Displaying publications 1 - 20 of 30 in total

Abstract:
Sort:
  1. Wong RSY, Cheong SK
    Malays J Pathol, 2021 Aug;43(2):241-250.
    PMID: 34448788
    Ribonucleic acid (RNA) has been well-understood for its linear form for many years. With advances in high-throughput sequencing, there is an increasing focus on circular RNAs (circRNAs) recently. Although they were previously regarded as splicing error by-products, research has shown that they play a pivotal role in many cellular processes, one of which is the control of stem cell differentiation and fate. On the other hand, decades of research have demonstrated the promising therapeutic potential of mesenchymal stem cells (MSCs). To this end, there is a growing body of research on the role of circRNAs in the determination of the fate of MSCs. This review critically examines the current evidence and consolidates key findings from studies that explore the involvement of circRNAs in the regulation of MSC differentiation.
    Matched MeSH terms: RNA/genetics
  2. Ng WL, Mohd Mohidin TB, Shukla K
    RNA Biol, 2018;15(8):995-1005.
    PMID: 29954251 DOI: 10.1080/15476286.2018.1486659
    Circular RNAs (circRNAs) are a large class of endogenously expressed non-coding RNAs formed by covalently closed loops through back-splicing. High throughput sequencing technologies have identified thousands of circRNAs with high sequence conservation and cell type specific expression in eukaryotes. CircRNAs play multiple important roles in cellular physiology functioning as miRNA sponges, transcriptional regulators, RBP binding molecules, templates for protein translation, and immune regulators. In a clinical context, circRNAs expression is correlated with patient's clinicopathological features in cancers including breast, liver, gastric, colorectal, and lung cancer. Additionally, distinct properties of circRNAs, such as high stability, exonuclease resistance, and existence in body fluids, show promising role for circRNAs as molecular biomarkers for tumor diagnosis, non-invasive monitoring, prognosis, and therapeutic intervention. Therefore, it is critical to further understand the molecular mechanism underlying circRNAs interaction in tumors and the recent progress of this RNA species in cancer development. In this review, we provide a detailed description of biological functions, molecular role of circRNAs in different cancers, and its potential role as biomarkers in a clinical context.
    Matched MeSH terms: RNA/genetics*
  3. Gan HM, Tan MH, Lee YP, Hammer MP, Austin CM
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 11;27(6):4187-4188.
    PMID: 25600740
    The mitogenome of an Australian sample of the mudskipper, Periophthalmus minutus, was recovered from partial sequencing using the MiSeq sequencer. This mudskipper has a mitogenome of 16,506 base pairs (55% A + T content) made up of two ribosomal subunit genes, 13 protein-coding genes, 22 transfer RNAs, and a 838 bp non-coding AT-rich region. This is the first sequenced mitogenome for the genus Periophthalmus and the fifth for the subfamily Oxudercinae.
    Matched MeSH terms: RNA/genetics*
  4. Citartan M, Tan SC, Tang TH
    World J Microbiol Biotechnol, 2012 Jan;28(1):105-11.
    PMID: 22806785 DOI: 10.1007/s11274-011-0797-0
    Purification of RNA fragments from a complex mixture is a very common technique, and requires consideration of the time, cost, purity and yield of the purified RNA fragments. This study describes the fastest method of purifying small RNA with the lowest cost possible, without compromizing the yield and purity. The technique describes the purification of small RNA from polyacrylamide gel, resulting in a good yield of small RNA with minimum experimental steps in avoiding degradation of the RNA, obviating the use of ethidium bromide and phenol-chloroform extraction, as well as siliconized glass wools to remove the polyacrylamide gel particles. The purified small RNA is suitable for a wide variety of applications such as ligation, end labelling with radio isotope, RT-PCR (Reverse Transcriptase-PCR), Northern blotting, experimental RNomics study and also Systematic Evolution of Ligands by Exponential Enrichment (SELEX).
    Matched MeSH terms: RNA/genetics
  5. Emrizal R, Hamdani HY, Firdaus-Raih M
    Int J Mol Sci, 2021 Aug 09;22(16).
