Displaying publications 1 - 20 of 242 in total

Abstract:
Sort:
  1. Kolda L, Krejcar O, Selamat A, Kuca K, Fadeyi O
    Sensors (Basel), 2019 Aug 26;19(17).
    PMID: 31455045 DOI: 10.3390/s19173709
    Biometric verification methods have gained significant popularity in recent times, which has brought about their extensive usage. In light of theoretical evidence surrounding the development of biometric verification, we proposed an experimental multi-biometric system for laboratory testing. First, the proposed system was designed such that it was able to identify and verify a user through the hand contour, and blood flow (blood stream) at the upper part of the hand. Next, we detailed the hard and software solutions for the system. A total of 40 subjects agreed to be a part of data generation team, which produced 280 hand images. The core of this paper lies in evaluating individual metrics, which are functions of frequency comparison of the double type faults with the EER (Equal Error Rate) values. The lowest value was measured for the case of the modified Hausdorff distance metric - Maximally Helicity Violating (MHV). Furthermore, for the verified biometric characteristics (Hamming distance and MHV), appropriate and suitable metrics have been proposed and experimented to optimize system precision. Thus, the EER value for the designed multi-biometric system in the context of this work was found to be 5%, which proves that metrics consolidation increases the precision of the multi-biometric system. Algorithms used for the proposed multi-biometric device shows that the individual metrics exhibit significant accuracy but perform better on consolidation, with a few shortcomings.
    Matched MeSH terms: Transcription Factors
  2. Patro CP, Khan AM, Tan TW, Fu XY
    PLoS One, 2014;9(8):e104597.
    PMID: 25157689 DOI: 10.1371/journal.pone.0104597
    Signal transducers and activators of transcription (STAT) proteins are key signalling molecules in metazoans, implicated in various cellular processes. Increased research in the field has resulted in the accumulation of STAT sequence and structure data, which are scattered across various public databases, missing extensive functional annotations, and prone to effort redundancy because of the dearth of community sharing. Therefore, there is a need to integrate the existing sequence, structure and functional data into a central repository, one that is enriched with annotations and provides a platform for community contributions. Herein, we present STATdb (publicly available at http://statdb.bic.nus.edu.sg/), the first integrated resource for STAT sequences comprising 1540 records representing the known STATome, enriched with existing structural and functional information from various databases and literature and including manual annotations. STATdb provides advanced features for data visualization, analysis and prediction, and community contributions. A key feature is a meta-predictor to characterise STAT sequences based on a novel classification that integrates STAT domain architecture, lineage and function. A curation policy workflow has been devised for regulated and structured community contributions, with an update policy for the seamless integration of new data and annotations.
    Matched MeSH terms: STAT Transcription Factors/classification; STAT Transcription Factors/chemistry*
  3. Hussain RMF, Kim HK, Khurshid M, Akhtar MT, Linthorst HJM
    Metabolomics, 2018 01 31;14(3):25.
    PMID: 30830336 DOI: 10.1007/s11306-018-1317-0
    INTRODUCTION: WRKY proteins belong to a plant-specific class of transcription factors. Seventy-four WKRY genes have been identified in Arabidopsis and many WRKY proteins are known to be involved in responses to stress, especially to biotic stress. They may act either as transcriptional activators or as repressors of genes that play roles in the stress response. A number of studies have proposed the connection of Arabidopsis WRKY transcription factors in induced pathogenesis-related (PR) gene expression, although no direct evidence has been presented for specific WRKY-PR promoter interactions.

    OBJECTIVE: We previously identified AtWRKY50 as a transcriptional activator of SAR gene PR1. Although PR1 accumulates to high levels in plants after attack by pathogens, its function is still elusive. Here we investigated the effects of overexpression of several WRKY proteins, including AtWRKY50, on the metabolome of Arabidopsis thaliana.

    METHODS: The influence of overexpression of WRKY proteins on the metabolites of Arabidopsis was investigated by using an NMR spectroscopy-based metabolomic approach. The 1H NMR data was analysed using the multivariate data analysis methods, such as principal component analysis, hierarchical cluster analysis and partial least square-discriminant analysis.

