Displaying publications 1 - 20 of 67 in total

Abstract:
Sort:
  1. Yadav M, Kamath KR, Iyngkaran N, Sinniah M
    FEMS Microbiol Immunol, 1991 Dec;4(1):45-9.
    PMID: 1815710 DOI: 10.1111/j.1574-6968.1991.tb04969.x
    A consecutive series of 24 patients with clinical features of primary dengue infection and 22 controls (14 patients with viral fever of unknown origin and 8 healthy subjects) were assayed for serum levels of tumour necrosis factor (TNF). The acute sera of the 24 patients with clinical dengue infection were positive for dengue virus-specific IgM antibody. Clinically, 8 had dengue fever (DF), 14 dengue haemorrhagic fever (DHF) and 2 dengue shock syndrome (DSS). All 16 patients with DHF/DSS had significantly elevated serum TNF levels but the 8 DF patients had TNF levels equivalent to that in the 22 controls. A case is made for augmented TNF production having a role for the pathophysiological changes observed in DHF/DSS and mediator modulation as a possible therapeutic approach to treatment.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  2. Yeo AS, Azhar NA, Yeow W, Talbot CC, Khan MA, Shankar EM, et al.
    PLoS One, 2014;9(4):e92240.
    PMID: 24727912 DOI: 10.1371/journal.pone.0092240
    Dengue represents one of the most serious life-threatening vector-borne infectious diseases that afflicts approximately 50 million people across the globe annually. Whilst symptomatic infections are frequently reported, asymptomatic dengue remains largely unnoticed. Therefore, we sought to investigate the immune correlates conferring protection to individuals that remain clinically asymptomatic.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  3. Dhiyaaldeen SM, Alshawsh MA, Salama SM, Alwajeeh NS, Al Batran R, Ismail S, et al.
    Biomed Res Int, 2014;2014:792086.
    PMID: 24587992 DOI: 10.1155/2014/792086
    Wound healing involves inflammation followed by granular tissue development and scar formation. In this study, synthetic chalcone 3-(2-Chlorophenyl)-1-phenyl-propenone (CPPP) was investigated for a potential role in enhancing wound healing and closure. Twenty-four male rats were divided randomly into 4 groups: carboxymethyl cellulose (CMC) (0.2 mL), Intrasite gel, and CPPP (25 or 50 mg/mL). Gross morphology, wounds treatment with the CPPP, and Intrasite gel accelerate the rate of wound healing compared to CMC group. Ten days after surgery, the animals were sacrificed. Histological assessment revealed that the wounds treated with CPPP showed that wound closure site contained little amount of scar and the granulation tissue contained more collagen and less inflammatory cells than wound treated with CMC. This finding was confirmed with Masson's trichrome staining. The antioxidant defence enzymes catalase (CAT) and superoxide dismutase (SOD) were significantly increased in the wound homogenates treated with CPPP (P < 0.05) compared to CMC treated group. However, in the CPPP treatment group, lipid peroxidation (MDA) was significantly decreased (P < 0.05), suggesting that the CPPP also has an important role in protection against lipid peroxidation-induced skin injury after ten days of treatment with CPPP, which is similar to the values of cytokines TGF-β and TNF-α in tissue homogenate. Finally the administration of CPPP at a dosage of 25 and 50 mg/kg was suitable for the stimulation of wound healing.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  4. Yadav M
    PMID: 1948253
    Serum tumor necrosis factor alpha (TNF) concentration was assayed in 105 patients with nasopharyngeal carcinoma using a sensitive ELISA technique with detection level of 10 pg/ml. The TNF levels were detectable in 45 of 63 (71.4%) patients newly diagnosed for the malignancy and 29 of 42 (69%) patients in remission following treatment with radiotherapy. In 25 normal controls the TNF were less than 10 pg/ml. While TNF may be present in the majority of the patients with the malignant disease, the TNF concentration appeared to have no clinical significance in diagnosis or prognosis of the patients.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  5. Sharif U, Mahmud NM, Kay P, Yang YC, Harding SP, Grierson I, et al.
    J Cell Mol Med, 2019 01;23(1):405-416.