    PMID: 34445259 DOI: 10.3390/ijms22168553
    The increasing number and complexity of structures containing RNA chains in the Protein Data Bank (PDB) have led to the need for automated structure annotation methods to replace or complement expert visual curation. This is especially true when searching for tertiary base motifs and substructures. Such base arrangements and motifs have diverse roles that range from contributions to structural stability to more direct involvement in the molecule's functions, such as the sites for ligand binding and catalytic activity. We review the utility of computational approaches in annotating RNA tertiary base motifs in a dataset of PDB structures, particularly the use of graph theoretical algorithms that can search for such base motifs and annotate them or find and annotate clusters of hydrogen-bond-connected bases. We also demonstrate how such graph theoretical algorithms can be integrated into a workflow that allows for functional analysis and comparisons of base arrangements and sub-structures, such as those involved in ligand binding. The capacity to carry out such automatic curations has led to the discovery of novel motifs and can give new context to known motifs as well as enable the rapid compilation of RNA 3D motifs into a database.
    Matched MeSH terms: RNA/genetics
  6. Norfatimah MY, Teh LK, Salleh MZ, Mat Isa MN, SitiAzizah MN
    Gene, 2014 Sep 15;548(2):263-9.
    PMID: 25042454 DOI: 10.1016/j.gene.2014.07.044
    This is the first documentation of the complete mitochondrial genome sequence of the Malaysian Mahseer, Tor tambroides. The 16,690 bp mitogenome with GenBank accession number JX444718 contains 13 protein genes, 22 tRNAs, two rRNAs, and a noncoding control region (D-loop) as is typical of most vertebrates. The phylogenomic reconstruction of this newly generated data with 21 Cypriniformes GenBank accession ID concurs with the recognized status of T. tambroides within the subfamily Cyprininae. This is in agreement with previous hypotheses based on morphological and partial mitochondrial analyses.
    Matched MeSH terms: RNA/genetics*
  7. Zakaria Z, Umi SH, Mokhtar SS, Mokhtar U, Zaiharina MZ, Aziz AT, et al.
    Genet. Mol. Res., 2013;12(1):302-11.
    PMID: 23408417 DOI: 10.4238/2013.February.4.4
    We developed an alternative method to extract DNA and RNA from clotted blood for genomic and molecular investigations. A combination of the TRIzol method and the QIAamp spin column were used to extract RNA from frozen clotted blood. Clotted blood was sonicated and then the QIAamp DNA Blood Mini Kit was used for DNA extraction. Extracted DNA and RNA were adequate for gene expression analysis and copy number variation (CNV) genotyping, respectively. The purity of the extracted RNA and DNA was in the range of 1.8-2.0, determined by absorbance ratios of A(260):A(280). Good DNA and RNA integrity were confirmed using gel electrophoresis and automated electrophoresis. The extracted DNA was suitable for qPCR and microarrays for CNV genotyping, while the extracted RNA was adequate for gene analysis using RT-qPCR.
    Matched MeSH terms: RNA/genetics
  8. Sulaiman SA, Abdul Murad NA, Mohamad Hanif EA, Abu N, Jamal R
    Adv Exp Med Biol, 2018 9 28;1087:357-370.
    PMID: 30259380 DOI: 10.1007/978-981-13-1426-1_28
    circRNAs have emerged as one of the key regulators in many cellular mechanisms and pathogenesis of diseases. However, with the limited knowledge and current technologies for circRNA investigations, there are several challenges that need to be addressed for. These include challenges in understanding the regulation of circRNA biogenesis, experimental designs, and sample preparations to characterize the circRNAs in diseases as well as the bioinformatics pipelines and algorithms. In this chapter, we discussed the above challenges and possible strategies to overcome those limitations. We also addressed the differences between the existing applications and technologies to study the circRNAs in diseases. By addressing these challenges, further understanding of circRNAs roles and regulations as well as the discovery of novel circRNAs could be achieved.
    Matched MeSH terms: RNA/genetics*
  9. Alhasan AA, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, et al.
    Blood, 2016 Mar 03;127(9):e1-e11.