    RESULTS: The results showed that the metabolome of transgenic Arabidopsis seedlings overexpressing AtWRKY50 was different from wild type Arabidopsis and transgenic Arabidopsis overexpressing other WRKY genes. Amongst other metabolites, sinapic acid and 1-O-sinapoyl-β-D-glucose especially appeared to be the most prominent discriminating metabolites, accumulating to levels 2 to 3 times higher in the AtWRKY50 overexpressor lines.

    CONCLUSION: Our results indicate a possible involvement of AtWRKY50 in secondary metabolite production in Arabidopsis, in particular of hydroxycinnamates such as sinapic acid and 1-O-sinapoyl-β-D-glucose.

    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism*
  4. Haliza Abdul Mutalib, Saleha Abdul Majid, Mohamed Kamel bin Abdul Ghani, Anisah Nordin, Yusof Suboh, Norhayati Moktar
    MyJurnal
    Tujuan kajian ini adalah untuk mengenal pasti punca insidens tinggi infeksi Acanthamoeba di kalangan pemakai kanta sentuh di Kuala Lumpur. Satu ratus tujuh puluh empat sampel diambil dari 66 subjek pemakai kanta sentuh lembut jenis pakaibuang dan mereka juga disoal dengan menggunakan borang kaji selidik. Kesemua pemakai kanta sentuh menggunakan pelbagai jenis larutan disinfeksi atau larutan pelbagai guna untuk membersih dan mendisinfeksi kanta sentuh. Swab diambil dari kanta sentuh yang masih dipakai, bekas kanta sentuh dan juga larutan disinfeksi yang sedang digunakan. Daripada swab ini proses pengkulturan yang lengkap dilakukan untuk pemencilan Acanthamoeba spp. Pemencilan Acanthamoeba spp. daripada 14 sampel daripada 7 subjek telah berjaya dilakukan. Hasil pemencilan yang tinggi adalah daripada bekas kanta sentuh (13.5%) dan kanta sentuh subjek (10.6%). Walau bagaimanapun tiada sebarang pemencilan didapati daripada larutan disinfeksi. Punca infeksi Acanthamoeba adalah dari bekas simpanan kanta sentuh dan kanta sentuh yang dipakai. Kaji selidik menunjukkan peratusan tidak komplain yang tinggi di kalangan pemakai kanta sentuh kerana ramai menggunakan air paip untuk mencuci kanta sentuh dan bekasnya.
    Matched MeSH terms: Transcription Factors
  5. ChongYong, Chua, HongChoon, Ong
    MyJurnal
    Score-based structure learning algorithm is commonly used in learning the Bayesian Network. Other than searching strategy, scoring functions play a vital role in these algorithms. Many studies proposed various types of scoring functions with different characteristics. In this study, we compare the performances of five scoring functions: Bayesian Dirichlet equivalent-likelihood (BDe) score (equivalent sample size, ESS of 4 and 10), Akaike Information Criterion (AIC) score, Bayesian Information Criterion (BIC) score and K2 score. Instead of just comparing networks with different scores, we included different learning algorithms to study the relationship between score functions and greedy search learning algorithms. Structural hamming distance is used to measure the difference between networks obtained and the true network. The results are divided into two sections where the first section studies the differences between data with different number of variables and the second section studies the differences between data with different sample sizes. In general, the BIC score performs well and consistently for most data while the BDe score with an equivalent sample size of 4 performs better for data with bigger sample sizes.
    Matched MeSH terms: Transcription Factors
  6. Pucker B, Pandey A, Weisshaar B, Stracke R
    PLoS One, 2020;15(10):e0239275.
    PMID: 33021974 DOI: 10.1371/journal.pone.0239275
    The R2R3-MYB genes comprise one of the largest transcription factor gene families in plants, playing regulatory roles in plant-specific developmental processes, defense responses and metabolite accumulation. To date MYB family genes have not yet been comprehensively identified in the major staple fruit crop banana. In this study, we present a comprehensive, genome-wide analysis of the MYB genes from Musa acuminata DH-Pahang (A genome). A total of 285 R2R3-MYB genes as well as genes encoding three other classes of MYB proteins containing multiple MYB repeats were identified and characterised with respect to structure and chromosomal organisation. Organ- and development-specific expression patterns were determined from RNA-Seq data. For 280 M. acuminata MYB genes for which expression was found in at least one of the analysed samples, a variety of expression patterns were detected. The M. acuminata R2R3-MYB genes were functionally categorised, leading to the identification of seven clades containing only M. acuminata R2R3-MYBs. The encoded proteins may have specialised functions that were acquired or expanded in Musa during genome evolution. This functional classification and expression analysis of the MYB gene family in banana establishes a solid foundation for future comprehensive functional analysis of MaMYBs and can be utilized in banana improvement programmes.
