Displaying publications 1 - 20 of 200 in total

  1. Sohaimi ES, Md Amin R, Sahibu A, Mohd Akhir MF
    Data Brief, 2021 Apr;35:106893.
    PMID: 33718548 DOI: 10.1016/j.dib.2021.106893
    In this article, the abundance of phytoplankton community structure in Malacca Straits (MS); from Port Klang to Langkawi Island are reported. The datasets include data from 25 selected sampling sites that were acquired in August 2019 on board the RV Discovery's cruise expedition. These data contain details on the density of phytoplankton (cell L-1), total number of species, volume seawater filtered (in L) and the concentration factors (ml) in MS. Data presented in this article consists of 163 species, including unidentified species from 6 phyla of phytoplankton, along with the percentage of a major community group in MS.
    Matched MeSH terms: Seawater
  2. Zal U’yun Wan Mahmood, Norfaizal Mohamed, Nita Salina Abu Bakar, Nur Hidaya Dmuliany Mohd Sidek
    Laboratory radiotracer experiment was performed to study the bioaccumulation of 109Cd and 134Cs in the Malaysian common fish White seabass (Lates calcarifer). The aim of this study was to compare the biokinetics of uptake these two contrasting radionuclides by White seabass in laboratory condition scale. Experiments were designed to determine the processes controlling uptake of both radionuclides following exposure via seawater. In this study, the curve shapes of the uptake kinetic of 109Cd and 134Cs in White seabass were slightly linear and gradually increased with increasing of exposure time but were not reach equilibrium in the period of the study of 21 days. This phenomenon can be concluded that radioelement concentrations of 109Cd and 134Cs; and exposure duration of this experiment may not adequately to reach steady-state condition for uptake kinetic of those radioelements in White seabass. Furthermore, this was indicated that the uptake rate of 109Cd was 1.79 times faster than 134Cs due to some factors may probably influenced the output of this experiment such as different element accumulation strategies, physiological, behavior of radioelements, etc.
    Matched MeSH terms: Seawater
  3. Martin PH
    Health Phys, 1978 Oct;35(4):574-5.
    PMID: 748266
    Matched MeSH terms: Seawater
  4. Ahmad-Kamil EI, Ramli R, Jaaman SA, Bali J, Al-Obaidi JR
    ScientificWorldJournal, 2013;2013:892746.
    PMID: 24163635 DOI: 10.1155/2013/892746
    Seagrass is a valuable marine ecosystem engineer. However, seagrass population is declining worldwide. The lack of seagrass research in Malaysia raises questions about the status of seagrasses in the country. The seagrasses in Lawas, which is part of the coral-mangrove-seagrass complex, have never been studied in detail. In this study, we examine whether monthly changes of seagrass population in Lawas occurred. Data on estimates of seagrass percentage cover and water physicochemical parameters (pH, turbidity, salinity, temperature, and dissolved oxygen) were measured at 84 sampling stations established within the study area from June 2009 to May 2010. Meteorological data such as total rainfall, air temperature, and Southern Oscillation Index were also investigated. Our results showed that (i) the monthly changes of seagrass percentage cover are significant, (ii) the changes correlated significantly with turbidity measurements, and (iii) weather changes affected the seagrass populations. Our study indicates seagrass percentage increased during the El-Nino period. These results suggest that natural disturbances such as weather changes affect seagrass populations. Evaluation of land usage and measurements of other water physicochemical parameters (such as heavy metal, pesticides, and nutrients) should be considered to assess the health of seagrass ecosystem at the study area.
    Matched MeSH terms: Seawater/analysis
  5. Saravi HN, Din ZB, Makhlough A
    Pak J Biol Sci, 2008 May 01;11(9):1179-93.
