Displaying publications 1 - 20 of 23 in total

Abstract:
Sort:
  1. Fukumoto J, Ismail NI, Kubo M, Kinoshita K, Inoue M, Yuasa K, et al.
    J. Biochem., 2013 Nov;154(5):465-73.
    PMID: 23946505 DOI: 10.1093/jb/mvt077
    Oligopeptidase B (OPB) is a member of the prolyl oligopeptidase (POP) family of serine proteases. OPB in trypanosomes is an important virulence factor and potential pharmaceutical target. Characteristic structural features of POP family members include lack of a propeptide and presence of a β-propeller domain (PD), although the role of the β-PD has yet to be fully understood. In this work, residues Glu(172), Glu(490), Glu(524) and Arg(689) in Trypanosoma brucei OPB (Tb OPB), which are predicted to form inter-domain salt bridges, were substituted for Gln and Ala, respectively. These mutants were evaluated in terms of catalytic properties and stability. A negative effect on kcat/Km was obtained following mutation of Glu(172) or Arg(689). In contrast, the E490Q mutant exhibited markedly decreased thermal stability, although this mutation had less effect on catalytic properties compared to the E172Q and R689A mutants. Trypsin digestion showed that the boundary regions between the β-PD and catalytic domains (CDs) of the E490Q mutant are unfolded with heat treatment. These results indicated that Glu(490) in the CD plays a role in stabilization of Tb OPB, whereas Glu(172) in the β-PD is critical for the catalytic activity of Tb OPB.
    Matched MeSH terms: Serine Endopeptidases/metabolism*
  2. Frimayanti N, Chee CF, Zain SM, Rahman NA
    Int J Mol Sci, 2011;12(2):1089-100.
    PMID: 21541045 DOI: 10.3390/ijms12021089
    Dengue is a serious disease which has become a global health burden in the last decade. Currently, there are no approved vaccines or antiviral therapies to combat the disease. The increasing spread and severity of the dengue virus infection emphasizes the importance of drug discovery strategies that could efficiently and cost-effectively identify antiviral drug leads for development into potent drugs. To this effect, several computational approaches were applied in this work. Initially molecular docking studies of reference ligands to the DEN2 NS2B/NS3 serine protease were carried out. These reference ligands consist of reported competitive inhibitors extracted from Boesenbergia rotunda (i.e., 4-hydroxypanduratin A and panduratin A) and three other synthesized panduratin A derivative compounds (i.e., 246DA, 2446DA and 20H46DA). The design of new lead inhibitors was carried out in two stages. In the first stage, the enzyme complexed to the reference ligands was minimized and their complexation energies (i.e., sum of interaction energy and binding energy) were computed. New compounds as potential dengue inhibitors were then designed by putting various substituents successively on the benzyl ring A of the reference molecule. These substituted benzyl compounds were then computed for their enzyme-ligand complexation energies. New enzyme-ligand complexes, exhibiting the lowest complexation energies and closest to the computed energy for the reference compounds, were then chosen for the next stage manipulation and design, which involved substituting positions 4 and 5 of the benzyl ring A (positions 3 and 4 for 2446DA) with various substituents.
    Matched MeSH terms: Serine Endopeptidases/metabolism
  3. Kiat TS, Pippen R, Yusof R, Ibrahim H, Khalid N, Rahman NA
    Bioorg Med Chem Lett, 2006 Jun 15;16(12):3337-40.
    PMID: 16621533
    Boesenbergia rotunda (L.) cyclohexenyl chalcone derivatives, 4-hydroxypanduratin A and panduratin A, showed good competitive inhibitory activities towards dengue 2 virus NS3 protease with the Ki values of 21 and 25 microM, respectively, whilst those of pinostrobin and cardamonin were observed to be non-competitive. NMR and GCMS spectroscopic data formed the basis of assignment of structures of the six compounds isolated.