    Matched MeSH terms: Transcription Factors/classification; Transcription Factors/genetics*; Transcription Factors/metabolism
  7. Mohd Nazri Idris, Abdul Razak Daud, Nurakma Mahat, Norinsan Kamil Othman, Fathul Karim Sahrani
    Sains Malaysiana, 2016;45:1835-1841.
    Ancaman biokakisan akibat aktiviti bakteria penurun sulfat (SRB) pada saluran paip keluli karbon dalam industri petroleum boleh menjejaskan kelancaran aliran pengangkutan minyak mentah dan meningkatkan kos pengoperasian. Usaha bagi melindungi keluli karbon serta pengawalan SRB masih memerlukan kajian yang berterusan. Dalam kajian ini, keberkesanan tetrametilamonium bromida (TMB), karboksimetil trimetilamonium (BTN) dan benzalkonium klorida (BKC) bagi melindungi keluli karbon di dalam persekitaran yang mengandungi SRB diuji melalui kaedah pengutuban elektrokimia dinamik (PED) dan morfologi keluli karbon dianalisis menggunakan mikroskop elektron imbasan. Analisis PED mendapati penggunaan TMB, BTN dan BKC masing-masing berupaya mengurangkan kadar kakisan sehingga 0.13, 0.56 dan 0.17 mm/thn berbanding 8.91 mm/thn pada larutan kawalan yang mengandungi SRB. Morfologi permukaan biofilem mengesahkan kadar pertumbuhan SRB serta hasilan metabolisme bakteria ini turut mengalami penyusutan. Kajian ini menunjukkan dua mekanisme kawalan kakisan didapati berlaku iaitu mekanisme perencatan kakisan melalui penjerapan sebatian amonium kuaterner pada permukaan keluli karbon serta berlakunya proses tindak balas mitigasi sebatian ini dengan bakteria SRB. Kesimpulannya, TMB, BTN dan BKC didapati berupaya melindungi keluli karbon daripada mengalami kakisan akibat aktiviti SRB.
    Matched MeSH terms: Transcription Factors
  8. Lee HN, Mostovoy Y, Hsu TY, Chang AH, Brem RB
    G3 (Bethesda), 2013 Dec 09;3(12):2187-94.
    PMID: 24142925 DOI: 10.1534/g3.113.008011
    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism; Basic-Leucine Zipper Transcription Factors/genetics; Basic-Leucine Zipper Transcription Factors/metabolism
  9. Hasanpourghadi M, Pandurangan AK, Mustafa MR
    Pharmacol Res, 2018 02;128:376-388.
    PMID: 28923544 DOI: 10.1016/j.phrs.2017.09.009
    Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded to recognition of their molecular effects as anticancer drugs. Numerous natural products extracted from plants, fruits, mushrooms and mycelia, show potential inhibitory effects against several oncogenic transcription factors in breast cancer. Natural compounds that target oncogenic transcription factors have increased the number of candidate therapeutic agents. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in breast cancer.
    Matched MeSH terms: Transcription Factors/metabolism*
  10. Arunachalam A, Lakshmanan DK, Ravichandran G, Paul S, Manickam S, Kumar PV, et al.
    Med Oncol, 2021 Sep 04;38(10):122.
    PMID: 34482423 DOI: 10.1007/s12032-021-01573-z
    A limited number of overexpressed transcription factors are associated with cancer progression in many types of cancer. BTB and CNC homology 1 (BACH1) is the first mammalian heme-binding transcription factor that belongs to the basic region leucine zipper (bZIP) family and a member of CNC (cap 'n' collar). It forms heterodimers with the small musculoaponeurotic fibrosarcoma (MAF) proteins and stimulates or suppresses the expression of target genes under a very low intracellular heme concentration. It possesses a significant regulatory role in heme homeostasis, oxidative stress, cell cycle, apoptosis, angiogenesis, and cancer metastasis progression. This review discusses the current knowledge about how BACH1 regulates cancer metastasis in various types of cancer and other carcinogenic associated factors such as oxidative stress, cell cycle regulation, apoptosis, and angiogenesis. Overall, from the reported studies and outcomes, it could be realized that BACH1 is a potential pharmacological target for discovering new therapeutic anticancer drugs.