    PMID: 18819525
    Temporal variations and regional distributions of dissolved nutrients and their elemental ratios in the Iranian coastal waters of the Southern Caspian Sea were investigated. The data were collected in 1996-97 (Phase I, as a background data and undisturbed ecosystem) and in 2005 (Phase II, as a disturbed ecosystem) at sampling points (from 10 to 100 m depths). In addition to the two main sampling exercises, additional sample collections were carried out during the period of 1994 to 2004 as a long-term study. This study showed that the dissolved inorganic nitrogen/dissolved inorganic phosphorus (DIN/DIP) ratios in the southern Caspian Sea vary within a very narrow range (4.47 to 5.78) within the euphotic and aphotic layers and is by one order of magnitude lower than what have been reported for several other marine ecosystems. Phytoplankton growth seems to be nitrogen limited while the levels of P and Si always remain high. Factor Analysis/Principal Component Analysis (FA/PCA) of the correlation matrix showed that the nitrogen compounds are associated with the main factor accounting for 25.7-26.2% of the total variance for both the sampling periods. During Phase I, the Chrysophyta were the major group, whereas during Phase II the proportion of Chrysophyta in the total community progressively decreased, while the other groups increased.
    Matched MeSH terms: Seawater*
  6. Binti Ibnu Rasid EN, Mohamad SE, Jamaluddin H, Salleh MM
    Appl Biochem Biotechnol, 2014 Feb;172(4):2160-74.
    PMID: 24338298 DOI: 10.1007/s12010-013-0644-x
    Astaxanthin, a carotenoid pigment found in several aquatic organisms, is responsible for the red colour of salmon, trout and crustaceans. In this study, astaxanthin production from freshwater microalga Chlorella sorokiniana and marine microalga Tetraselmis sp. was investigated. Cell growth and astaxanthin production were determined spectrophotometrically at 620 and 480 nm, respectively. Astaxanthin was extracted using acetone and measured subsequent to biomass removal. Aerated conditions favoured astaxanthin production in C. sorokiniana, whereas Tetraselmis sp. was best cultured under unaerated conditions. C. sorokiniana produced more astaxanthin with the highest yield reached at 7.83 mg/l in 6.0 mM in nitrate containing medium compared to Tetraselmis sp. which recorded the highest yield of only 1.96 mg/l in 1.5 mM nitrate containing medium. Production in C. sorokiniana started at the early exponential phase, indicating that astaxanthin may be a growth-associated product in this microalga. Further optimization of astaxanthin production was performed using C. sorokiniana through a 2(3) full factorial experimental design, and a yield of 8.39 mg/l was achieved. Overall, the study has shown that both microalgae are capable of producing astaxanthin. Additionally, this research has highlighted C. sorokiniana as a potential astaxanthin producer that could serve as a natural astaxanthin source in the current market.
    Matched MeSH terms: Seawater/microbiology*
  7. Yaakop AS, Chan KG, Gan HM, Goh KM
    Mar Genomics, 2015 Oct;23:59-60.
    PMID: 25999308 DOI: 10.1016/j.margen.2015.05.004
    Jeotgalibacillus campisalis SF-57(T) (=KCCM 41644(T), JCM 11810(T)) is a moderate halophilic bacterium isolated from a Korean marine saltern. In this study, we describe the high-quality draft genome of strain SF-57(T), which was assembled into 24 contigs containing 3,650,490bp with a G+C content of 41.06%. Availability of the genome sequence of J. campisalis SF-57(T) will contribute to a better understanding of the genus Jeotgalibacillus.
    Matched MeSH terms: Seawater/microbiology
  8. Mustaffa NIH, Latif MT, Wurl O
    Int J Mol Sci, 2021 Jul 10;22(14).
    PMID: 34299033 DOI: 10.3390/ijms22147413
    Climate change has been predicted to influence the marine phytoplankton community and its carbon acquisition strategy. Extracellular carbonic anhydrase (eCA) is a zinc metalloenzyme that catalyses the relatively slow interconversion between HCO3- and CO2. Early results indicated that sub-nanomolar levels of eCA at the sea surface were sufficient to enhance the oceanic uptake rate of CO2 on a global scale by 15%, an addition of 0.37 Pg C year-1. Despite its central role in the marine carbon cycle, only in recent years have new analytical techniques allowed the first quantifications of eCA and its activity in the oceans. This opens up new research areas in the field of marine biogeochemistry and climate change. Light and suitable pH conditions, as well as growth stage, are crucial factors in eCA expression. Previous studies showed that phytoplankton eCA activity and concentrations are affected by environmental stressors such as ocean acidification and UV radiation as well as changing light conditions. For this reason, eCA is suggested as a biochemical indicator in biomonitoring programmes and could be used for future response prediction studies in changing oceans. This review aims to identify the current knowledge and gaps where new research efforts should be focused to better determine the potential feedback of phytoplankton via eCA in the marine carbon cycle in changing oceans.
