Displaying publications 1 - 20 of 91 in total

  1. Yek PNY, Liew RK, Osman MS, Lee CL, Chuah JH, Park YK, et al.
    J Environ Manage, 2019 Apr 15;236:245-253.
    PMID: 30735943 DOI: 10.1016/j.jenvman.2019.01.010
    Microwave-steam activation (MSA), an innovative pyrolysis approach combining the use of microwave heating and steam activation, was investigated for its potential production of high grade activated carbon (AC) from waste palm shell (WPS) for methylene blue removal. MSA was performed via pyrolytic carbonization of WPS to produce biochar as the first step followed by steam activation of the biochar using microwave heating to form AC. Optimum yield and adsorption efficiency of methylene blue were obtained using response surface methodology involving several key process parameters. The resulting AC was characterized for its porous characteristics, surface morphology, proximate analysis and elemental compositions. MSA provided a high activation temperature above 500 °C with short process time of 15 min and rapid heating rate (≤150 °C/min). The results from optimization showed that one gram of AC produced from steam activation under 10 min of microwave heating at 550 °C can remove up to 38.5 mg of methylene blue. The AC showed a high and uniform surface porosity consisting high fixed carbon (73 wt%), micropore and BET surface area of 763.1 and 570.8 m2/g respectively, hence suggesting the great potential of MSA as a promising approach to produce high grade adsorbent for dye removal.
    Matched MeSH terms: Steam*
  2. Zhou H, Saad JM, Li Q, Xu Y
    Waste Manag, 2020 Mar 01;104:42-50.
    PMID: 31962216 DOI: 10.1016/j.wasman.2020.01.017
    Recovery of chemicals and fuels from unrecyclable waste plastics at high temperatures (>800 °C) has received much research attention. Thermodynamic equilibrium calculation suggests that it is possible to perform the low-temperature steam reforming of polystyrene. In this study, we synthesized a Ni-Fe bimetallic catalyst for the low-temperature (500 °C) steam reforming of polystyrene. XRD characterization showed that Ni-Fe alloy was formed in the catalyst. Compared to conventional Ni catalysts, the Ni-Fe bimetallic catalysts can significantly increase the H2/CO ratio in the produced gas with high gas production yield. The online gas analysis revealed that H2, CO, and CO2 were formed in the same temperature range. H2 and CO were formed simultaneously through steam reforming reactions, and CO2 was formed through water-gas shift reaction. New morphologies of carbon deposition on the catalyst surface were found, suggesting that wax could be condensed on the catalyst surface at a low temperature.
    Matched MeSH terms: Steam*
  3. Hai T, Alshahri AH, Mohammed AS, Sharma A, Almujibah HR, Mohammed Metwally AS, et al.
    Chemosphere, 2023 Sep;334:138980.
    PMID: 37207897 DOI: 10.1016/j.chemosphere.2023.138980
    The use of renewable fuels leads to reduction in the use of fossil fuels and environmental pollutants. In this study, the design and analysis of a CCPP based on the use of syngas produced from biomass is discussed. The studied system includes a gasifier system to produce syngas, an external combustion gas turbine and a steam cycle to recover waste heat from combustion gases. Design variables include syngas temperature, syngas moisture content, CPR, TIT, HRSG operating pressure, and PPTD. The effect of design variables on performance components such as power generation, exergy efficiency and total cost rate of the system is investigated. Also, through multi-objective optimization, the optimal design of the system is done. Finally, it is observed that at the final decisioned optimal point, the produced power is 13.4 MW, the exergy efficiency is 17.2%, and the TCR is 118.8 $/h.
    Matched MeSH terms: Steam*
  4. Fang J, Liu C, Law CL, Mujumdar AS, Xiao HW, Zhang C
    Crit Rev Food Sci Nutr, 2023;63(27):8720-8736.
