Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Cui J, Yang Z, Xu Y, Tan CP, Zhang W
    Food Res Int, 2023 Dec;174(Pt 2):113653.
    PMID: 37981374 DOI: 10.1016/j.foodres.2023.113653
    Searching for green and ecofriendly solvents to replace classical solvents for industrial scale extraction of coconut oil is of great interest. To explore these possibilities, this study performed comprehensive comparative analyses of lipid profiles and phytosterol compositions in coconut oils obtained by extraction with n-hexane, absolute ethyl alcohol, deep eutectic solvent/n-hexane, dimethyl carbonate (DME) and cyclopentyl methyl ether (CPME) using a foodomics approach. Results indicated that CPME (64.23 g/100 g dry matter) and DME (65.64 g/100 g dry matter) showed comparable capacity for total lipid extraction of total lipids to classical solvents (63.5-65.66 g/100 g dry matter). Considering the phytosterol yield, CPME (644.26 mg/kg) exhibited higher selectivity than other solvents (535.64-622.13 mg/kg). No significant difference was observed in the fatty acid composition of coconut oil by the different solvents assayed. Additionally, total 468 lipid molecules were identified in the samples. For glycerolipid and sphingolipid, the five solvents showed comparable extraction capabilities. However, CPME exhibited higher extraction efficiency of polar lipids (glycerophospholipid and saccharolipid) than other solvents. Overall, these results may be a useful guide for the application of green solvents in industrial production of coconut oil.
    Matched MeSH terms: Phytosterols*
  2. Chaijan M, Panpipat W, Cheong LZ
    Molecules, 2022 Nov 14;27(22).
    PMID: 36431934 DOI: 10.3390/molecules27227833
    Concerns have been raised about the safety and tolerability of phytosterol esters due to their vulnerability to oxidation. Herein, oxidation of the unsaturated fatty acid-phytosterol ester, namely β-sitosteryl oleate, was observed in comparison to native β-sitosterol after accelerated storage at 65 °C for 35 days in a bulk oil model system. Depending on the sterol structure, various chemical indices of lipid oxidation, including hydroperoxide value (HPV), thiobarbituric acid reactive substances (TBARS), p-anisidine value (AnV), and 7-keto derivatives, changed at varying rates in both samples. Such indicators for β-sitosteryl oleate appeared to be obtained at higher concentrations than those for β-sitosterol. The first order kinetic was used to describe the losses of β-sitosteryl oleate and β-sitosterol in bulk oil. It was discovered that the β-sitosteryl oleate (k = 0.0202 day-1) underwent oxidative alteration more rapidly than β-sitosterol (k = 0.0099 day-1). Results indicated that physical structure was the principal factor in the determination of storage stability of phytosterol and its ester. Research on antioxidants and storage techniques can be expanded in order to reduce the oxidative loss of phytosterol esters during storage and improve the safety and tolerability of phytosterol esters.
    Matched MeSH terms: Phytosterols*
  3. Nasri C, Halabi Y, Hajib A, Choukri H, Harhar H, Lee LH, et al.
    Sci Rep, 2023 Dec 20;13(1):22767.
    PMID: 38123687 DOI: 10.1038/s41598-023-50119-y
    Eight Moroccan avocado varieties were analyzed for their nutritional composition and physicochemical properties. The nutritional contents of the sample were determined through the evaluation of the moisture, oil, ash, protein, and carbohydrate contents, and energy value calculation. Additionally, macroelements (Ca, Mg, and Na) and microelements (Fe, Zn, Cu, and Mn) were determined in the mineral profile. Oils were examined also for their fatty acid, phytosterol, and tocopherol profiles. As a result of the study, the avocado presents significant differences between the eight studied varieties (p 
    Matched MeSH terms: Phytosterols*
  4. Chua LYW, Chua BL, Figiel A, Chong CH, Wojdyło A, Szumny A, et al.
    Molecules, 2019 04 09;24(7).