    PMID: 30338926 DOI: 10.1111/jcmm.13944
    The retinal pigment epithelium (RPE) plays a central role in neuroretinal homoeostasis throughout life. Altered proteolysis and inflammatory processes involving RPE contribute to the pathophysiology of age-related macular degeneration (AMD), but the link between these remains elusive. We report for the first time the effect of advanced glycation end products (AGE)-known to accumulate on the ageing RPE's underlying Bruch's membrane in situ-on both key lysosomal cathepsins and NF-κB signalling in RPE. Cathepsin L activity and NF-κB effector levels decreased significantly following 2-week AGE exposure. Chemical cathepsin L inhibition also decreased total p65 protein levels, indicating that AGE-related change of NF-κB effectors in RPE cells may be modulated by cathepsin L. However, upon TNFα stimulation, AGE-exposed cells had significantly higher ratio of phospho-p65(Ser536)/total p65 compared to non-AGEd controls, with an even higher fold increase than in the presence of cathepsin L inhibition alone. Increased proportion of active p65 indicates an AGE-related activation of NF-κB signalling in a higher proportion of cells and/or an enhanced response to TNFα. Thus, NF-κB signalling modulation in the AGEd environment, partially regulated via cathepsin L, is employed by RPE cells as a protective (para-inflammatory) mechanism but renders them more responsive to pro-inflammatory stimuli.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  6. Amil-Bangsa NH, Mohd-Ali B, Ishak B, Abdul-Aziz CNN, Ngah NF, Hashim H, et al.
    Optom Vis Sci, 2019 12;96(12):934-939.
    PMID: 31834153 DOI: 10.1097/OPX.0000000000001456
    SIGNIFICANCE: Total protein concentration (TPC) and tumor necrosis factor α (TNF-α) concentration in tears are correlated with severity of retinopathy. However, minimal data are available in the literature for investigating tear TPC and TNF-α concentrations in Asian individuals with different severity of nonproliferative diabetic retinopathy (NPDR).

    PURPOSE: This study evaluated differences of TPC and TNF-α concentrations in tears at different severity of NPDR among participants with diabetes in comparison with normal participants.

    METHODS: A total of 75 participants were categorized based on Early Treatment for Diabetic Retinopathy Study scale, with 15 participants representing each group, namely, normal, diabetes without retinopathy, mild NPDR, moderate NPDR, and severe NPDR. All participants were screened using McMonnies questionnaire. Refraction was conducted subjectively. Visual acuity was measured using a LogMAR chart. Twenty-five microliters of basal tears was collected using glass capillary tubes. Total protein concentration and TNF-α concentrations were determined using Bradford assay and enzyme-linked immunosorbent assay, respectively.

    RESULTS: Mean ± SD age of participants (n = 75) was 57.88 ± 4.71 years, and participants scored equally in McMonnies questionnaire (P = .90). Mean visual acuity was significantly different in severe NPDR (P = .003). Mean tear TPC was significantly lower, and mean tear TNF-α concentration was significantly higher in moderate and severe NPDR (P < .001). Mean ± SD tear TPC and TNF-α concentrations for normal were 7.10 ± 1.53 and 1.39 ± 0.24 pg/mL; for diabetes without retinopathy, 6.37 ± 1.65 and 1.53 ± 0.27 pg/mL; for mild NPDR, 6.32 ± 2.05 and 1.60 ± 0.21 pg/mL; for moderate NPDR, 3.88 ± 1.38 and 1.99 ± 0.05 pg/mL; and for severe NPDR, 3.64 ± 1.26 and 2.21 ± 0.04 pg/mL, respectively. Tear TPC and TNF-α concentrations were significantly correlated (r = -0.50, P < .0001). Visual acuity was significantly correlated with tear TPC (r = -0.236, P = .04) and TNF-α concentrations (r = 0.432, P < .0001).

    CONCLUSIONS: This cross-sectional study identified differences in tear TPC and TNF-α concentrations with increasing severity of NPDR.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  7. Nazar Majeed Z, Philip K, Alabsi AM, Pushparajan S, Swaminathan D
    Dis Markers, 2016;2016:1804727.