    Matched MeSH terms: Basic-Leucine Zipper Transcription Factors/genetics*
  11. Ma A, Yousoof S, Grigg JR, Flaherty M, Minoche AE, Cowley MJ, et al.
    Genet Med, 2020 10;22(10):1623-1632.
    PMID: 32499604 DOI: 10.1038/s41436-020-0854-x
    PURPOSE: Ocular anterior segment disorders (ASDs) are clinically and genetically heterogeneous, and genetic diagnosis often remains elusive. In this study, we demonstrate the value of a combined analysis protocol using phenotypic, genomic, and pedigree structure data to achieve a genetic conclusion.

    METHODS: We utilized a combination of chromosome microarray, exome sequencing, and genome sequencing with structural variant and trio analysis to investigate a cohort of 41 predominantly sporadic cases.

    RESULTS: We identified likely causative variants in 54% (22/41) of cases, including 51% (19/37) of sporadic cases and 75% (3/4) of cases initially referred as familial ASD. Two-thirds of sporadic cases were found to have heterozygous variants, which in most cases were de novo. Approximately one-third (7/22) of genetic diagnoses were found in rarely reported or recently identified ASD genes including PXDN, GJA8, COL4A1, ITPR1, CPAMD8, as well as the new phenotypic association of Axenfeld-Rieger anomaly with a homozygous ADAMTS17 variant. The remainder of the variants were in key ASD genes including FOXC1, PITX2, CYP1B1, FOXE3, and PAX6.

    CONCLUSIONS: We demonstrate the benefit of detailed phenotypic, genomic, variant, and segregation analysis to uncover some of the previously "hidden" heritable answers in several rarely reported and newly identified ocular ASD-related disease genes.

    Matched MeSH terms: Forkhead Transcription Factors/genetics
  12. Nurul Fariza Rossle, Mohamed Kamel Abd Ghani, Anisah Nordin, Yusof Suboh, Noraina Ab Rahim
    MyJurnal
    Kajian ini dijalankan untuk memencilkan Acanthamoeba spp. daripada pelbagai persekitaran akuatik di Semenanjung Malaysia. Sebanyak 160 sampel diambil dengan 140 sampel menggunakan kaedah swab manakala 20 sampel lagi menggunakan kaedah pensampelan air dengan botol Schott 500 ml yang steril. Sampel swab diambil daripada kepala paip air (50), sinki (50), serta kolam renang (40) manakala sampel air diambil dari laut. Sampel swab diinokulasi secara terus ke atas agar tanpa nutrien (NNA) yang dilapisi dengan Escherichia coli matian haba secara aseptik. Sampel air dituras menggunakan membran turas bersaiz liang 0.45 µm sebelum membran turas itu dipindahkan secara aseptik ke atas piring NNA yang dilapisi dengan E. coli matian haba. Semua piring dieram pada suhu 30°C dan diperiksa setiap hari untuk kehadiran Acanthamoeba spp. sehingga hari ke-14 sebelum disahkan negatif. Secara keseluruhannya, terdapat 20% sampel yang positif untuk kehadiran Acanthamoeba. Acanthamoeba spp. paling banyak dipencilkan daripada sampel air laut dengan peratusan sebanyak 40% manakala paling sedikit dipencilkan daripada swab paip air dengan peratusan sebanyak 4% sahaja. Pencilan positif Acanthamoeba spp. daripada sinki dan kolam renang masing-masing adalah 20% dan 30%. Ketiga-tiga kumpulan genus Acanthamoeba dalam bentuk sista dapat ditemui dalam sampel yang diambil.