    Matched MeSH terms: Serine Endopeptidases/metabolism*
  4. Mechri S, Allala F, Bouacem K, Hasnaoui I, Gwaithan H, Chalbi TB, et al.
    Int J Biol Macromol, 2022 Dec 01;222(Pt A):1326-1342.
    PMID: 36242508 DOI: 10.1016/j.ijbiomac.2022.09.161
    We recently described the production of a detergent-biocompatible crude protease from Streptomyces mutabilis strain TN-X30. Here, we describe the purification, characterization, and immobilization of the serine alkaline protease (named SPSM), as well as the cloning, sequencing, and over-expression of its corresponding gene (spSM). Pure enzyme was obtained after ammonium sulphate precipitation followed by heat-treatment and Sephacryl® S-200 column purification. The sequence of the first 26 NH2-terminal residues of SPSM showed a high sequence identity to subtilisin-like serine proteases produced by actinobacteria. The spSM gene was heterologously expressed in Escherichia coli BL21(DE3)pLysS and E. coli BL21-AI™ strains using pTrc99A (rSPSM) and Gateway™ pDEST™ 17 [(His)6-tagged SPSM] vectors, respectively. Results obtained indicated that the (His)6-tagged SPSM showed the highest stability. The SPSM was immobilized using encapsulation and adsorption-encapsulation approaches and three different carriers. Features of SPSM in soluble and immobilized forms were analyzed by Fourier transform infrared (FTIR) spectroscopy in attenuated total reflection (ATR) mode, X-ray diffraction (XRD), zeta potential measurements, and field emission scanning electron microscopy (FE-SEM). The white clay and kaolin used in this study are eco-friendly binders to alginate-SPSM and show great potential for application of the immobilized SPSM in various industries. Molecular modeling and docking of N-succinyl-l-Phe-l-Ala-l-Ala-l-Phe-p-nitroanilide in the active site of SPSM revealed the involvement of 21 amino acids in substrate binding.
    Matched MeSH terms: Serine Endopeptidases/metabolism
  5. Ahmad Mulyadi Lai HI, Chou SJ, Chien Y, Tsai PH, Chien CS, Hsu CC, et al.
    Int J Mol Sci, 2021 Jan 28;22(3).
    PMID: 33525682 DOI: 10.3390/ijms22031320
    Angiotensin-converting enzyme 2 (ACE2) was identified as the main host cell receptor for the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its subsequent infection. In some coronavirus disease 2019 (COVID-19) patients, it has been reported that the nervous tissues and the eyes were also affected. However, evidence supporting that the retina is a target tissue for SARS-CoV-2 infection is still lacking. This present study aimed to investigate whether ACE2 expression plays a role in human retinal neurons during SARS-CoV-2 infection. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids and monolayer cultures derived from dissociated retinal organoids were generated. To validate the potential entry of SARS-CoV-2 infection in the retina, we showed that hiPSC-derived retinal organoids and monolayer cultures endogenously express ACE2 and transmembrane serine protease 2 (TMPRSS2) on the mRNA level. Immunofluorescence staining confirmed the protein expression of ACE2 and TMPRSS2 in retinal organoids and monolayer cultures. Furthermore, using the SARS-CoV-2 pseudovirus spike protein with GFP expression system, we found that retinal organoids and monolayer cultures can potentially be infected by the SARS-CoV-2 pseudovirus. Collectively, our findings highlighted the potential of iPSC-derived retinal organoids as the models for ACE2 receptor-based SARS-CoV-2 infection.
    Matched MeSH terms: Serine Endopeptidases/metabolism
  6. Scaramozzino N, Crance JM, Drouet C, Roebuck JP, Drouet E, Jouan A, et al.
    Biochem Biophys Res Commun, 2002 May 31;294(1):16-22.