    PMID: 30970652 DOI: 10.3390/molecules24071397
    The preservation of active constituents in fresh herbs is affected by drying methods. An effective drying method for Strobilanthes crispus which is increasingly marketed as an important herbal tea remains to be reported. This study evaluated the effects of conventional and new drying technologies, namely vacuum microwave drying methods, on the antioxidant activity and yield of essential oil volatiles and phytosterols. These drying methods included convective drying (CD) at 40 °C, 50 °C, and 60 °C; vacuum microwave drying (VMD) at 6, 9, and 12 W/g; convective pre-drying and vacuum microwave finish drying (CPD-VMFD) at 50 °C and 9 W/g; and freeze-drying (FD). GC–MS revealed 33 volatiles, and 2-hexen-1-ol, 2-hexenal, 1-octen-3-ol, linalool, and benzaldehyde were major constituents. The compounds β-sitosterol and α-linolenic acid were the most abundant phytosterol and fatty acid, respectively, in fresh S. crispus. The highest phenolic content was achieved with CD at 60 °C. The highest antioxidant activity was obtained with CD at 40 °C and VMD at 9 W/g. On the contrary, the highest total volatiles and phytosterols were detected with CD at 50 °C and VMD at 9 W/g, respectively. This study showed that CD and VMD were effective in producing highly bioactive S. crispus. A suitable drying parameter level, irrespective of the drying method used, was an important influencing factor.
    Matched MeSH terms: Phytosterols/analysis*
  5. Abdul Zali M, Juahir H, Ismail A, Retnam A, Idris AN, Sefie A, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(16):20717-20736.
    PMID: 33405159 DOI: 10.1007/s11356-020-11680-5
    Sewage contamination is a principal concern in water quality management as pathogens in sewage can cause diseases and lead to detrimental health effects in humans. This study examines the distribution of seven sterol compounds, namely coprostanol, epi-coprostanol, cholesterol, cholestanol, stigmasterol, campesterol, and β-sitosterol in filtered and particulate phases of sewage treatment plants (STPs), groundwater, and river water. For filtered samples, solid-phase extraction (SPE) was employed while for particulate samples were sonicated. Quantification was done by using gas chromatography-mass spectrometer (GC-MS). Faecal stanols (coprostanol and epi-coprostanol) and β-sitosterol were dominant in most STP samples. Groundwater samples were influenced by natural/biogenic sterol, while river water samples were characterized by a mixture of sources. Factor loadings from principal component analysis (PCA) defined fresh input of biogenic sterol and vascular plants (positive varimax factor (VF)1), aged/treated sewage sources (negative VF1), fresh- and less-treated sewage and domestic sources (positive VF2), biological sewage effluents (negative VF2), and fresh-treated sewage sources (VF3) in the samples. Association of VF loadings and factor score values illustrated the correlation of STP effluents and the input of biogenic and plant sterol sources in river and groundwater samples of Linggi. This study focuses on sterol distribution and its potential sources; these findings will aid in sewage assessment in the aquatic environment.
    Matched MeSH terms: Phytosterols*
  6. Shahzad N, Khan W, Md S, Ali A, Saluja SS, Sharma S, et al.
    Biomed Pharmacother, 2017 Apr;88:786-794.
    PMID: 28157655 DOI: 10.1016/j.biopha.2017.01.068
    Phytosterols are naturally occurring compounds in plants, structurally similar to cholesterol. The human diet is quite abundant in sitosterol and campesterol. Phytosterols are known to have various bioactive properties including reducing intestinal cholesterol absorption which alleviates blood LDL-cholesterol and cardiovascular problems. It is indicated that phytosterol rich diets may reduce cancer risk by 20%. Phytosterols may also affect host systems, enabling antitumor responses by improving immune response recognition of cancer, affecting the hormone dependent endocrine tumor growth, and by sterol biosynthesis modulation. Moreover, phytosterols have also exhibited properties that directly inhibit tumor growth, including reduced cell cycle progression, apoptosis induction, and tumor metastasis inhibition. The objective of this review is to summarize the current knowledge on occurrences, chemistry, pharmacokinetics and potential anticancer properties of phytosterols in vitro and in vivo. In conclusion, anticancer effects of phytosterols have strongly been suggested and support their dietary inclusion to prevent and treat cancers.
    Matched MeSH terms: Phytosterols/pharmacokinetics; Phytosterols/pharmacology*; Phytosterols/chemistry
  7. Leong WF, Che Man YB, Lai OM, Long K, Misran M, Tan CP
    J Agric Food Chem, 2009 Sep 23;57(18):8426-33.