    PMID: 35389273 DOI: 10.1080/10408398.2022.2059440
    Heat processing is one of the most efficient strategies used in food industry to improve quality and prolong shelf life. However, conventional processing methods such as microwave heating, burning charcoal treatment, boiling, and frying are energy-inefficient and often lead to inferior product quality. Superheated steam (SHS) is an innovative technology that offers many potential benefits to industry and is increasingly used in food industry. Compared to conventional processing methods, SHS holds higher heat transfer coefficients, which can reduce microorganisms on surface of foodstuffs efficiently. Additionally, SHS generates a low oxygen environment, which prevents lipid oxidation and harmful compounds generation. Furthermore, SHS can facilitate development of desired product quality, such as protein denaturation with functional characteristics, proper starch gelatinization, and can also reduce nutrient loss, and improve the physicochemical properties of foodstuffs. The current work provides a comprehensive review of the impact of SHS on the nutritional, physicochemical, and safety properties of various foodstuffs including meat, fruits, and vegetables, cereals, etc. Additionally, it also provides food manufacturers and researchers with basic knowledge and practical techniques for SHS processing of foodstuffs, which may improve the current scope of SHS and transfer current food systems to a healthy and sustainable one.
    Matched MeSH terms: Steam*
  5. Latif NHA, Brosse N, Ziegler-Devin I, Chrusiel L, Hashim R, Hussin MH
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127210.
    PMID: 37797852 DOI: 10.1016/j.ijbiomac.2023.127210
    The effects of steam explosion (SE) pretreatment on the structural properties of lignin isolated from coconut husk (CH) biomass via soda pulping were investigated in this work. The isolated SE lignin was classified as dilute acid impregnation SE lignin (ASEL), water impregnation SE lignin (WSEL), and 2-naphthol impregnation SE lignin (NSEL). The various types of functional groups isolated from SE lignin were characterized and compared using a variety of complementary analyses: FTIR spectroscopy, NMR spectroscopy, GPC chromatography, HPAEC-PAD chromatography and thermal analyses. It was revealed that ASEL has the highest solid recovery with 55.89 % yield as well as the highest sugars content compared to WSEL (45.66 % yield) and NSEL (49.37 % yield). Besides, all isolated SE lignin contain a significant quantity of non-condensed G-type and S-type units but less amount of H-type units as supported by previous research. The SE lignin produced lignin with higher molecular weight (Mw ASEL: 72725 g mol-1 > Mw WSEL: 13112 g mol-1 > Mw NSEL: 6891 g mol-1) seems to influence the success of the synthesis reaction of phenolic resins. Because of the large variances in the physicochemical properties of SE lignin polymers, their structural properties were increased toward numerous alternative techniques in lignin-based applications.
    Matched MeSH terms: Steam*
  6. Wan Munirah, W.M., Tahir, A., Azmirul, A.
    The transformation method (TM) of fuzzy arithmetic is aimed at simulation and analysis of a system. The aim of this paper is to use fuzzy arithmetic based on the TM on a state space of a steam turbine system. The model is then used to identify the degree of influence of each parameter on the system. Simulation and analysis of the system are presented in this paper.
    Matched MeSH terms: Steam
  7. Valizadeh S, Lam SS, Ko CH, Lee SH, Farooq A, Yu YJ, et al.
    Bioresour Technol, 2021 Jan;320(Pt B):124313.
    PMID: 33197736 DOI: 10.1016/j.biortech.2020.124313
    Steam and air gasification with 5 wt% Ni/Al2O3 eggshell (Ni-EG) and homo (Ni-H) catalysts were performed for the first time to produce biohydrogen from food waste. The steam gasification produced comparably higher gas yield than air gasification. In non-catalytic experiments, steam gasification generated a higher volume percent of H2, whereas more CO, CO2, CH4, and C2-C4 were produced in air gasification. Ni-EG demonstrated higher potential to obtain H2-rich gases with a low C2-C4 content compared to that obtained by Ni-H, particularly in steam gasification at 800 °C, which produced gaseous products with 59.48 vol% H2. The long-term activity of both catalysts in steam gasification was evaluated, and Ni-EG exhibited higher stability than Ni-H. The ideal distribution of Ni species on the outer region of γ-Al2O3 pellets in Ni-EG resulted in higher activity, stability, and selectivity than Ni-H in both steam and air gasification.