    PMID: 12054734
    Langat (LGT) virus, initially isolated in 1956 from ticks in Malaysia, is a naturally occurring nonpathogenic virus with a very close antigenicity to the highly pathogenic tick-borne encephalitis (TBE) Western subtype virus and TBE Far Eastern subtype virus. NS3, the second largest viral protein of LGT virus, is highly conserved among flaviviruses and contains a characteristic protease moiety (NS3 pro). NS3 pro represents an attractive target for anti-protease molecules against TBE virus. We report herein a purification method specially designed for NS3 pro of LGT using a strategy for proper refolding coupled with the enzymatic characterisation of the protein. Different p-nitroanilide substrates, defined on canonic sequences for their susceptibility to Ser-protease, were applied to the proteolytic assays of the protein. The highest values were obtained from substrates containing an Arg or Lys (amino acid) residue at the P1 position. This purification method will facilitate the future development of reliable testing procedures for anti-proteases directed to NS3 proteins.
    Matched MeSH terms: Serine Endopeptidases/metabolism*
  7. Mukhametov A, Newhouse EI, Aziz NA, Saito JA, Alam M
    J Mol Graph Model, 2014 Jul;52:103-13.
    PMID: 25023665 DOI: 10.1016/j.jmgm.2014.06.008
    The allosteric pocket of the Dengue virus (DENV2) NS2B/NS3 protease, which is proximal to its catalytic triad, represents a promising drug target (Othman et al., 2008). We have explored this binding site through large-scale virtual screening and molecular dynamics simulations followed by calculations of binding free energy. We propose two mechanisms for enzyme inhibition. A ligand may either destabilize electronic density or create steric effects relating to the catalytic triad residues NS3-HIS51, NS3-ASP75, and NS3-SER135. A ligand may also disrupt movement of the C-terminal of NS2B required for inter-conversion between the "open" and "closed" conformations. We found that chalcone and adenosine derivatives had the top potential for drug discovery hits, acting through both inhibitory mechanisms. Studying the molecular mechanisms of these compounds might be helpful in further investigations of the allosteric pocket and its potential for drug discovery.
    Matched MeSH terms: Serine Endopeptidases/metabolism*
  8. Rothan HA, Abdulrahman AY, Sasikumer PG, Othman S, Rahman NA, Yusof R
    J Biomed Biotechnol, 2012;2012:251482.
    PMID: 23093838 DOI: 10.1155/2012/251482
    Dengue diseases have an economic as well as social burden worldwide. In this study, the antiviral activity of protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR) peptide towards dengue NS2B-NS3pro and viral replication in Rhesus monkey kidney (MK2) cells was investigated. The peptide PG-1 was synthesized by solid-phase peptide synthesis, and disulphide bonds formation followed by peptide purification was confirmed by LC-MS and RPHPLC. Dengue NS2B-NS3pro was produced as a single-chain recombinant protein in E. coli. The NS2B-NS3pro assay was carried out by measuring the florescence emission of catalyzed substrate. Real-time PCR was used to evaluate the inhibition potential of PG-1 towards dengue serotype-2 (DENV-2) replication in MK2 cells. The results showed that PG-1 inhibited dengue NS2B-NS3pro at IC(50) of 11.7 μM. The graded concentrations of PG-1 at nontoxic range were able to reduce viral replication significantly (P < 0.001) at 24, 48, and 72 hrs after viral infection. However, the percentage of inhibition was significantly (P < 0.01) higher at 24 hrs compared to 48 and 72 hrs. These data show promising therapeutic potential of PG-1 against dengue infection, hence it warrants further analysis and improvement of the peptide features as a prospective starting point for consideration in designing attractive dengue virus inhibitors.
    Matched MeSH terms: Serine Endopeptidases/metabolism*
  9. Cheng YC, Stanne TM, Giese AK, Ho WK, Traylor M, Amouyel P, et al.
    Stroke, 2016 Feb;47(2):307-16.
    PMID: 26732560 DOI: 10.1161/STROKEAHA.115.011328
    BACKGROUND AND PURPOSE: Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset <60 years.

    METHODS: The discovery stage of our genome-wide association studies included 4505 cases and 21 968 controls of European, South-Asian, and African ancestry, drawn from 6 studies. In Stage 2, we selected the lead genetic variants at loci with association P<5×10(-6) and performed in silico association analyses in an independent sample of ≤1003 cases and 7745 controls.