    Matched MeSH terms: Transcription Factors
  13. Marzuki, R.M., Mohd, M.A., Nawawi, A.H.M., Redzwan, N.M.
    MyJurnal
    Single Stock Futures (SSFs) was introduced in Bursa Malaysia on 28th April 2006. There have been many studies on derivative instruments in Malaysia; however, none is on SSFs. Various statistical methods have been used to analyse the SSFs and its spot returns, namely Descriptive Statistics, Unit Root test, VAR, Johansen and Juselius Co-integration test, Granger Causality test, Variance Decomposition test, VECM, and GARCH model. This study analyses the SSFs and spot returns of eight companies listed in Bursa Malaysia. It found that Berjaya Sports Toto Bhd and Genting Bhd have no long-run and short-run causality (Genting Bhd has bi-directional causality) while AirAsia Bhd and AMMB Holdings Bhd’s spot returns’ volatility decreased after the introduction of SSFs; it increased in the other seven companies. In addition, only AMMB Holdings Bhd futures return did not affect its spot return. Bursa Malaysia Bhd and RHB Capital Bhd spot returns lead their futures returns
    Matched MeSH terms: Transcription Factors
  14. Yaacob NS, Bakar RA, Norazmi MN
    Ann Clin Lab Sci, 2004;34(1):47-56.
    PMID: 15038667
    The polymerase chain reaction (PCR) is useful for amplifying specific mRNAs, particularly those present in low copy numbers. However, due to the exponential nature of the amplification process, PCR cannot readily be used to quantify gene expression. A competitive PCR technique was developed to address this shortcoming. An internal standard that is 100% homologous to, but shorter than, the target gene was constructed. The practicality of the method was demonstrated by determining the expression levels of a human transcription factor, peroxisome proliferator-activated receptor gamma 1 (hPPARgamma1) which is normally present in low copy numbers in selected cells. A mock system was used to test the accuracy and sensitivity of the method, which was subsequently used to determine the expression of this receptor in lipopolysaccharide (LPS)-activated monocytes, which are known to express hPPARgamma1 differentially during cellular activation. Densitometric analysis showed that the competitive PCR method reliably estimated the expression levels of hPPARgamma1 at the attomole (10(-18)) level in monocytes.
    Matched MeSH terms: Transcription Factors/analysis; Transcription Factors/genetics*; Transcription Factors/metabolism
  15. Abdullah-Zawawi MR, Ahmad-Nizammuddin NF, Govender N, Harun S, Mohd-Assaad N, Mohamed-Hussein ZA
    Sci Rep, 2021 10 04;11(1):19678.
    PMID: 34608238 DOI: 10.1038/s41598-021-99206-y
    Transcription factors (TFs) form the major class of regulatory genes and play key roles in multiple plant stress responses. In most eukaryotic plants, transcription factor (TF) families (WRKY, MADS-box and MYB) activate unique cellular-level abiotic and biotic stress-responsive strategies, which are considered as key determinants for defense and developmental processes. Arabidopsis and rice are two important representative model systems for dicot and monocot plants, respectively. A comprehensive comparative study on 101 OsWRKY, 34 OsMADS box and 122 OsMYB genes (rice genome) and, 71 AtWRKY, 66 AtMADS box and 144 AtMYB genes (Arabidopsis genome) showed various relationships among TFs across species. The phylogenetic analysis clustered WRKY, MADS-box and MYB TF family members into 10, 7 and 14 clades, respectively. All clades in WRKY and MYB TF families and almost half of the total number of clades in the MADS-box TF family are shared between both species. Chromosomal and gene structure analysis showed that the Arabidopsis-rice orthologous TF gene pairs were unevenly localized within their chromosomes whilst the distribution of exon-intron gene structure and motif conservation indicated plausible functional similarity in both species. The abiotic and biotic stress-responsive cis-regulatory element type and distribution patterns in the promoter regions of Arabidopsis and rice WRKY, MADS-box and MYB orthologous gene pairs provide better knowledge on their role as conserved regulators in both species. Co-expression network analysis showed the correlation between WRKY, MADs-box and MYB genes in each independent rice and Arabidopsis network indicating their role in stress responsiveness and developmental processes.
    Matched MeSH terms: Transcription Factors/genetics*; MEF2 Transcription Factors/genetics*
  16. Kumarasamy V, Kuppusamy UR, Samudi C, Kumar S
    Parasitol Res, 2013 Oct;112(10):3551-5.