    PMID: 26660425 DOI: 10.1182/blood-2015-06-649434
    In platelets, splicing and translation occur in the absence of a nucleus. However, the integrity and stability of mRNAs derived from megakaryocyte progenitor cells remain poorly quantified on a transcriptome-wide level. As circular RNAs (circRNAs) are resistant to degradation by exonucleases, their abundance relative to linear RNAs can be used as a surrogate marker for mRNA stability in the absence of transcription. Here we show that circRNAs are enriched in human platelets 17- to 188-fold relative to nucleated tissues and 14- to 26-fold relative to samples digested with RNAse R to selectively remove linear RNA. We compare RNAseq read depths inside and outside circRNAs to provide in silico evidence of transcript circularity, show that exons within circRNAs are enriched on average 12.7 times in platelets relative to nucleated tissues and identify 3162 genes significantly enriched for circRNAs, including some where all RNAseq reads appear to be derived from circular molecules. We also confirm that this is a feature of other anucleate cells through transcriptome sequencing of mature erythrocytes, demonstrate that circRNAs are not enriched in cultured megakaryocytes, and demonstrate that linear RNAs decay more rapidly than circRNAs in platelet preparations. Collectively, these results suggest that circulating platelets have lost >90% of their progenitor mRNAs and that translation in platelets occurs against the backdrop of a highly degraded transcriptome. Finally, we find that transcripts previously classified as products of reverse transcriptase template switching are both enriched in platelets and resistant to decay, countering the recent suggestion that up to 50% of rearranged RNAs are artifacts.
    Matched MeSH terms: RNA/genetics*
  10. Collopy LC, Walne AJ, Cardoso S, de la Fuente J, Mohamed M, Toriello H, et al.
    Blood, 2015 Jul 09;126(2):176-84.
    PMID: 26024875 DOI: 10.1182/blood-2015-03-633388
    Dyskeratosis congenita (DC) and related diseases are a heterogeneous group of disorders characterized by impaired telomere maintenance, known collectively as the telomeropathies. Disease-causing variants have been identified in 10 telomere-related genes including the reverse transcriptase (TERT) and the RNA component (TERC) of the telomerase complex. Variants in TERC and TERT can impede telomere elongation causing stem cells to enter premature replicative senescence and/or apoptosis as telomeres become critically short. This explains the major impact of the disease on highly proliferative tissues such as the bone marrow and skin. However, telomerase variants are not always fully penetrant and in some families disease-causing variants are seen in asymptomatic family members. As a result, determining the pathogenic status of newly identified variants in TERC or TERT can be quite challenging. Over a 3-year period, we have identified 26 telomerase variants (16 of which are novel) in 23 families. Additional investigations (including family segregation and functional studies) enabled these to be categorized into 3 groups: (1) disease-causing (n = 15), (2) uncertain status (n = 6), and (3) bystanders (n = 5). Remarkably, this process has also enabled us to identify families with novel mechanisms of inheriting human telomeropathies. These include triallelic mutations, involving 2 different telomerase genes, and an epigenetic-like inheritance of short telomeres in the absence of a telomerase mutation. This study therefore highlights that telomerase variants have highly variable functional and clinical manifestations and require thorough investigation to assess their pathogenic contribution.
    Matched MeSH terms: RNA/genetics
  11. Catapano M, Vergnano M, Romano M, Mahil SK, Choon SE, Burden AD, et al.
    J Invest Dermatol, 2020 04;140(4):816-826.e3.
    PMID: 31539532 DOI: 10.1016/j.jid.2019.08.444
    Psoriasis is an immune-mediated skin disorder associated with severe systemic comorbidities. Whereas IL-36 is a key disease driver, the pathogenic role of this cytokine has mainly been investigated in skin. Thus, its effects on systemic immunity and extracutaneous disease manifestations remain poorly understood. To address this issue, we investigated the consequences of excessive IL-36 activity in circulating immune cells. We initially focused our attention on generalized pustular psoriasis (GPP), a clinical variant associated with pervasive upregulation of IL-36 signaling. By undertaking blood and neutrophil RNA sequencing, we demonstrated that affected individuals display a prominent IFN-I signature, which correlates with abnormal IL-36 activity. We then validated the association between IL-36 deregulation and IFN-I over-expression in patients with severe psoriasis vulgaris (PV). We also found that the activation of IFN-I genes was associated with extracutaneous morbidity, in both GPP and PV. Finally, we undertook mechanistic experiments, demonstrating that IL-36 acts directly on plasmacytoid dendritic cells, where it potentiates toll-like receptor (TLR)-9 activation and IFN-α production. This effect was mediated by the upregulation of PLSCR1, a phospholipid scramblase mediating endosomal TLR-9 translocation. These findings identify an IL-36/ IFN-I axis contributing to extracutaneous inflammation in psoriasis.