    RESULTS: One stroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5×10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2.

    CONCLUSIONS: HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke.

    Matched MeSH terms: Serine Endopeptidases/metabolism
  10. Arockiaraj J, Easwvaran S, Vanaraja P, Singh A, Othman RY, Bhassu S
    Mol Biol Rep, 2012 Feb;39(2):1377-86.
    PMID: 21614523 DOI: 10.1007/s11033-011-0872-5
    The prophenoloxidase activating system is an important innate immune response against microbial infections in invertebrates. The major enzyme, phenoloxidase, is synthesized as an inactive precursor and its activation to an active enzyme is mediated by a cascade of clip domain serine proteinases. In this study, a cDNA encoding a prophenoloxidase activating enzyme-III from the giant freshwater prawn Macrobrachium rosenbergii, designated as MrProAE-III, was identified and characterized. The full-length cDNA contains an open reading frame of 1110 base pair (bp) encoding a predicted protein of 370 amino acids including an 22 amino acid signal peptide. The MrProAE-III protein exhibits a characteristic sequence structure of a long serine proteases-trypsin domain and an N- and C-terminal serine proteases-trypsin family histidine active sites, respectively, which together are the characteristics of the clip-serin proteases. Sequence analysis showed that MrProAE-III exhibited the highest amino acid sequence similarity (63%) to a ProAE-III from Atlantic blue crab, Callinectes sapidus. MrProAE-III mRNA and enzyme activity of MrProAE-III were detectable in all examined tissues, including hepatopancreas, hemocytes, pleopods, walking legs, eye stalk, gill, stomach, intestine, brain and muscle with the highest level of both in hepatopancreas. This is regulated after systemic infectious hypodermal and hematopoietic necrosis virus infection supporting that it is an immune-responsive gene. These results indicate that MrProAE-III functions in the proPO system and is an important component in the prawn immune system.
    Matched MeSH terms: Serine Endopeptidases/metabolism*
  11. Nuryastuti T, Henny C, Henk JB, Roel K, Abu TA, Bastiaan PK
    Med J Malaysia, 2008 Jul;63 Suppl A:97.
    PMID: 19025002
    Phenotypic variation in biofilm formation is common in clinical isolates of S. epidermidis. In the current study, nearly 5% of all clinical isolates analysed showed phenotypic variation in biofilm forming ability and electrophoretic mobility (EM). This is the first report of S. epidermidis strains irreversibly switching from biofilm-positive to biofilm-negative phenotype by spontaneous deletion of icaADBC genes which represents a new, possibly common mechanism of phenotypic variation.
    Matched MeSH terms: Serine Endopeptidases/metabolism
  12. Yotmanee P, Rungrotmongkol T, Wichapong K, Choi SB, Wahab HA, Kungwan N, et al.
    J Mol Graph Model, 2015 Jul;60:24-33.
    PMID: 26086900 DOI: 10.1016/j.jmgm.2015.05.008
    The pathogenic dengue virus (DV) is a growing global threat, particularly in South East Asia, for which there is no specific treatment available. The virus possesses a two-component (NS2B/NS3) serine protease that cleaves the viral precursor proteins. Here, we performed molecular dynamics simulations of the NS2B/NS3 protease complexes with six peptide substrates (capsid, intNS3, 2A/2B, 4B/5, 3/4A and 2B/3 containing the proteolytic site between P(1) and P(1)' subsites) of DV type 2 to compare the specificity of the protein-substrate binding recognition. Although all substrates were in the active conformation for cleavage reaction by NS2B/NS3 protease, their binding strength was somewhat different. The simulated results of intermolecular hydrogen bonds and decomposition energies suggested that among the ten substrate residues (P(5)-P(5)') the P(1) and P(2) subsites play a major role in the binding with the focused protease. The arginine residue at these two subsites was found to be specific preferential binding at the active site with a stabilization energy of intNS3>2A/2B>4B/5>3/4A>2B/3 in a relative correspondence with previous experimentally derived values.