    Matched MeSH terms: Seawater/analysis*
  9. Chan XY, Arumugam R, Choo SW, Yin WF, Chan KG
    Genome Announc, 2013;1(4).
    PMID: 23950114 DOI: 10.1128/genomeA.00540-13
    Tropical seawater harbors a rich diversity of microorganisms as a result of its nutrient-rich environment, constant supply of sufficient sunlight, and warm climate. In this report, we present the complexity of the microbial diversity of the surface seawater of the Georgetown coast as determined using next-generation sequencing technology.
    Matched MeSH terms: Seawater
  10. Aziz NIHA, Hanafiah MM
    Environ Pollut, 2021 Jan 01;268(Pt B):115948.
    PMID: 33187839 DOI: 10.1016/j.envpol.2020.115948
    The sustainability performance of the desalination processes has received increasing attention in recent years. In this study, the current progress and future perspective of a life cycle assessment (LCA) of desalination technology in 62 previous studies have been reviewed for the period 2004-2019. It was found that the number of LCA studies related to seawater reverse osmosis has gained popularity compared to other types of desalination technologies. The review emphasized the application of LCA to desalination by means of research objective, scope of study, life stages, and impact assessment. Although previous LCA studies were conducted to assess the environmental performance of the desalination technology, little attention was given to evaluating the impact of other sustainability aspects (i.e., economic and social). The latter part of this study discusses the challenges, feasibility, and recommendations for future LCA studies on desalination technology. The integration of the LCA approach with other approaches allows a comprehensive assessment of the sustainability performance of desalination technology. Thus, the combined approaches should be explored in future studies to gain insight into the sensitivity and uncertainty of the data to make an assessment that can be useful in policy-making.
    Matched MeSH terms: Seawater
  11. Lee WJ, Goh PS, Lau WJ, Ismail AF, Hilal N
    Membranes (Basel), 2021 Mar 25;11(4).
    PMID: 33806115 DOI: 10.3390/membranes11040235
    Water constitutes one of the basic necessities of life. Around 71% of the Earth is covered by water, however, not all of it is readily available as fresh water for daily consumption. Fresh water scarcity is a chronic issue which poses a threat to all living things on Earth. Seawater, as a natural resource abundantly available all around the world, is a potential water source to fulfil the increasing water demand. Climate-independent seawater desalination has been touted as a crucial alternative to provide fresh water. While the membrane-based desalination process continues to dominate the global desalination market, the currently employed membrane fabrication materials and processes inevitably bring adverse impacts to the environment. This review aims to elucidate and provide a comprehensive outlook of the recent efforts based on greener approaches used for desalination membrane fabrication, which paves the way towards achieving sustainable and eco-friendly processes. Membrane fabrication using green chemistry effectively minimizes the generation of hazardous compounds during membrane preparation. The future trends and recommendations which could potentially be beneficial for researchers in this field are also highlighted.
    Matched MeSH terms: Seawater
  12. S E, G A, A F I, P S G, Y LT
    Environ Res, 2021 06;197:111177.
    PMID: 33864792 DOI: 10.1016/j.envres.2021.111177
    Membrane technology, especially nanofiltration (NF) has great attention to provide an imperative solution for water issues. The membrane is considered to be the heart in the separation plant. Understanding the membrane characteristics could allow predicting and optimizing the membrane performance namely flux, rejection and reduced fouling. The membrane development using biomaterials and nanomaterials provides a remarkable opportunity in the water application. This review focuses on the membrane characteristics of biomaterials and nanomaterials based nanofiltration. In this review, recent researches based on biomaterials and nanomaterials loaded membrane for salt rejection have been analyzed. Membrane fouling depends on the membrane characteristics and this review defined fouling as a ubiquitous bottleneck challenge that hampers the NF blooming applications. Fouling mitigation strategies via membrane modification using biomaterial (chitosan, curcumin and vanillin) and various other nanomaterials are critically reviewed. This review also highlights the membrane cleaning and focuses on concentrates disposal methods with zero liquid discharge system for resource recovery. Finally, the conclusion and future prospects of membrane technology are discussed. From this current review, it is apparent that the biomaterial and various other nanomaterials acquire exclusive properties that facilitate membrane advancement with improved capability for water treatment. Regardless of membrane material developments, still exist considerable difficulties in membrane commercialization. Thus, additional studies related to this field are needed to produce membranes with better performance for large‒scale applications.