    Matched MeSH terms: RNA/genetics*
  12. Sun S, Tan LT, Fang YL, Jin ZJ, Zhou L, Goh BH, et al.
    Mol Plant Microbe Interact, 2020 Mar;33(3):488-498.
    PMID: 31710580 DOI: 10.1094/MPMI-09-19-0264-R
    Phenazine-1-carboxylic acid (PCA) is the primary active component in the newly registered, commercial biopesticide Shenqinmycin and is produced during fermentation by the engineered rhizobacterium strain Pseudomonas PA1201. Both phz1 and phz2 gene clusters contribute to PCA biosynthesis. In this study, we evaluated the role of OxyR in the regulation of PCA biosynthesis in PA1201. We first showed a functional link between oxyR expression and PCA biosynthesis. Deletion of oxyR and overexpression of oxyR both increase PCA biosynthesis. The molecular mechanisms underlying OxyR regulation of PCA production were investigated using several approaches. OxyR acts divergently in phz1 and phz2. Overexpression of oxyR activated the expression of phz1 and phz1-dependent PCA production. However, overexpression of oxyR had little effect on phz2-dependent PCA biosynthesis, while deletion of oxyR promoted phz2-dependent PCA production and exerted a negative effect on phz2 expression. Further, OxyR directly bound to the phz2 promoter region. In addition, the regulation of PCA biosynthesis by OxyR was associated with quorum sensing (QS) systems. Overexpression of OxyR positively regulated pqs QS system. Finally, transcriptomic analysis and subsequent genetic analysis revealed the small RNA phrS plays a key role in OxyR-dependent PCA accumulation. Specifically, OxyR directly binds to the phrS promoter region to positively regulate phrS expression wherein PhrS regulates the PCA positive regulator MvfR in order to control PCA biosynthesis.
    Matched MeSH terms: RNA/genetics*
  13. Aslam S, Yee VC, Narayanan S, Duraisamy G, Standen GR
    Br J Haematol, 1997 Aug;98(2):346-52.
    PMID: 9266932
    Molecular analysis has been performed on a Malaysian patient with a severe bleeding disorder due to factor XIII(A) subunit deficiency. Total mRNA was isolated from the patient's leucocytes and four overlapping segments corresponding to the entire coding region of the A subunit cDNA were amplified by RT-PCR. The cDNA segments amplified efficiently and were of expected size. Direct sequencing of the complete reading frame revealed a single homozygous base change (nt 1327G-T) in exon 10 corresponding to a missense mutation, Val414Phe, in the catalytic core domain of the A subunit monomer. The mutation eliminates a BsaJ1 restriction site and family screening showed that both parents were heterozygous for the defect. The base substitution was absent in 55 normal individuals. Val414 is a highly conserved residue in the calcium-dependent transglutaminase enzyme family. Computer modelling based on 3D crystallographic data predicts that the bulky aromatic side chain of the substituted phenylalanine residue distorts protein folding and destabilizes the molecule. In addition, conformation changes in the adjacent catalytic and calcium binding regions of the A subunit are likely to impair the enzymatic activity of any protein synthesized.
    Matched MeSH terms: RNA/genetics
  14. Siew WS, Tang YQ, Kong CK, Goh BH, Zacchigna S, Dua K, et al.
    Int J Mol Sci, 2021 Aug 05;22(16).
    PMID: 34445123 DOI: 10.3390/ijms22168422
    Atherosclerosis represents one of the major causes of death globally. The high mortality rates and limitations of current therapeutic modalities have urged researchers to explore potential alternative therapies. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) system is commonly deployed for investigating the genetic aspects of Atherosclerosis. Besides, advances in CRISPR/Cas system has led to extensive options for researchers to study the pathogenesis of this disease. The recent discovery of Cas9 variants, such as dCas9, Cas9n, and xCas9 have been established for various applications, including single base editing, regulation of gene expression, live-cell imaging, epigenetic modification, and genome landscaping. Meanwhile, other Cas proteins, such as Cas12 and Cas13, are gaining popularity for their applications in nucleic acid detection and single-base DNA/RNA modifications. To date, many studies have utilized the CRISPR/Cas9 system to generate disease models of atherosclerosis and identify potential molecular targets that are associated with atherosclerosis. These studies provided proof-of-concept evidence which have established the feasibility of implementing the CRISPR/Cas system in correcting disease-causing alleles. The CRISPR/Cas system holds great potential to be developed as a targeted treatment for patients who are suffering from atherosclerosis. This review highlights the advances in CRISPR/Cas systems and their applications in establishing pathogenetic and therapeutic role of specific genes in atherosclerosis.