    Matched MeSH terms: Steam*
  8. Yek PNY, Peng W, Wong CC, Liew RK, Ho YL, Wan Mahari WA, et al.
    J Hazard Mater, 2020 08 05;395:122636.
    PMID: 32298946 DOI: 10.1016/j.jhazmat.2020.122636
    We developed an innovative single-step pyrolysis approach that combines microwave heating and activation by CO2 or steam to transform orange peel waste (OPW) into microwave activated biochar (MAB). This involves carbonization and activation simultaneously under an inert environment. Using CO2 demonstrates dual functions in this approach, acting as purging gas to provide an inert environment for pyrolysis while activating highly porous MAB. This approach demonstrates rapid heating rate (15-120 °C/min), higher temperature (> 800 °C) and shorter process time (15 min) compared to conventional method using furnace (> 1 h). The MAB shows higher mass yield (31-44 wt %), high content of fixed carbon (58.6-61.2 wt %), Brunauer Emmett Teller (BET) surface area (158.5-305.1 m2/g), low ratio of H/C (0.3) and O/C (0.2). Activation with CO2 produces more micropores than using steam that generates more mesopores. Steam-activated MAB records a higher adsorption efficiency (136 mg/g) compared to CO2 activation (91 mg/g), achieving 89-93 % removal of Congo Red dye. The microwave pyrolysis coupled with steam or CO2 activation thereby represents a promising approach to transform fruit-peel waste to microwave-activated biochar that remove hazardous dye.
    Matched MeSH terms: Steam*
  9. Moogi S, Jang SH, Rhee GH, Ko CH, Choi YJ, Lee SH, et al.
    Chemosphere, 2022 Jan;287(Pt 2):132224.
    PMID: 34826918 DOI: 10.1016/j.chemosphere.2021.132224
    Food waste, a renewable resource, was converted to H2-rich gas via a catalytic steam gasification process. The effects of basic oxides (MgO, CaO, and SrO) with 10 wt% Ni/Al2O3 on the gasification properties of food waste were investigated using a U-shaped gasifier. All catalysts prepared by the precipitation method were analyzed by X-ray diffraction, H2-temperature-programmed reduction, NH3-temperature-programmed desorption, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Ni/Al2O3 catalyst was reduced incompletely, and low nickel concentrations were detected on the surface of the alumina. The basic oxides minimized the number of acid sites and suppressed the formation of nickel-aluminate (NiAlxOy) phase in catalyst. In addition, the basic oxides shifted nickel-aluminate reduction reaction to lower temperatures. It resulted in enhancing nickel concentration on the catalyst surface and increasing gas yield and hydrogen selectivity. The low gas yield of the Ni/Al2O3 catalyst was attributed to the low nickel concentration on the surface. The maximum gas yield (66.0 wt%) and hydrogen selectivity (63.8 vol%) of the 10 wt% SrO- 10 wt% Ni/Al2O3 catalyst correlated with the highly dispersed nickel on the surface and low acidity. Furthermore, coke deposition during steam gasification varied with the surface acidity of the catalysts and less coke was formed on 10 wt% SrO- 10 wt% Ni/Al2O3 due to efficient tar cracking. This study showed that the steam gasification efficiency of the Ni/Al2O3 catalyst could be improved significantly by the addition of SrO.
    Matched MeSH terms: Steam*
  10. Valizadeh S, Khani Y, Yim H, Chai S, Chang D, Farooq A, et al.
    Environ Res, 2023 Feb 15;219:115070.