    PMID: 19694442 DOI: 10.1021/jf901853y
    The purpose of this study was to optimize the parameters involved in the production of water-soluble phytosterol microemulsions for use in the food industry. In this study, response surface methodology (RSM) was employed to model and optimize four of the processing parameters, namely, the number of cycles of high-pressure homogenization (1-9 cycles), the pressure used for high-pressure homogenization (100-500 bar), the evaporation temperature (30-70 degrees C), and the concentration ratio of microemulsions (1-5). All responses-particle size (PS), polydispersity index (PDI), and percent ethanol residual (%ER)-were well fit by a reduced cubic model obtained by multiple regression after manual elimination. The coefficient of determination (R(2)) and absolute average deviation (AAD) value for PS, PDI, and %ER were 0.9628 and 0.5398%, 0.9953 and 0.7077%, and 0.9989 and 1.0457%, respectively. The optimized processing parameters were 4.88 (approximately 5) homogenization cycles, homogenization pressure of 400 bar, evaporation temperature of 44.5 degrees C, and concentration ratio of microemulsions of 2.34 cycles (approximately 2 cycles) of high-pressure homogenization. The corresponding responses for the optimized preparation condition were a minimal particle size of 328 nm, minimal polydispersity index of 0.159, and <0.1% of ethanol residual. The chi-square test verified the model, whereby the experimental values of PS, PDI, and %ER agreed with the predicted values at a 0.05 level of significance.
    Matched MeSH terms: Phytosterols/chemistry*
  8. Elouafy Y, El Idrissi ZL, El Yadini A, Harhar H, Alshahrani MM, Al Awadh AA, et al.
    Molecules, 2022 Nov 09;27(22).
    PMID: 36431794 DOI: 10.3390/molecules27227693
    Walnut oil, like all vegetable oils, is chemically unstable because of the sensitivity of its unsaturated fatty acids to the oxidation phenomenon. This phenomenon is based on a succession of chemical reactions, under the influence of temperature or storage conditions, that always lead to a considerable change in the quality of the oil by promoting the oxidation of unsaturated fatty acids through the degradation of their C-C double bonds, leading to the formation of secondary oxidation products that reduce the nutritional values of the oil. This research examines the oxidative stability of roasted and unroasted cold-pressed walnut oils under accelerated storage conditions. The oxidative stability of both oils was evaluated using physicochemical parameters: chemical composition (fatty acids, phytosterols, and tocopherols), pigment content (chlorophyll and carotenoids), specific extinction coefficients (K232 and K270), and quality indicators (acid and peroxide value) as well as the evaluation of radical scavenging activity by the DPPH method. The changes in these parameters were evaluated within 60 days at 60 ± 2 °C. The results showed that the levels of total phytosterols, the parameters of the acid and peroxide value, K232 and K270, increased slightly for both oils as well as the total tocopherol content and the antioxidant activity affected by the roasting process. In contrast, the fatty acid profiles did not change considerably during the 60 days of our study. After two months of oil treatment at 60 °C, the studied oils still showed an excellent physicochemical profile, which allows us to conclude that these oils are stable and can withstand such conditions. This may be due to the considerable content of tocopherols (vitamin E), which acts as an antioxidant.
    Matched MeSH terms: Phytosterols*
  9. Bin Sintang MD, Danthine S, Brown A, Van de Walle D, Patel AR, Tavernier I, et al.
    Food Res Int, 2017 10;100(Pt 1):832-840.
    PMID: 28873756 DOI: 10.1016/j.foodres.2017.07.079
    Monoglycerides (MGs) and phytosterols (PS) are known to form firm oleogels with liquid oil. However, the oleogels are prone to undergo polymorphic transition over time that lead to crystals' aggregation thus, compromises physical properties. Thus, we combined MGs with PS to control the crystallization and modify the morphology of the combination oleogels, as both components are reported to interact together. The oleogels were prepared at different ratio combinations and characterized in their rheological, thermal, morphology, and diffraction properties. The results showed that the 8:2 MGP:PS exhibited higher storage modulus (G') than the MGP mono-component. The combination oleogels exhibited effects on the crystallization and polymorphic transition. Consequently, the effects led to change in the morphology of the combination oleogels which was visualized using optical and electron microscope. The resultant effect on the morphology is associated with crystal defect. Due to observable crystals of MGP and PS, it is speculated that the combination oleogels formed a mixed crystal system. This was confirmed with diffraction analysis in which the corresponding peaks from MGP and PS were observed in the combination oleogels. However, the 8:2 oleogel exhibited additional peak at 35.41Å. Ultimately, the 8:2 was the optimum combination observed in our study. Interestingly, this combination is inspired by nature as sterols (phytosterols) are natural component of lipid membrane whilst MGP has properties similar to phospholipids. Hence, the results of our study not only beneficial for oil structuring, but also for the fields of biophysical and pharmaceutical.