    Matched MeSH terms: RNA/genetics
  15. Foo LH, Suzina AH, Azlina A, Kannan TP
    J Biomed Mater Res A, 2008 Oct;87(1):215-21.
    PMID: 18085658
    Coral matrix of Porites sp. has the suitable properties for bone cell growth. This study was aimed to study the gene expression levels of osteoblast specific genetic markers; RUNX2, osteopontin, alkaline phosphatase and osteocalcin from osteoblasts seeded in coral scaffold, which are important in determining the feasibility of osteoblasts. Human osteoblasts were inoculated onto the processed coral in Dulbecco's Minimum Essential Medium. The cells were trypsinized on day 1, 7, 14, 18, and 21 and added with RNALater for preservation of RNA in cells. The RNA was extracted using commercial RNA extraction kit and the respective genes were amplified using RT-PCR kit and analyzed qualitatively on 1.5% agarose gel. The expressions were evaluated with the Integrated Density Value based on the intensity of band for different periods of cell harvest. Increased expressions of the RUNX2, osteopontin, alkaline phosphatase and osteocalcin genes in the present study proved that coral is a favorable carrier for osteogenetically competent cells to attach and remain viable.
    Matched MeSH terms: RNA/genetics
  16. Mohd-Zin SW, Abdullah NL, Abdullah A, Greene ND, Cheah PS, Ling KH, et al.
    Genome, 2016 Jul;59(7):439-48.
    PMID: 27373307 DOI: 10.1139/gen-2015-0142
    The EphA4 receptor tyrosine kinase is involved in numerous cell-signalling activities during embryonic development. EphA4 has the ability to bind to both types of ephrin ligands, the ephrinAs and ephrinBs. The C57BL/6J-Epha4rb-2J/GrsrJ strain, denoted Epha4(rb-2J/rb-2J), is a spontaneous mouse mutant that arose at The Jackson Laboratory. These mutants exhibited a synchronous hind limb locomotion defect or "hopping gait" phenotype, which is also characteristic of EphA4 null mice. Genetic complementation experiments suggested that Epha4(rb-2J) corresponds to an allele of EphA4, but details of the genomic defect in this mouse mutant are currently unavailable. We found a single base-pair deletion in exon 9 resulting in a frame shift mutation that subsequently resulted in a premature stop codon. Analysis of the predicted structure of the truncated protein suggests that both the kinase and sterile α motif (SAM) domains are absent. Definitive determination of genotype is needed for experimental studies of mice carrying the Epha4(rb-2J) allele, and we have also developed a method to ease detection of the mutation through RFLP. Eph-ephrin family members are reportedly expressed as numerous isoforms. Hence, delineation of the specific mutation in EphA4 in this strain is important for further functional studies, such as protein-protein interactions, immunostaining and gene compensatory studies, investigating the mechanism underlying the effects of altered function of Eph family of receptor tyrosine kinases on phenotype.
    Matched MeSH terms: RNA/genetics
  17. Awasthi R, Singh AK, Mishra G, Maurya A, Chellappan DK, Gupta G, et al.
    Adv Exp Med Biol, 2018 9 28;1087:3-14.
    PMID: 30259353 DOI: 10.1007/978-981-13-1426-1_1
    Circular RNAs (cirRNAs) are long, noncoding endogenous RNA molecules and covalently closed continuous loop without 5'-3' polarity and polyadenylated tail which are largely concentrated in the nucleus. CirRNA regulates gene expression by modulating microRNAs and functions as potential biomarker. CirRNAs can translate in vivo to link between their expression and disease. They are resistant to RNA exonuclease and can convert to the linear RNA by microRNA which can then act as competitor to endogenous RNA. This chapter summarizes the evolutionary conservation and expression of cirRNAs, their identification, highlighting various computational approaches on cirRNA, and translation with a focus on the breakthroughs and the challenges in this new field.
