. Hence, an alternative and practical way of detecting Hg2+ ions is needed to go beyond these limitations. Here, we report a detection method that was developed using an inhibitive enzymatic reaction that can be monitored through a smartphone. Horseradish peroxidase (HRP) converted 4-aminoantipyrene (4-AAP) into a red colored product which visible with naked eye. A colorless product, on the other hand, was produced indicating the presence of Hg2+ that inhibit the reaction.

    OBJECTIVES: The aim of this study is to develop a colorimetric sensor to detect Hg2+ in water sources using HRP inhibitive assay. The system can be incorporated with a mobile app to make it practical for a prompt in-situ analysis.

    METHODS: HRP enzyme was pre-incubated with different concentration of Hg2+ at 37°C for 1 hour prior to the addition of chromogen. The mix of PBS buffer, 4-AAP and phenol which act as a chromogen was then added to the HRP enzyme and was incubated for 20 minutes. Alcohol was added to stop the enzymatic reaction, and the change of colour were observed and analyse using UV-Vis spectrophotometer at 520 nm wavelength. The results were then analysed using GraphPad PRISM 4 for a non-linear regression analysis, and using Mathematica (Wolfram) 10.0 software for a hierarchical cluster analysis. The samples from spectroscopy measurement were directly used for dynamic light scattering (DLS) evaluation to evaluate the changes in HRP size due to Hg2+ malfunctionation. Finally, molecular dynamic simulations comparing normal and malfunctioned HRP were carried out to investigate structural changes of the HRP using YASARA software.

    RESULTS: Naked eye detection and data from UV-Vis spectroscopy showed good selectivity of Hg2+ over other metal ions as a distinctive color of Hg2+ is observed at 0.5 ppm with the IC50 of 0.290 ppm. The mechanism of Hg2+ inhibition towards HRP was further validated using a dynamic light scattering (DLS) and molecular dynamics (MD) simulation to ensure that there is a conformational change in HRP size due to the presence of Hg2+ ions. The naked eye detection can be quantitatively determined using a smartphone app namely ColorAssist, suggesting that the detection signal does not require expensive instruments to be quantified.

    CONCLUSION: A naked-eye colorimetric sensor for mercury ions detection was developed. The colour change due to the presence of Hg2+ can be easily distinguished using an app via a smartphone. Thus, without resorting to any expensive instruments that are mostly laboratory bound, Hg2+ can be easily detected at IC50 value of 0.29 ppm. This is a promising alternative and practical method to detect Hg2+ in the environment.