    Matched MeSH terms: Phytosterols/chemistry*
  10. Bakrim S, El Omari N, Khan EJ, Khalid A, Abdalla AN, Chook JB, et al.
    Biomed Pharmacother, 2023 Dec 31;169:115783.
    PMID: 37944439 DOI: 10.1016/j.biopha.2023.115783
    Nuclear receptors (NRs) represent intracellular proteins that function as a signaling network of transcriptional factors to control genes in response to a variety of environmental, dietary, and hormonal stimulations or serve as orphan receptors lacking a recognized ligand. They also play an essential role in normal development, metabolism, cell growth, cell division, physiology, reproduction, and homeostasis and function as biological markers for tumor subclassification and as targets for hormone therapy. NRs, including steroid hormone receptors (SHRs), have been studied as tools to examine the fundamentals of transcriptional regulation within the development of mammals and human physiology, in addition to their links to disturbances. In this regard, it is widely recognized that aberrant NR signaling is responsible for the pathological growth of hormone-dependent tumors in response to SHRs dysregulation and consequently represents a potential therapeutic candidate in a range of diseases, as in the case of prostate cancer and breast cancer. On the other hand, phytosterols are a group of plant-derived compounds that act directly as ligands for NRs and have proven their efficacy in the management of diabetes, heart diseases, and cancers. However, these plants are not suggested in cases of hormone-dependent cancer since a certain group of plants contains molecules with a chemical structure similar to that of estrogens, which are known as phytoestrogens or estrogen-like compounds, such as lignans, coumestans, and isoflavones. Therefore, it remains an open and controversial debate regarding whether consuming a phytosterol-rich diet and adopting a vegetarian lifestyle like the Mediterranean diet may increase the risk of developing steroid hormone-dependent cancers by constitutively activating SHRs and thereby leading to tumor transformation. Overall, the purpose of this review is to better understand the relevant mechanistic pathways and explore epidemiological investigations in order to establish that phytosterols may contribute to the activation of NRs as cancer drivers in hormone-dependent cancers.
    Matched MeSH terms: Phytosterols*
  11. Masni Mohd Ali, Norfariza Humrawali, Mohd Talib Latif, Mohamad Pauzi Zakaria
    This study explores the role of sterols as lipid biomarkers to indicate their input which originates from various sources in the marine environment. Sterols and their ratios were investigated in sediments taken from sixteen sampling stations at Pulau Tinggi, Johor in order to assess the sources of organic matter. The compounds extracted from the sediments were quantified using a gas chromatography-mass spectrometry (GC-MS). The distributions of sterols indicated that organic matter at all sampling stations originated from a mixture of marine source and terrestrial origins at different proportions. A total of eleven sterols were quantified, with the major compounds being phytosterols (44% of total sterols), cholesterol (11%), brassicasterol (11%) and fecal sterols (12%).
    Matched MeSH terms: Phytosterols
  12. Uddin MS, Sarker MZ, Ferdosh S, Akanda MJ, Easmin MS, Bt Shamsudin SH, et al.
    J Sci Food Agric, 2015 May;95(7):1385-94.
    PMID: 25048690 DOI: 10.1002/jsfa.6833
    Phytosterols provide important health benefits: in particular, the lowering of cholesterol. From environmental and commercial points of view, the most appropriate technique has been searched for extracting phytosterols from plant matrices. As a green technology, supercritical fluid extraction (SFE) using carbon dioxide (CO2) is widely used to extract bioactive compounds from different plant matrices. Several studies have been performed to extract phytosterols using supercritical CO2 (SC-CO2) and this technology has clearly offered potential advantages over conventional extraction methods. However, the efficiency of SFE technology fully relies on the processing parameters, chemistry of interest compounds, nature of the plant matrices and expertise of handling. This review covers SFE technology with particular reference to phytosterol extraction using SC-CO2. Moreover, the chemistry of phytosterols, properties of supercritical fluids (SFs) and the applied experimental designs have been discussed for better understanding of phytosterol solubility in SC-CO2.
    Matched MeSH terms: Phytosterols/isolation & purification*; Phytosterols/chemistry
  13. Choo YM, Ng MH, Ma AN, Chuah CH, Hashim MA
    Lipids, 2005 Apr;40(4):429-32.