    PMID: 23933809 DOI: 10.1007/s00436-013-3538-5
    Blastocystis sp. is a commonly found intestinal microorganism and was reported to cause many nonspecific gastrointestinal symptoms. Various subtypes have been previously reported, and the pathogenicity of different subtypes of Blastocystis is unclear and remains as a controversial issue. A recent study has shown that the Blastocystis antigen isolated from an unknown subtype could facilitate the proliferation of colon cancer cells. Current study was conducted to compare the effect of solubilized antigen isolated from five different subtypes of Blastocystis on colon cancer cells, HCT116. A statistically significant proliferation of these cells was observed when exposed to 1.0 μg/ml solubilized antigen isolated from subtype 3 Blastocystis (37.22%, p < 0.05). Real-time polymerase chain reaction demonstrated the upregulation of Th2 cytokines especially transforming growth factor beta in subtype 3-treated cancer cells (p < 0.01, 3.71-fold difference). Of interest, subtype 3 Blastocystis antigen also caused a significantly higher upregulation of cathepsin B (subtypes 1 and 2, p < 0.01; subtypes 4 and 5, p < 0.001; 6.71-fold difference) which lead to the postulation that it may enhance the exacerbation of existing colon cancer cells by weakening the cellular immune response. The dysregulation of IFN-γ and p53 expression also suggest Blastocystis as a proponent of carcinogenesis. Therefore, it is very likely for subtype 3 Blastocystis to have higher pathogenic potential as it caused an increased propagation of cancer cells and substantial amount of inflammatory reaction compared to other subtypes.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism
  17. Akolkar DB, Asaduzzaman M, Kinoshita S, Asakawa S, Watabe S
    Gene, 2016 Jan 1;575(1):21-8.
    PMID: 26297555 DOI: 10.1016/j.gene.2015.08.031
    Pax3 and Pax7 are the regulators and markers of muscle progenitors and satellite cells that contribute to the embryonic development and postembryonic growth of skeletal muscle in vertebrates, as well as to its repair and regeneration. However, information regarding them in vertebrate genome model, torafugu Takifugu rubripes, has remained unknown. Therefore, as an initial step, here we characterized Pax3 and Pax7 from torafugu and investigated their expression patterns during different developmental stages by RT-PCR. In silico analysis with the Fugu genome database (ver. 4.0) yielded two distinct genes each for Pax3 (Pax3a and Pax3b) and Pax7 (Pax7a and Pax7b). The 75th amino acid, glutamine (Gln75), from the N-terminus was replaced by proline in the paired box domain (PD) of Pax3a. One single cDNA clone encoding Pax3a had deletion of Gln75 in PD, suggesting the presence of alternatively spliced variants (Q+/Q-). This was further supported by identification of two adjacent alternative 3' splice acceptor sites which produce Pax3b Q+ (aagCAGGGA) and Q- (aagcagGGA) variants. Interestingly, torafugu Pax7a, but not Pax7b, had an insert encoding five amino acid residues (SGEAS) in a C-terminal region of PD in two out of three cDNA clones. Genomic analysis showed two alternate splice donor sites at exon 4 of Pax7a. In synteny analysis, torafugu Pax3a showed syntenic relationship with the corresponding regions in other teleosts only, whereas Pax3b and Pax7b showed high syntenic relationship with the corresponding regions of both mammals and other teleosts. RT-PCR revealed that expression of Pax3a and Pax3b transcripts was restricted to embryonic stages only, whereas those of Pax7a and Pax7b was continued to be expressed in larvae and importantly those of Pax7a were found in adult skeletal muscles. Therefore, Pax3 appears to be most important for primary myogenesis and Pax7 for secondary myogenesis and growth by hyperplasia in fish. In this regard, the transcripts of torafugu Pax3 and Pax7 genes might be used for further investigation as a marker for identification of muscle precursor cells during different phases of growth, and this ambiguity is the next target of our research.
    Matched MeSH terms: Paired Box Transcription Factors/biosynthesis*; Paired Box Transcription Factors/genetics
  18. Loh SC, Othman AS, Veera Singham G
    Sci Rep, 2019 10 04;9(1):14296.