    Matched MeSH terms: RNA/genetics*
  18. Shanmugapriya, Huda HA, Vijayarathna S, Oon CE, Chen Y, Kanwar JR, et al.
    Adv Exp Med Biol, 2018 9 28;1087:95-105.
    PMID: 30259360 DOI: 10.1007/978-981-13-1426-1_8
    Circular RNAs characterize a class of widespread and diverse endogenous RNAs which are non-coding RNAs that are made by back-splicing events and have covalently closed loops with no polyadenylated tails. Various indications specify that circular RNAs (circRNAs) are plentiful in the human transcriptome. However, their participation in biological processes remains mostly undescribed. To date thousands of circRNAs have been revealed in organisms ranging from Drosophila melanogaster to Homo sapiens. Functional studies specify that these transcripts control expression of protein-coding linear transcripts and thus encompass a key component of gene expression regulation. This chapter provide a comprehensive overview on functional validation of circRNAs. Furthermore, we discuss the recent modern methodologies for the functional validation of circRNAs such as RNA interference (RNAi) gene silencing assay, luciferase reporter assays, circRNA gain-of-function investigation via overexpression of circular transcript assay, RT-q-PCR quantification, and other latest applicable assays. The methods described in this chapter are demonstrated on the cellular model.
    Matched MeSH terms: RNA/genetics*
  19. Low JZB, Khang TF, Tammi MT
    BMC Bioinformatics, 2017 12 28;18(Suppl 16):575.
    PMID: 29297307 DOI: 10.1186/s12859-017-1974-4
    BACKGROUND: In current statistical methods for calling differentially expressed genes in RNA-Seq experiments, the assumption is that an adjusted observed gene count represents an unknown true gene count. This adjustment usually consists of a normalization step to account for heterogeneous sample library sizes, and then the resulting normalized gene counts are used as input for parametric or non-parametric differential gene expression tests. A distribution of true gene counts, each with a different probability, can result in the same observed gene count. Importantly, sequencing coverage information is currently not explicitly incorporated into any of the statistical models used for RNA-Seq analysis.

    RESULTS: We developed a fast Bayesian method which uses the sequencing coverage information determined from the concentration of an RNA sample to estimate the posterior distribution of a true gene count. Our method has better or comparable performance compared to NOISeq and GFOLD, according to the results from simulations and experiments with real unreplicated data. We incorporated a previously unused sequencing coverage parameter into a procedure for differential gene expression analysis with RNA-Seq data.

    CONCLUSIONS: Our results suggest that our method can be used to overcome analytical bottlenecks in experiments with limited number of replicates and low sequencing coverage. The method is implemented in CORNAS (Coverage-dependent RNA-Seq), and is available at https://github.com/joel-lzb/CORNAS .

    Matched MeSH terms: RNA/genetics
  20. Mohamad Ashari ZS, Sulong S, Hassan R, Husin A, Sim GA, Abdul Wahid SF
    Asian Pac J Cancer Prev, 2014;15(4):1863-9.
    PMID: 24641422
    The amplification of telomerase component (TERC) gene could play an important role in generation and treatment of haematological malignancies. This present study was aimed to investigate copy number amplification status of TERC gene in chronic myeloid leukaemia (CML) patients who were being treated with imatinib mesylate (IM). Genomic DNA was extracted from peripheral blood of CML-IM Resistant (n=63), CML-IM Respond (n=63) and healthy individuals (n=30). TERC gene copy number predicted (CNP) and copy number calculated (CNC) were determined based on Taqman® Copy Number Assay. Fluorescence in situ hybridization (FISH) analysis was performed to confirm the normal signal pattern in C4 (calibrator) for TERC gene. Nine of CML patients showed TERC gene amplification (CNP=3), others had 2 CNP. A total of 17 CML patients expressed CNC>2.31 and the rest had 2.31>CNC>1.5. TERC gene CNP value in healthy individuals was 2 and their CNC value showed in range 1.59-2.31. The average CNC TERC gene copy number was 2.07, 1.99 and 1.94 in CML- IM Resistant patients, CML-IM Respond and healthy groups, respectively. No significant difference of TERC gene amplification observed between CML-IM Resistant and CML-IM Respond patients. Low levels of TERC gene amplification might not have a huge impact in haematological disorders especially in terms of resistance towards IM treatment.
    Matched MeSH terms: RNA/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links