    Matched MeSH terms: Serine Endopeptidases/metabolism*
  13. Jiang H, Bai L, Ji L, Bai Z, Su J, Qin T, et al.
    J Virol, 2020 07 16;94(15).
    PMID: 32461319 DOI: 10.1128/JVI.00294-20
    Japanese encephalitis virus (JEV) infection alters microRNA (miRNA) expression in the central nervous system (CNS). However, the mechanism contributing to miRNA regulation in the CNS is not known. We discovered global degradation of mature miRNA in mouse brains and neuroblastoma (NA) cells after JEV infection. Integrative analysis of miRNAs and mRNAs suggested that several significantly downregulated miRNAs and their targeted mRNAs were clustered into an inflammation pathway. Transfection with miRNA 466d-3p (miR-466d-3p) decreased interleukin-1β (IL-1β) expression and inhibited JEV replication in NA cells. However, miR-466d-3p expression increased after JEV infection in the presence of cycloheximide, indicating that viral protein expression reduced miR-466d-3p expression. We generated all the JEV coding proteins and demonstrated NS3 helicase protein to be a potent miRNA suppressor. The NS3 proteins of Zika virus, West Nile virus, and dengue virus serotype 1 (DENV-1) and DENV-2 also decreased miR-466d-3p expression. Results from helicase-blocking assays and in vitro unwinding assays demonstrated that NS3 could unwind pre-miR-466d and induce miRNA dysfunction. Computational models and an RNA immunoprecipitation assay revealed arginine-rich domains of NS3 to be crucial for pre-miRNA binding and degradation of host miRNAs. Importantly, site-directed mutagenesis of conserved residues in NS3 revealed that R226G and R202W reduced the binding affinity and degradation of pre-miR-466d. These results expand the function of flavivirus helicases beyond unwinding duplex RNA to degrade pre-miRNAs. Hence, we revealed a new mechanism for NS3 in regulating miRNA pathways and promoting neuroinflammation.IMPORTANCE Host miRNAs have been reported to regulate JEV-induced inflammation in the CNS. We found that JEV infection could reduce expression of host miRNA. The helicase region of the NS3 protein bound specifically to miRNA precursors and could lead to incorrect unwinding of miRNA precursors, thereby reducing the expression of mature miRNAs. This observation led to two major findings. First, our results suggested that JEV NS3 protein induced miR-466d-3p degradation, which promoted IL-1β expression and JEV replication. Second, arginine molecules on NS3 were the main miRNA-binding sites, because we demonstrated that miRNA degradation was abolished if arginines at R226 and R202 were mutated. Our study provides new insights into the molecular mechanism of JEV and reveals several amino acid sites that could be mutated for a JEV vaccine.
    Matched MeSH terms: Serine Endopeptidases/metabolism
  14. Hagen RM, Adamo P, Karamat S, Oxley J, Aning JJ, Gillatt D, et al.
    Am J Clin Pathol, 2014 Oct;142(4):533-40.
    PMID: 25239421 DOI: 10.1309/AJCPH88QHXARISUP
    The proto-oncogene ETS-related gene (ERG) is consistently overexpressed in prostate cancer. Alternatively spliced isoforms of ERG have variable biological activities; inclusion of exon 11 (72 base pairs [bp]) is associated with aggressiveness and progression of disease. Exon 10 (81 bp) has also been shown to be alternatively spliced. Within this study, we assess whether ERG protein, messenger RNA (mRNA), and ERG splice isoform mRNA expression is altered as prostate cancer progresses.
    Matched MeSH terms: Serine Endopeptidases/metabolism
  15. Rothan HA, Zulqarnain M, Ammar YA, Tan EC, Rahman NA, Yusof R
    Trop Biomed, 2014 Jun;31(2):286-96.
    PMID: 25134897 MyJurnal
    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.