    Matched MeSH terms: Seawater
  13. Asnor Azrin Sabuti, Che Abd Rahim Mohamed, Zaharudin Ahmad
    Various environmental samples (seawater, TSS, sediment, rainwater and fly ash) from eight different stations near Kapar coastal area were analyzed. The 210 Po activity concentrations in liquid samples (seawater and rainwater) varied between 0.34 ± 0.03 mBq L-1 to 22.44 ± 0.53 mBq L-1 . Whereas the concentrations in particulate samples (TSS, sediment and fly ash) varied between 43.79 ± 2.31 Bqkg-1 to 364.48 ± 5.43 Bqkg-1 . Results also showed the radioactivity in Kapar coastal is higher than most of Malaysian coast, reaching a factor of seven. This condition is mainly due to the operation of a coal-fired power plant nearby. This study also clarify the variability of 210 Po in environment was strongly influenced from rainfall events especially during wet seasons.
    Matched MeSH terms: Seawater
  14. Chan XY, Chen JW, Adrian TG, Hong KW, Chang CY, Yin WF, et al.
    Genome Announc, 2017 Mar 30;5(13).
    PMID: 28360153 DOI: 10.1128/genomeA.00067-17
    Bacillus sp. is a Gram-positive bacterium that is commonly found in seawater. In this study, the genome of marine Bacillus sp. strain G3(2015) was sequenced using MiSeq. The fosfomycin resistant gene fosB was identified upon bacterial genome annotation.
    Matched MeSH terms: Seawater
  15. Corrado R, Lacorata G, Palatella L, Santoleri R, Zambianchi E
    Sci Rep, 2017 04 11;7:46291.
    PMID: 28397797 DOI: 10.1038/srep46291
    The multi-scale and nonlinear nature of the ocean dynamics dramatically affects the spreading of matter, like pollutants, marine litter, etc., of physical and chemical seawater properties, and the biological connectivity inside and among different basins. Based on the Finite-Scale Lyapunov Exponent analysis of the largest available near-surface Lagrangian data set from the Global Drifter Program, our results show that, despite the large variety of flow features, relative dispersion can ultimately be described by a few parameters common to all ocean sub-basins, at least in terms of order of magnitude. This provides valuable information to undertake Lagrangian dispersion studies by means of models and/or of observational data. Moreover, our results show that the relative dispersion rates measured at submesoscale are significantly higher than for large-scale dynamics. Auxiliary analysis of high resolution GPS-tracked drifter hourly data as well as of the drogued/undrogued status of the buoys is provided in support of our conclusions. A possible application of our study, concerning reverse drifter motion and error growth analysis, is proposed relatively to the case of the missing Malaysia Airlines MH370 aircraft.
    Matched MeSH terms: Seawater
  16. Teddy, T., Irwan, J.M., Othman, N.
    Strength and durability are important characteristics of concrete and desired engineering properties. Exposure to aggressive environment threatens durability of concrete. Previous studies on bio-concrete using several types of bacteria, including sulphate reduction bacteria (SRB), had to increase durability of concrete have shown promising results. This study used mixtures designed according to concrete requirement for sea water condition with SRB composition of 3%, 5% and 7% respectively. The curing time were 28, 56 and 90 days respectively. The mechanical properties, namely compressive strength and water permeability, were tested using cube samples. The results showed compressive strength had higher increase than the control at 53.9 Mpa. The SRB with 3%composition had maximum water permeability. Thus, adding SRB in concrete specimens improves compressive strength and water permeability. This is particularly suitable for applications using chloride ion penetration (sea water condition) where corrosion tends to affect durability of concrete constructions.