    PMID: 31586098 DOI: 10.1038/s41598-019-50800-1
    Hevea brasiliensis remains the primary crop commercially exploited to obtain latex, which is produced from the articulated secondary laticifer. Here, we described the transcriptional events related to jasmonic acid (JA)- and linolenic acid (LA)-induced secondary laticifer differentiation (SLD) in H. brasiliensis clone RRIM 600 based on RNA-seq approach. Histochemical approach proved that JA- and LA-treated samples resulted in SLD in H. brasiliensis when compared to ethephon and untreated control. RNA-seq data resulted in 86,614 unigenes, of which 2,664 genes were differentially expressed in JA and LA-induced secondary laticifer harvested from H. brasiliensis bark samples. Among these, 450 genes were unique to JA and LA as they were not differentially expressed in ethephon-treated samples compared with the untreated samples. Most transcription factors from the JA- and LA-specific dataset were classified under MYB, APETALA2/ethylene response factor (AP2/ERF), and basic-helix-loop-helix (bHLH) gene families that were involved in tissue developmental pathways, and we proposed that Bel5-GA2 oxidase 1-KNOTTED-like homeobox complex are likely involved in JA- and LA-induced SLD in H. brasiliensis. We also discovered alternative spliced transcripts, putative novel transcripts, and cis-natural antisense transcript pairs related to SLD event. This study has advanced understanding on the transcriptional regulatory network of SLD in H. brasiliensis.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism*
  19. Sarpan N, Taranenko E, Ooi SE, Low EL, Espinoza A, Tatarinova TV, et al.
    Plant Cell Rep, 2020 Sep;39(9):1219-1233.
    PMID: 32591850 DOI: 10.1007/s00299-020-02561-9
    KEY MESSAGE: Several hypomethylated sites within the Karma region of EgDEF1 and hotspot regions in chromosomes 1, 2, 3, and 5 may be associated with mantling. One of the main challenges faced by the oil palm industry is fruit abnormalities, such as the "mantled" phenotype that can lead to reduced yields. This clonal abnormality is an epigenetic phenomenon and has been linked to the hypomethylation of a transposable element within the EgDEF1 gene. To understand the epigenome changes in clones, methylomes of clonal oil palms were compared to methylomes of seedling-derived oil palms. Whole-genome bisulfite sequencing data from seedlings, normal, and mantled clones were analyzed to determine and compare the context-specific DNA methylomes. In seedlings, coding and regulatory regions are generally hypomethylated while introns and repeats are extensively methylated. Genes with a low number of guanines and cytosines in the third position of codons (GC3-poor genes) were increasingly methylated towards their 3' region, while GC3-rich genes remain demethylated, similar to patterns in other eukaryotic species. Predicted promoter regions were generally hypomethylated in seedlings. In clones, CG, CHG, and CHH methylation levels generally decreased in functionally important regions, such as promoters, 5' UTRs, and coding regions. Although random regions were found to be hypomethylated in clonal genomes, hypomethylation of certain hotspot regions may be associated with the clonal mantling phenotype. Our findings, therefore, suggest other hypomethylated CHG sites within the Karma of EgDEF1 and hypomethylated hotspot regions in chromosomes 1, 2, 3 and 5, are associated with mantling.
    Matched MeSH terms: Transcription Factors/genetics; Transcription Factors/metabolism
  20. Khoo BY, Samian MR, Najimudin N, Tengku Muhammad TS
    PMID: 12524031
    The coding region of guinea pig peroxisome proliferator activated receptor gamma1 (gpPPARgamma1) cDNA was successfully cloned from adipose tissue by reverse transcription polymerase chain reaction (RT-PCR) using the designated primers based on the conserved regions of the other mammalian PPARgamma1 sequence. From RT-PCR, a combination of three cDNA fragments that comprised of the full length coding region PPARgamma1 cDNA gene were amplified, with the size of 498, 550 and 557 bp, respectively. All three fragments were then successfully assembled by utilising the internal restriction sites present at the overlapping regions to give rise to the full-length coding region of gpPPARgamma1 with the size of 1428 bp and consisting of 475 amino acids. Guinea pig PPARgamma1 is highly conserved with those of other species at protein and nucleotide levels. Gene expression studies showed that gpPPARgamma mRNA was predominantly expressed in adipose tissue followed by lung and spleen. However, at the protein level, PPARgamma was also found to be expressed in skeletal muscle.
    Matched MeSH terms: Transcription Factors/biosynthesis*; Transcription Factors/genetics*; Transcription Factors/metabolism; Transcription Factors/chemistry
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links