    PMID: 16028723
    The application of supercritical fluid chromatography (SFC) coupled with a UV variable-wavelength detector to isolate the minor components (carotenes, vitamin E, sterols, and squalene) in crude palm oil (CPO) and the residual oil from palm-pressed fiber is reported. SFC is a good technique for the isolation and analysis of these compounds from the sources mentioned. The carotenes, vitamin E, sterols, and squalene were isolated in less than 20 min. The individual vitamin E isomers present in palm oil were also isolated into their respective components, alpha-tocopherol, alpha-tocotrienol, gamma-tocopherol, gamma-tocotrienol, and delta-tocotrienol. Calibration of all the minor components of palm as well as the individual components of palm vitamin E was carried out and was found to be comparable to those analyzed by other established analytical methods.
    Matched MeSH terms: Phytosterols/analysis*; Phytosterols/chemistry
  14. Fatahi S, Kord-Varkaneh H, Talaei S, Mardali F, Rahmani J, Ghaedi E, et al.
    Nutr Metab Cardiovasc Dis, 2019 11;29(11):1168-1175.
    PMID: 31582198 DOI: 10.1016/j.numecd.2019.07.011
    BACKGROUND AND AIM: Although some earlier studies have indicated the effect of phytosterol (PS) supplementation on serum lipoprotein(a) (Lp(a)) and free fatty acid (FFA) concentration, findings are still conflicting. We aimed to assess the impact of PS supplementation on serum Lp(a) and FFA concentration through a systematic review and meta-analysis of available RCTs.

    METHODS AND RESULTS: We performed a systematic search of all available RCTs conducted up to 21 February 2019 in the following databases: PubMed, Scopus, and Cochrane. The choice of fixed- or random-effect model for analysis was determined according to the I2 statistic. Effect sizes were expressed as weighted mean difference (WMD) and 95% confidence interval (CI). Pooling of 12 effect sizes from seven articles revealed a significant reduction of Lp(a) levels following PS supplementation (MD: -0.025 mg/dl, 95% CI: -0.045, -0.004, p = 0.017) without significant heterogeneity among the studies (I2 = 0.0%, p = 0.599). Also, PS supplementation significantly lowered FFA (MD: -0.138 mg/dl, 95% CI: -0.195, -0.081, p = 0.000) without significant heterogeneity among the studies (I2 = 0.0%, p = 0.911). The results for meta-regression and sensitivity analysis were not significant.

    CONCLUSION: The meta-analysis suggests that oral PS supplementation could cause a significant reduction in serum Lp(a) and FFA.

    Matched MeSH terms: Phytosterols/adverse effects; Phytosterols/therapeutic use*
  15. Gandola AE, Dainelli L, Zimmermann D, Dahlui M, Detzel P
    Nutrients, 2019 May 30;11(6).
    PMID: 31151244 DOI: 10.3390/nu11061235
    This study evaluated the cost-effectiveness of the consumption of a milk powder product fortified with potassium (+1050.28 mg/day) and phytosterols (+1200 mg/day) to lower systolic blood pressure and low-density lipoprotein cholesterol, respectively, and, therefore, the risk of myocardial infarction (MI) and stroke among the 35-75-year-old population in Malaysia. A Markov model was created against a do-nothing option, from a governmental perspective, and with a time horizon of 40 years. Different data sources, encompassing clinical studies, practice guidelines, grey literature, and statistical yearbooks, were used. Sensitivity analyses were performed to evaluate the impact of uncertainty on the base case estimates. With an incremental cost-effectiveness ratio equal to international dollars (int$) 22,518.03 per quality-adjusted life-years gained, the intervention can be classified as very cost-effective. If adopted nationwide, it would help prevent at least 13,400 MIs, 30,500 strokes, and more than 10,600 and 17,100 MI- and stroke-related deaths. The discounted cost savings generated for the health care system by those who consume the fortified milk powder would amount to int$8.1 per person, corresponding to 0.7% of the total yearly health expenditure per capita. Sensitivity analyses confirmed the robustness of the results. Together with other preventive interventions, the consumption of milk powder fortified with potassium and phytosterols represents a cost-effective strategy to attenuate the rapid increase in cardiovascular burden in Malaysia.
    Matched MeSH terms: Phytosterols/administration & dosage*; Phytosterols/analysis*
  16. Hue, W.L., Nyam, K.L.
    MyJurnal
    Kenaf seed oil contains high amount of monounsaturated fatty acid (MUFA) and polyunsaturated fatty acid (PUFA), and bioactive compounds, such as tocopherol and phytosterol. In order to prevent bioactive compounds from oxidation, kenaf seed oil (KSO) was encapsulated by coextrusion technology. KSO and microencapsulated kenaf seed oil (MKSO) were then subjected to accelerated storage to investigate the effect of microencapsulation on the storage stability of kenaf seed oil. The changes of fatty acids profiles and bioactive compounds in oils were evaluated. Result showed that there was significant decreased (p
    Matched MeSH terms: Phytosterols
  17. Toopkanloo SP, Tan TB, Abas F, Alharthi FA, Nehdi IA, Tan CP
    Nanomaterials (Basel), 2020 Dec 05;10(12).