    Matched MeSH terms: Serine Endopeptidases/metabolism*
  16. Chong Teoh T, J Al-Harbi S, Abdulrahman AY, Rothan HA
    Molecules, 2021 Jul 16;26(14).
    PMID: 34299596 DOI: 10.3390/molecules26144321
    Zika virus (ZIKV) represents a re-emerging threat to global health due to its association with congenital birth defects. ZIKV NS2B-NS3 protease is crucial for virus replication by cleaving viral polyprotein at various junctions to release viral proteins and cause cytotoxic effects in ZIKV-infected cells. This study characterized the inhibitory effects of doxycycline against ZIKV NS2B-NS3 protease and viral replication in human skin cells. The in silico data showed that doxycycline binds to the active site of ZIKV protease at a low docking energy (-7.8 Kcal/mol) via four hydrogen bonds with the protease residues TYR1130, SER1135, GLY1151, and ASP83. Doxycycline efficiently inhibited viral NS2B-NS3 protease at average human temperature (37 °C) and human temperature with a high fever during virus infection (40 °C). Interestingly, doxycycline showed a higher inhibitory effect at 40 °C (IC50 = 5.3 µM) compared to 37 °C (9.9 µM). The virus replication was considerably reduced by increasing the concentration of doxycycline. An approximately 50% reduction in virus replication was observed at 20 µM of doxycycline. Treatment with 20 µM of doxycycline reduced the cytopathic effects (CPE), and the 40 µM of doxycycline almost eliminated the CPE of human skin cells. This study showed that doxycycline binds to the ZIKV protease and inhibits its catalytic activity at a low micro-molecular concentration range. Treatment of human skin fibroblast with doxycycline eliminated ZIKV infection and protected the cells against the cytopathic effects of the infection.
    Matched MeSH terms: Serine Endopeptidases/metabolism
  17. Lee CY, Huang CH, Rastegari E, Rengganaten V, Liu PC, Tsai PH, et al.
    Int J Mol Sci, 2021 Sep 13;22(18).
    PMID: 34576032 DOI: 10.3390/ijms22189869
    The coronavirus disease 2019 (COVID-19) pandemic with high infectivity and mortality has caused severe social and economic impacts worldwide. Growing reports of COVID-19 patients with multi-organ damage indicated that severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) may also disturb the cardiovascular system. Herein, we used human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) as the in vitro platform to examine the consequence of SARS-CoV2 infection on iCMs. Differentiated iCMs expressed the primary SARS-CoV2 receptor angiotensin-converting enzyme-II (ACE2) and the transmembrane protease serine type 2 (TMPRSS2) receptor suggesting the susceptibility of iCMs to SARS-CoV2. Following the infection of iCMs with SARS-CoV2, the viral nucleocapsid (N) protein was detected in the host cells, demonstrating the successful infection. Bioinformatics analysis revealed that the SARS-CoV2 infection upregulates several inflammation-related genes, including the proinflammatory cytokine tumor necrosis factor-α (TNF-α). The pretreatment of iCMs with TNF-α for 24 h, significantly increased the expression of ACE2 and TMPRSS2, SASR-CoV2 entry receptors. The TNF-α pretreatment enhanced the entry of GFP-expressing SARS-CoV2 pseudovirus into iCMs, and the neutralization of TNF-α ameliorated the TNF-α-enhanced viral entry. Collectively, SARS-CoV2 elevated TNF-α expression, which in turn enhanced the SARS-CoV2 viral entry. Our findings suggest that, TNF-α may participate in the cytokine storm and aggravate the myocardial damage in COVID-19 patients.
    Matched MeSH terms: Serine Endopeptidases/metabolism
  18. Alhabib KF, Al-Rasadi K, Almigbal TH, Batais MA, Al-Zakwani I, Al-Allaf FA, et al.
    PLoS One, 2021;16(6):e0251560.