    PMID: 36549497 DOI: 10.1016/j.envres.2022.115070
    In this study, nickel-loaded perovskite oxides catalysts were synthesized via the impregnation of 10%Ni on XTiO3 (X = Ce, Sr, La, Ba, Ca, and Fe) supports and employed in the catalytic steam gasification of swine manure to produce H2-rich syngas for the first time. The synthesized catalysts were characterized using BET, H2-TPR, XRD, HR-TEM, and EDX analysis. Briefly, using perovskite supports resulted in the production of ultrafine catalyst nanoparticles with a uniform dispersion of Ni particles. According to the catalytic activity test, the gas yield showed the increment as 10% Ni/LaTiO3 < 10% Ni/FeTiO3 < 10% Ni/CeTiO3 < 10% Ni/BaTiO3 < 10% Ni/SrTiO3 < 10% Ni/CaTiO3. Meanwhile, zero coke formation was achieved due to the oxygen mobility of prepared catalysts. Also, the increase in the H2 production for the applied catalysts was in the sequence as 10% Ni/CeTiO3 < 10% Ni/FeTiO3 < 10% Ni/LaTiO3 < 10% Ni/BaTiO3 < 10% Ni/SrTiO3 < 10% Ni/CaTiO3. The maximum H2 selectivity (∼48 vol%) obtained by10% Ni/CaTiO3 was probably due to the synergistic effect of Ni and Ti on enhancing the water-gas shift reaction, and Ca on creating the maximum oxygen mobility compared to other alkaline earth metals doped at the A place of perovskite. Overall, this study provides a suitable solution for enhanced H2 production through steam gasification of swine manure along with suggesting the appropriate supports to prevent Ni deactivation by lowering coke formation at the same time.
    Matched MeSH terms: Steam*
  11. Gopalan T, Muhamad MR, Wai Hoe VC, Hassandarvish P
    PLoS One, 2024;19(2):e0296871.
    PMID: 38319932 DOI: 10.1371/journal.pone.0296871
    The Coronavirus Disease 2019 (COVID-19) pandemic has induced a critical supply of personal protective equipment (PPE) especially N95 respirators. Utilizing respirator decontamination procedures to reduce the pathogen load of a contaminated N95 respirator can be a viable solution for reuse purposes. In this study, the efficiency of a novel hybrid respirator decontamination method of ultraviolet germicidal irradiation (UVGI) which utilizes ultraviolet-C (UV-C) rays coupled with microwave-generated steam (MGS) against feline coronavirus (FCoV) was evaluated. The contaminated 3M 1860 respirator pieces were treated with three treatments (UVGI-only, MGS-only, and Hybrid-UVGI + MGS) with variable time. The virucidal activity was evaluated using the TCID50 method. The comparison of decontamination efficiency of the treatments indicated that the hybrid method achieved at least a pathogen log reduction of 4 logs, faster than MGS and UVGI. These data recommend that the proposed hybrid decontamination system is more effective comparatively in achieving pathogen log reduction of 4 logs.
    Matched MeSH terms: Steam*
  12. Nordin NI, Ariffin H, Andou Y, Hassan MA, Shirai Y, Nishida H, et al.
    Molecules, 2013 Jul 30;18(8):9132-46.
    PMID: 23903185 DOI: 10.3390/molecules18089132
    In this study, oil palm mesocarp fiber (OPMF) was treated with superheated steam (SHS) in order to modify its characteristics for biocomposite applications. Treatment was conducted at temperatures 190-230 °C for 1, 2 and 3 h. SHS-treated OPMF was evaluated for its chemical composition, thermal stability, morphology and crystallinity. OPMF treated at 230 °C exhibited lower hemicellulose content (9%) compared to the untreated OPMF (33%). Improved thermal stability of OPMF was found after the SHS treatment. Moreover, SEM and ICP analyses of SHS-treated OPMF showed that silica bodies were removed from OPMF after the SHS treatment. XRD results exhibited that OPMF crystallinity increased after SHS treatment, indicating tougher fiber properties. Hemicellulose removal makes the fiber surface more hydrophobic, whereby silica removal increases the surface roughness of the fiber. Overall, the results obtained herewith suggested that SHS is an effective treatment method for surface modification and subsequently improving the characteristics of the natural fiber. Most importantly, the use of novel, eco-friendly SHS may contribute to the green and sustainable treatment for surface modification of natural fiber.
    Matched MeSH terms: Steam*
  13. Ojukwu M, Tan HL, Murad M, Nafchi AM, Easa AM
    Food Sci Technol Int, 2023 Dec;29(8):799-808.