    PMID: 33291386 DOI: 10.3390/nano10122432
    This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
    Matched MeSH terms: Phytosterols
  18. Bin Sintang MD, Danthine S, Khalenkow D, Tavernier I, Tzompa Sosa DA, Julmohammad NB, et al.
    Chem Phys Lipids, 2020 08;230:104912.
    PMID: 32371001 DOI: 10.1016/j.chemphyslip.2020.104912
    Phytosterols (PSs) are insoluble in water and poorly soluble in oil, which hampers their potential as cholesterol level regulator in human. To mitigate this problem, monoglycerides (MGs) were used to modulates the crystallization behavior of PSs. Therefore, the understanding on mixing behavior provides the insight into different aspects of crystallization and the resultant effects. The effects on thermal, morphology, diffraction, and spectroscopy behavior were investigated for binary mixtures of 11 different ratios (100:0 to 0:100 MGs:PSs). The phase behavior of binary mixtures of commercial MGs and PSs exhibited complexity with the formation of eutectic mixtures at 90:10 and 80:20 (MGs:PSs) combinations. These combinations revealed a single melting profile and reduced melting enthalpy, though after a month of storage at 5 °C. Conversely, two separate melting regions were observed in others. Furthermore, powder X-ray diffraction (PXRD) analysis of selected combinations revealed a change in crystalline forms with changes in the peaks located between 18-19° (2θ) and 25-26° (2θ). Accordingly, Raman spectroscopy results revealed changes in intensities and peak shape. Therefore, the change in crystalline forms or behavior correlated well to the change in thermal properties. Overall, the characterizations revealed the formation of eutectic mixtures between MGs and PSs at 90:10 and 80:20 (MGs:PSs) in which MGs modified the crystallization of PSs and changed the crystal forms thus, thermal behaviors. This study provides new insight into the mixing behavior of MGs and PSs which supports other research. Therefore, the results of this study are beneficial for the improvement of formulation of phytosterols in food and pharmaceutical products. Nonetheless, this study reveals a simple technique to alter crystal forms of phytosterols through simple complexation with monoglycerides.
    Matched MeSH terms: Phytosterols
  19. Roiaini, M., Norhayati, H., Seyed, H.M., Jinap, S.
    MyJurnal
    Cocoa beans are rich in numbers of beneficial bioactive compounds such as phenolics and
    phytosterols, which benefits to human being. The suitable extraction method is needed to
    produce high quality and quantity of cocoa butter and other bioactive compounds. There are
    many extraction method to extract these compounds such as Soxhlet extraction, supercritical
    fluid extraction, ultrasound extraction method and others. The objective of this study is to
    determine the effectiveness of the different extraction methods producing high yields of cocoa
    butter, lower oxidative value, stable phytosterols and antioxidant content. The cocoa beans were
    subjected to different extraction methods such as Soxhlet extraction (SE), Ultrasonic extraction
    method (USE), Supercritical carbon dioxide (SCO2
    ) and Supercritical carbon dioxide with cosolvent
    (SCO2
    -Ethanol). Cocoa butter extracted using SCO2
    -Ethanol has significantly (p
    Matched MeSH terms: Phytosterols
  20. Kamisah Y, Othman F, Qodriyah HM, Jaarin K
    PMID: 23956777 DOI: 10.1155/2013/709028
    Parkia speciosa Hassk., or stink bean, is a plant indigenous to Southeast Asia. It is consumed either raw or cooked. It has been used in folk medicine to treat diabetes, hypertension, and kidney problems. It contains minerals and vitamins. It displays many beneficial properties. Its extracts from the empty pods and seeds have a high content of total polyphenol, phytosterol, and flavonoids. It demonstrates a good antioxidant activity. Its hypoglycemic effect is reported to be attributable to the presence of β -sitosterol, stigmasterol, and stigmast-4-en-3-one. The cyclic polysulfide compounds exhibit antibacterial activity, while thiazolidine-4-carboxylic acid possesses anticancer property. The pharmacological properties of the plant extract are described in this review. With ongoing research conducted on the plant extracts, Parkia speciosa has a potential to be developed as a phytomedicine.
    Matched MeSH terms: Phytosterols
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links