    PMID: 28074077 DOI: 10.1155/2016/1804727
    Background. Several studies in the last decades have focused on finding a precise method for the diagnosis of periodontal disease in its early stages. Aim. To evaluate from current scientific literature the most common and precise method for gingival crevicular fluid (GCF) sample collection, biomarker analytical methods, and the variability of biomarker quantification, even when using the same analytical technique. Methodology. An electronic search was conducted on in vivo studies that presented clinical data on techniques used for GCF collection and biomarker analysis. Results. The results showed that 71.1%, 24.7%, and 4.1% of the studies used absorption, microcapillary, and washing techniques, respectively, in their gingival crevicular fluid collection. 73.1% of the researchers analyzed their samples by using enzyme-linked immunosorbent assay (ELISA). 22.6%, 19.5%, and 18.5% of the researchers included interleukin-1 beta (IL-1β), matrix metalloproteinase-8 (MMP-8), and tumor necrosis factor-alpha (TNF-α), respectively, in their studies as biomarkers for periodontal disease. Conclusion. IL-1β can be considered among the most common biomarkers that give precise results and can be used as an indicator of periodontal disease progression. Furthermore, paper strips are the most convenient and accurate method for gingival crevicular fluid collection, while enzyme-linked immunosorbent assay can be considered the most conventional method for the diagnosis of biofluids.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  8. Fatima A, Abdul AB, Abdullah R, Karjiban RA, Lee VS
    Int J Mol Sci, 2015 Jan 26;16(2):2747-66.
    PMID: 25629232 DOI: 10.3390/ijms16022747
    Breast cancer is the second most common cancer among women worldwide. Several signaling pathways have been implicated as causative and progression agents. The tumor necrosis factor (TNF) α protein plays a dual role in promoting and inhibiting cancer depending largely on the pathway initiated by the binding of the protein to its receptor. Zerumbone, an active constituent of Zingiber zerumbet, Smith, is known to act on the tumor necrosis factor pathway upregulating tumour necrosis factor related apoptosis inducing ligand (TRAIL) death receptors and inducing apoptosis in cancer cells. Zerumbone is a sesquiterpene that is able to penetrate into the hydrophobic pockets of proteins to exert its inhibiting activity with several proteins. We found a good binding with the tumor necrosis factor, kinase κB (IKKβ) and the Nuclear factor κB (NF-κB) component proteins along the TNF pathway. Our results suggest that zerumbone can exert its apoptotic activities by inhibiting the cytoplasmic proteins. It inhibits the IKKβ kinase that activates the NF-κB and also binds to the NF-κB complex in the TNF pathway. Blocking both proteins can lead to inhibition of cell proliferating proteins to be downregulated and possibly ultimate induction of apoptosis.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  9. Razali FN, Ismail A, Abidin NZ, Shuib AS
    PLoS One, 2014;9(10):e108988.
    PMID: 25299340 DOI: 10.1371/journal.pone.0108988
    The polysaccharide fraction from Solanum nigrum Linne has been shown to have antitumor activity by enhancing the CD4+/CD8+ ratio of the T-lymphocyte subpopulation. In this study, we analyzed a polysaccharide extract of S. nigrum to determine its modulating effects on RAW 264.7 murine macrophage cells since macrophages play a key role in inducing both innate and adaptive immune responses. Crude polysaccharide was extracted from the stem of S. nigrum and subjected to ion-exchange chromatography to partially purify the extract. Five polysaccharide fractions were then subjected to a cytotoxicity assay and a nitric oxide production assay. To further analyze the ability of the fractionated polysaccharide extract to activate macrophages, the phagocytosis activity and cytokine production were also measured. The polysaccharide fractions were not cytotoxic, but all of the fractions induced nitric oxide in RAW 264.7 cells. Of the five fractions tested, SN-ppF3 was the least toxic and also induced the greatest amount of nitric oxide, which was comparable to the inducible nitric oxide synthase expression detected in the cell lysate. This fraction also significantly induced phagocytosis activity and stimulated the production of tumor necrosis factor-α and interleukin-6. Our study showed that fraction SN-ppF3 could classically activate macrophages. Macrophage induction may be the manner in which polysaccharides from S. nigrum are able to prevent tumor growth.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  10. Agarwal R, Krasilnikova AV, Raja IS, Agarwal P, Mohd Ismail N
    Eur J Pharmacol, 2014 May 5;730:8-13.