    Matched MeSH terms: Seawater
  17. Syafiqa Hayati Mohd Ali, Norazlina Ahmad, Khairul Adzfa Radzun
    This study describes the adaptations of diatoms, Cylindrotheca fusiformis and other marine diatoms, in a new formulated enriched medium Tris-phosphate seawater (TP-SW). The medium was designed to maintain long-term cultures of wide-range marine diatoms in laboratory that produces high biomass of cultures. The diatoms were adapted and cultivated in the medium for 15 days and the number of cells was recorded daily. It was found that the number of cells declined after two weeks indicating death phase of the cells. This indicates that the TP-SW medium has supported the growth of diatoms during the period and can be used to cultivate diatoms in vitro. Studies on the TP-SW medium must be done to obtain optimal medium that can provide not only a conducive environment for the survival of diatoms but also high biomass production.
    Matched MeSH terms: Seawater
  18. Heng PL, Lim JH, Lee CW
    Environ Monit Assess, 2017 Mar;189(3):117.
    PMID: 28220442 DOI: 10.1007/s10661-017-5838-1
    Temporal variation of Synechococcus, its production (μ) and grazing loss (g) rates were studied for 2 years at nearshore stations, i.e. Port Dickson and Port Klang along the Straits of Malacca. Synechococcus abundance at Port Dickson (0.3-2.3 × 10(5) cell ml(-1)) was always higher than at Port Klang (0.3-7.1 × 10(4) cell ml(-1)) (p  0.25), but nutrient and light availability were important factors for their distribution. The relationship was modelled as log Synechococcus = 0.37Secchi - 0.01DIN + 4.52 where light availability (as Secchi disc depth) was a more important determinant. From a two-factorial experiment, nutrients were not significant for Synechococcus growth as in situ nutrient concentrations exceeded the threshold for saturated growth. However, light availability was important and elevated Synechococcus growth rates especially at Port Dickson (F = 5.94, p  0.30). In nearshore tropical waters, an estimated 69 % of Synechococcus production could be grazed.
    Matched MeSH terms: Seawater
  19. Ainon Hamzah, Saiful Hazwa Kipli, Siti Rahil Ismail, Una R, Sukiman Sarmani
    The microbial composition in coastal water of the Port Dickson beach in Negeri Sembilan, Malaysia was analyzed using several microbial indicators for the purpose of selecting the best indicator for marine water pollution. The indicators studied were total coliform (TC), fecal coliform (FC), fecal streptococci (FS) and coliphage. Five locations were selected along the Port Dickson beaches and samplings were carried out in 1998 and 2001. The results showed an increase in the number of total coliform (TC), fecal coliform (FC) and fecal streptococci (FS) between these two sampling by 98.12%, 86.12% and 99%, respectively. The numbers of TC, FC and FS exceeded the recommended limit for recreational seawater based on U.S. EPA 1986 standard. There was a positive correlation between TC, FC and FS and negative to coliphages.
    Matched MeSH terms: Seawater
  20. Karen WMJ, Wong CY, Wang Z, Liew WYH, Melvin GJH
    Environ Technol, 2023 Jan;44(3):326-333.
    PMID: 34407722 DOI: 10.1080/09593330.2021.1970820
    This study demonstrated the generation of clean water from seawater collected at the beach coast in Universiti Malaysia Sabah, Malaysia, with carbonized rice husk coated melamine sponge as solar absorber by a solar still. Melamine sponge was utilized as a seawater transportation medium since its porous structure is excellent in channelling the seawater. Whereas carbonized rice husk was used as the photothermal conversion material for its efficient heat absorption due to its black colour and porous structure. Implementing air gap between the seawater body and solar absorber, and restricted water pathway assisted in localizing heat on the top surface of the solar absorber. Clean water was generated under direct solar radiation during the day at an open space with average solar intensity around 1.1∼1.2 kW/m2 (slightly higher than 1 sun) for about 4 h. Efficiency of the solar absorber was calculated, while the quality of the generated clean water was observed in terms of salinity and pH value. Insulated solar still with carbon-coated sponge showed the highest efficiency at about 54.74%. Salinity of the collected clean water significantly reduced to consumable level which was approximately 55 ppm, and the pH value at about 6.73 where it was within the safe limit of the drinkable water pH.
    Matched MeSH terms: Seawater
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links