    PMID: 36000280 DOI: 10.1177/10820132221121169
    In a bid to produce rice flour noodles with improved texture and reduced cooking time, rice flour-soy protein isolate noodles (RNS) were structurally enhanced by a combined treatment (COM) of microbial transglutaminase (MTG) with glucono-δ-lactone (GDL). The RNS-COM was either dried using superheated steam (SHS) to yield RNS-COM-SHS or steamed for 10 min (S10) before air drying to produce RNS-COM-S10 noodles. Control samples were SHS-dried rice flour (RN-SHS) and air-dried RN-S10 noodles. In general, textural and microstructural properties indicated higher textural properties and a more robust network in RNS-COM-SHS and RNS-COM-S10 than in other noodles. However, optimum cooking time (P < 0.5) was in the order; RN-SHS, RNS-COM-SHS < RN-S10 < RNS-COM-S10. As a result of the COM treatment, structurally enhanced noodles were more resistant to cooking. As applied in RNS-COM-SHS noodles, SHS was able to improve cooking quality, probably through the formation of bigger and evenly spread pores that had promoted faster gelatinisation of starch, with a high order of relative starch crystallinity.
    Matched MeSH terms: Steam*
  14. Kong, K.W., Emmy, H.K.I., Azizah, O., Amin, I., Tan, C.P.
    Lycopene and total phenolics of pink guava puree industry by-products (refiner, siever and decanter)
    were evaluated after steam blanching at selected temperatures and times. Lycopene content was in the order of decanter > siever > refiner (7.3, 6.3 and 1.5 mg/100 g, respectively), and the content of total phenolics was in the order of refiner > siever > decanter (4434.1, 2881.3 and 1529.3 mg GAE/100 g, respectively). Regression coefficients for temperatures (x1) and times (x2) from multiple linear regression models of siever and decanter showed significant (p
    Matched MeSH terms: Steam
  15. Nur Sakinah Abdul Aziz, Mazidah Tajjudin, Ramli Adnan
    Fuzzy Logic is a popular method to tune a PID controller. By using Fuzzy Logic, the PID is tuned automatically based on information of output error, which is better than other tuning rule methods. Fuzzy Logic Control will tune gains of PID controller by using a set of fuzzy rules designed specifically for that. However, specific transient requirements of the process output cannot be assigned to the controller. This research proposes a new method to overcome this problem by using a reference model. Step input from the reference model that contains the desired response information will be compared against the actual output. The reference model can be pre-selected by the user as desired. This study was simulated on a steam temperature process model while few sets of first-order model were used as reference. The results showed that the proposed Fuzzy PID controller with reference model provides better performance with perfect tracking during transient and steady-state.
    Matched MeSH terms: Steam
  16. Lim, S.F., Pah, P.Y.L., David Chua, S.N., Nicholas Kuan, H.T.
    Lemongrass leaves are often under-utilised and unexploited. In this study, lemongrass leaves were used to produce water soluble essential oil using a steam distillation system. Water steam was passed through the lemongrass leaves which were placed and supported on a grid above the water in a distiller. The steam distillation system was fabricated and optimised using Response Surface Methodology (RSM). The maximum oil yield with optimal relative citral content is obtained at 6.69 of plant-to-water ratio, 26.68 minutes of distillation time using air-dried lemongrass leaves left under the shade for two days. At the optimum conditions, the predicted oil yield was 0.6719% of lemongrass (C. citratus) oil which contains 71.79% of citral content.
    Matched MeSH terms: Steam
  17. Yeoh KH, Shafie SA, Al-Attab KA, Zainal ZA
    Bioresour Technol, 2018 Oct;265:365-371.
    PMID: 29925052 DOI: 10.1016/j.biortech.2018.06.024
    In this study, three different methods for high quality solid fuel production were tested and compared experimentally. Oil palm empty fruit bunches, mesocarp fibers, palm kernel shells and rubber seeds shells were treated using thermal (TC), hydrothermal (HTC) and vapothermal (VTC) carbonization. All thermochemical methods were accomplished by using a custom made batch-type reactor. Utilization of novel single reactor equipped with suspended internal container provided efficient operation since both steam generator and raw materials were placed inside the same reactor. Highest energy densification was achieved by VTC process followed by TC and HTC processes. The heating value enhancement in VTC and TC was achieved by the increase in fixed carbon content and reduction in volatile matter. The formation of the spherical components in HTC hydrochar which gave a sharp peak at 340 °C in the DTG curves was suggested as the reason that led to the increment in energy content.