    PMID: 34086694 DOI: 10.1371/journal.pone.0251560
    BACKGROUND AND AIMS: Familial hypercholesterolemia (FH) is a common autosomal dominant disorder that can result in premature atherosclerotic cardiovascular disease (ASCVD). Limited data are available worldwide about the prevalence and management of FH. Here, we aimed to estimate the prevalence and management of patients with FH in five Arabian Gulf countries (Saudi Arabia, Oman, United Arab Emirates, Kuwait, and Bahrain).

    METHODS: The multicentre, multinational Gulf FH registry included adults (≥18 years old) recruited from outpatient clinics in 14 tertiary-care centres across five Arabian Gulf countries over the last five years. The Gulf FH registry had four phases: 1- screening, 2- classification based on the Dutch Lipid Clinic Network, 3- genetic testing, and 4- follow-up.

    RESULTS: Among 34,366 screened patient records, 3713 patients had suspected FH (mean age: 49±15 years; 52% women) and 306 patients had definite or probable FH. Thus, the estimated FH prevalence was 0.9% (1:112). Treatments included high-intensity statin therapy (34%), ezetimibe (10%), and proprotein convertase subtilisin/kexin type 9 inhibitors (0.4%). Targets for low-density lipoprotein cholesterol (LDL-C) and non-high-density lipoprotein cholesterol were achieved by 12% and 30%, respectively, of patients at high ASCVD risk, and by 3% and 6%, respectively, of patients at very high ASCVD risk (p <0.001; for both comparisons).

    CONCLUSIONS: This snap-shot study was the first to show the high estimated prevalence of FH in the Arabian Gulf region (about 3-fold the estimated prevalence worldwide), and is a "call-to-action" for further confirmation in future population studies. The small proportions of patients that achieved target LDL-C values implied that health care policies need to implement nation-wide screening, raise FH awareness, and improve management strategies for FH.

    Matched MeSH terms: Serine Endopeptidases/metabolism
  19. Ma TH, Benzie JA, He JG, Sun CB, Chan SF
    Dev Comp Immunol, 2014 May;44(1):163-72.
    PMID: 24345607 DOI: 10.1016/j.dci.2013.12.007
    One of the major steps in the innate immune response of shrimp includes the activation of serine proteinases of the pro-phenoloxidase pathway by the prophenoloxidase activation enzyme (PPAF). In this study, the cDNA encoding a serine proteinase homologue (SPH) with prophenoloxidase activating activity of Penaeus monodon (PmPPAF) was cloned and characterized. PmPPAF cDNA consists of 1444 nucleotides encoding a protein with 394 amino acid residues. The estimated molecular weight of PmPPAF is 43.5 kDa with an isoelectric point of 5.19. PmPPAF consists of a signal peptide, a CLIP domain and a carboxyl-terminal trypsin-like serine protease domain. It is highly similar to the masquerade-like protein 2A (61% similarity) of the crayfish Pacifastacus leniusculus, other serine proteases (42.9-67% identity) of P. monodon, and the PPAF of the crab (61% similarity). Unlike other SPH of P. monodon, which express mainly in the hemocytes, PmPPAF transcripts were detected in the hemocytes, eyestalk, hypodermis, gill, swimming leg and brain. Similar to the crab PPAF, PmPPAF transcript level is high in shrimp at the premolt stages and PmPPAF expression is up-regulated in shrimp infected with white spot syndrome virus (WSSV). Gene silencing of PmPPAF decreased expression of a prophenoloxidase-like gene and injection of Anti-PmPPAF antibody causes a decrease in PO activity. Taken together, these results provided evidence that PmPPAF is a serine proteinase homologue, and is involved in the pro-PO activation pathway of the shrimp innate immune system.
    Matched MeSH terms: Serine Endopeptidases/metabolism*
  20. Chong SC, Dollah MA, Chong PP, Maha A
    J Ethnopharmacol, 2011 Sep 1;137(1):817-27.
    PMID: 21763412 DOI: 10.1016/j.jep.2011.06.041
    Phaleria macrocarpa (Scheff.) Boerl (Pm) has been shown to reduce cholesterol level in vitro and in vivo experiment.
    Matched MeSH terms: Serine Endopeptidases/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links