    Matched MeSH terms: Horseradish Peroxidase/chemistry*
  10. Talib NAA, Salam F, Sulaiman Y
    Sensors (Basel), 2018 Dec 07;18(12).
    PMID: 30544568 DOI: 10.3390/s18124324
    Clenbuterol (CLB) is an antibiotic and illegal growth promoter drug that has a long half-life and easily remains as residue and contaminates the animal-based food product that leads to various health problems. In this work, electrochemical immunosensor based on poly(3,4-ethylenedioxythiophene)/graphene oxide (PEDOT/GO) modified screen-printed carbon electrode (SPCE) for CLB detection was developed for antibiotic monitoring in a food product. The modification of SPCE with PEDOT/GO as a sensor platform was performed through electropolymerization, while the electrochemical assay was accomplished while using direct competitive format in which the free CLB and clenbuterol-horseradish peroxidase (CLB-HRP) in the solution will compete to form binding with the polyclonal anti-clenbuterol antibody (Ab) immobilized onto the modified electrode surface. A linear standard CLB calibration curve with R² = 0.9619 and low limit of detection (0.196 ng mL-1) was reported. Analysis of milk samples indicated that this immunosensor was able to detect CLB in real samples and the results that were obtained were comparable with enzyme-linked immunosorbent assays (ELISA).
    Matched MeSH terms: Horseradish Peroxidase/chemistry
  11. Lee SX, Lim HN, Ibrahim I, Jamil A, Pandikumar A, Huang NM
    Biosens Bioelectron, 2017 Mar 15;89(Pt 1):673-680.
    PMID: 26718548 DOI: 10.1016/j.bios.2015.12.030
    In this study, a disposable and simple electrochemical immunosensor was fabricated for the detection of carcinoembryonic antigen. In this method, silver nanoparticles (AgNPs) were mixed with reduced graphene oxide (rGO) to modify the surface of screen-printed carbon electrode (SPE). Initially, AgNPs-rGO modified-SPEs were fabricated by using simple electrochemical deposition method. Then the carcinoembryonic antigen (CEA) was immobilized between the primary antibody and horseradish peroxidase (HRP)-conjugated secondary antibody onto AgNPs-rGO modified-SPEs to fabricate a sandwich-type electrochemical immunosensor. The proposed method could detect the CEA with a linear range of 0.05-0.50µgmL-1 and a detection limit down to 0.035µgmL-1 as compared to its non-sandwich counterpart, which yielded a linear range of 0.05-0.40µgmL-1, with a detection limit of 0.042µgmL-1. The immunosensor showed good performance in the detection of carcinoembryonic antigen, exhibiting a simple, rapid and low-cost. The immunosensor showed a higher sensitivity than an enzymeless sensor.
    Matched MeSH terms: Horseradish Peroxidase/chemistry
  12. Yean CY, Kamarudin B, Ozkan DA, Yin LS, Lalitha P, Ismail A, et al.
    Anal Chem, 2008 Apr 15;80(8):2774-9.
    PMID: 18311943 DOI: 10.1021/ac702333x
    A general purpose enzyme-based amperometric electrochemical genosensor assay was developed wherein polymerase chain reaction (PCR) amplicons labeled with both biotin and fluorescein were detected with peroxidase-conjugated antifluorescein antibody on a screen-printed carbon electrode (SPCE). As a proof of principle, the response selectivity of the genosensor was evaluated using PCR amplicons derived from lolB gene of Vibrio cholerae. Factors affecting immobilization, hybridization, and nonspecific binding were optimized to maximize sensitivity and reduce assay time. On the basis of the background amperometry signals obtained from nonspecific organisms and positive signals obtained from known V. cholerae, a threshold point of 4.20 microA signal was determined as positive. Under the optimum conditions, the limit of detection (LOD) of the assay was 10 CFU/mL of V. cholerae. The overall precision of this assay was good, with the coefficient of variation (CV) being 3.7% using SPCE and intermittent pulse amperometry (IPA) as an electrochemical technique. The assay is sensitive, safe, and cost-effective when compared to conventional agarose gel electrophoresis, real-time PCR, and other enzyme-linked assays for the detection of PCR amplicons. Furthermore, the use of a hand-held portable reader makes it suitable for use in the field.
    Matched MeSH terms: Horseradish Peroxidase/chemistry
  13. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Anal Bioanal Chem, 2006 Nov;386(5):1285-92.
    PMID: 17031625
    The stacked-film immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and horseradish peroxidase (HRP) in chitosan, performed in order to allow the determination of phenolic compounds, was investigated via an optical method. The stacked films were deposited onto a microscope glass slide by a spin-coating technique. The quinone or free radical product formed by the enzymatic reactions of phenolic compounds interacts with MBTH to form azo-dye products, which can be measured spectrophotometrically at a wavelength of 500 nm. The color intensity of the product was found to increase in proportion to the phenolic concentration after 5 min of exposure. The response of the biosensor was linear over concentration ranges of 0.025-0.500, 0.010-0.070 and 0.050-0.300 mM for guaiacol, resorcinol and o-cresol, respectively, and gave detection limits of 0.010, 0.005 and 0.012 mM. The sensor exhibited good sensitivity and stability for at least two months.
    Matched MeSH terms: Horseradish Peroxidase/chemistry*
  14. Chai TT, Koh JA, Wong CC, Sabri MZ, Wong FC
    Molecules, 2021 Dec 06;26(23).
    PMID: 34885982 DOI: 10.3390/molecules26237396
    Some seed-derived antioxidant peptides are known to regulate cellular modulators of ROS production, including those proposed to be promising targets of anticancer therapy. Nevertheless, research in this direction is relatively slow owing to the inevitable time-consuming nature of wet-lab experimentations. To help expedite such explorations, we performed structure-based virtual screening on seed-derived antioxidant peptides in the literature for anticancer potential. The ability of the peptides to interact with myeloperoxidase, xanthine oxidase, Keap1, and p47phox was examined. We generated a virtual library of 677 peptides based on a database and literature search. Screening for anticancer potential, non-toxicity, non-allergenicity, non-hemolyticity narrowed down the collection to five candidates. Molecular docking found LYSPH as the most promising in targeting myeloperoxidase, xanthine oxidase, and Keap1, whereas PSYLNTPLL was the best candidate to bind stably to key residues in p47phox. Stability of the four peptide-target complexes was supported by molecular dynamics simulation. LYSPH and PSYLNTPLL were predicted to have cell- and blood-brain barrier penetrating potential, although intolerant to gastrointestinal digestion. Computational alanine scanning found tyrosine residues in both peptides as crucial to stable binding to the targets. Overall, LYSPH and PSYLNTPLL are two potential anticancer peptides that deserve deeper exploration in future.
    Matched MeSH terms: Peroxidase/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links