    Matched MeSH terms: Steam
  18. Liu B, Yang L, Shi J, Zhang S, Yalçınkaya Ç, Alshalif AF
    Environ Pollut, 2023 Jan 15;317:120839.
    PMID: 36493937 DOI: 10.1016/j.envpol.2022.120839
    Stabilizing/solidificating municipal solid waste incineration fly ash (MIFA) with cement is a common strategy, and it is critical to study the high-value utilization of MIFA in ordinary Portland cement (OPC) components. With this aim, binary-binding-system mortar was produced by partially replacing OPC (∼50%) with MIFA, and the effects of different curing regimes (steam curing and carbonation curing) on the properties of the cement mortar were studied. The results showed that the setting time of the cement paste was shorten with the increase of MIFA content, and steam curing accelerated the hardening of the mixture. Although the incorporation of MIFA reduced the strength of the mortar, compared to conventional curing method, steam curing and carbonation curing increased the 3-d strength of the mortar. For high-volume MIFA mortars, the CO2-cured samples had the highest long-term strength and lowest permeability. The incorporation of MIFA increased the initial porosity of the mortar, thereby significantly increasing the carbonation degree and crystallinity of the reaction product - CaCO3. Steam curing also further narrowed the difference in the hydration degree between MIFA-modified sample and plain paste, which may be due to the enhanced hydraulic reactivity of MIFA at high temperatures. Although the incorporation of MIFA increased the porosity of the mortar, this waste-derived SCM refined the bulk pore structure and decreased the interconnected porosity. Additionally, the heavy metal leaching contents of MIFA-modified mortars were all below 1%, which meet the requirements of Chinese standards. Compared with standard curing, steam curing and carbonation curing made the early-age and long-term performance of MIFA-modified mortar better, which can promote the efficient application of MIFA in OPC products.
    Matched MeSH terms: Steam
  19. Qureshi F, Yusuf M, Ibrahim H, Kamyab H, Chelliapan S, Pham CQ, et al.
    Environ Res, 2023 Jul 15;229:115963.
    PMID: 37105287 DOI: 10.1016/j.envres.2023.115963
    Hydrogen (H2) is a possible energy transporter and feedstock for energy decarbonization, transportation, and chemical sectors while reducing global warming's consequences. The predominant commercial method for producing H2 today is steam methane reforming (SMR). However, there is still room for development in process intensification, energy optimization, and environmental concerns related to CO2 emissions. Reactors using metallic membranes (MRs) can handle both problems. Compared to traditional reactors, MRs operates at substantially lower pressures and temperatures. As a result, capital and operational costs may be significantly cheaper than traditional reactors. Furthermore, metallic membranes (MMs), particularly Pd and its alloys, naturally permit only H2 permeability, enabling the production of a stream with a purity of up to 99.999%. This review describes several methods for H2 production based on the energy sources utilized. SRM with CO2 capture and storage (CCUS), pyrolysis of methane, and water electrolysis are all investigated as process technologies. A debate based on a color code was also created to classify the purity of H2 generation. Although producing H2 using fossil fuels is presently the least expensive method, green H2 generation has the potential to become an affordable alternative in the future. From 2030 onward, green H2 is anticipated to be less costly than blue hydrogen. Green H2 is more expensive than fossil-based H2 since it uses more energy. Blue H2 has several tempting qualities, but the CCUS technology is pricey, and blue H2 contains carbon. At this time, almost 80-95% of CO2 can be stored and captured by the CCUS technology. Nanomaterials are becoming more significant in solving problems with H2 generation and storage. Sustainable nanoparticles, such as photocatalysts and bio-derived particles, have been emphasized for H2 synthesis. New directions in H2 synthesis and nanomaterials for H2 storage have also been discussed. Further, an overview of the H2 value chain is provided at the end, emphasizing the financial implications and outlook for 2050, i.e., carbon-free H2 and zero-emission H2.
    Matched MeSH terms: Steam
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links