    PMID: 24583339 DOI: 10.1016/j.ejphar.2014.02.021
    Angiotensin converting enzyme inhibitors (ACEIs) have been shown to lower intraocular pressure (IOP). Since, the ACEIs cause increased tissue prostaglandin levels, we hypothesized that the mechanisms of ACEI-induced IOP reduction have similarity with those of prostaglandin analogs. The present study investigated the involvement of matrix metalloproteinases (MMPs) and cytokine activity modulation as the underlying mechanisms of ACEI-induced ocular hypotension. The IOP lowering effect of single drop of enalaprilat dehydrate 1% was evaluated in rats pretreated with a broad spectrum MMP inhibitor or a cytokine inhibitor. Effect of angiotensin receptor blocker, losartan potassium 2%, was also studied to evaluate involvement of angiotensin II receptor type 1 (AT1) in IOP lowering effect of ACEI. Topical treatment with single drop of enalaprilat resulted in significant IOP reduction in treated eye with mean peak reduction 20.3% at 3h post-instillation. Treatment with losartan resulted in a peak IOP reduction of 13.3%, which was significantly lower than enalaprilat, indicating involvement of mechanisms in addition to AT1 blockade. Pretreatment with a broad spectrum MMP inhibitor or a cytokine inhibitor significantly attenuated the enalprilat-induced IOP reduction with mean peak IOP reduction of 11.2% and 13.6% respectively. The IOP-lowering effect of enalaprilat seems to be attributed to reduced angiotensin II type 1 receptor stimulation and modulation of MMP and cytokines activities.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  11. Fazalul Rahiman SS, Morgan M, Gray P, Shaw PN, Cabot PJ
    PLoS One, 2016;11(4):e0153005.
    PMID: 27055013 DOI: 10.1371/journal.pone.0153005
    Dynorphin 1-17, (DYN 1-17) opioid peptide produces antinociception following binding to the kappa-opioid peptide (KOP) receptor. Upon synthesis and release in inflamed tissues by immune cells, DYN 1-17 undergoes rapid biotransformation and yields a unique set of opioid and non-opioid fragments. Some of these major fragments possess a role in immunomodulation, suggesting that opioid-targeted therapeutics may be effective in diminishing the severity of inflammatory disorders. This study aimed to examine the immunomodulatory effects of DYN 1-17 and major N-terminal fragments found in the inflammatory environment on nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) from lipopolysaccharide (LPS)-stimulated, differentiated THP-1 cells. The results demonstrate that NF-κB/p65 nuclear translocation was significantly attenuated following treatment with DYN 1-17 and a specific range of fragments, with the greatest reduction observed with DYN 1-7 at a low concentration (10 nM). Antagonism with a selective KOP receptor antagonist, ML-190, significantly reversed the inhibitory effects of DYN 1-17, DYN 1-6, DYN 1-7 and DYN 1-9, but not other DYN 1-17 N-terminal fragments (DYN 1-10 and 1-11) on NF-κB/p65 nuclear translocation. DYN 1-17 and selected fragments demonstrated differential modulation on the release of IL-1β and TNF-α with significant inhibition observed with DYN 1-7 at low concentrations (1 nM and 10 pM). These effects were blocked by ML-190, suggesting a KOP receptor-mediated pathway. The results demonstrate that DYN 1-17 and certain N-terminal fragments, produced in an inflamed environment, play an anti-inflammatory role by inhibiting NF-κB/p65 translocation and the subsequent cytokine release through KOP receptor-dependent and independent pathways.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  12. Al-Qubaisi MS, Rasedee A, Flaifel MH, Eid EEM, Hussein-Al-Ali S, Alhassan FH, et al.
    Eur J Pharm Sci, 2019 May 15;133:167-182.
    PMID: 30902654 DOI: 10.1016/j.ejps.2019.03.015
    Thymoquinone is an effective phytochemical compound in the treatment of various diseases. However, its practical administration has been limited due to poor aqueous solubility and bioavailability. In this work, we developed a novel inclusion complex of thymoquinone and hydroxypropyl-β-cyclodextrin that features improved solubility and bioactivity. The drug solubility was markedly accelerated in the increasing ratio of hydroxypropyl-β-cyclodextrin to thymoquinone amount. The formation of the thymoquinone/hydroxypropyl-β-cyclodextrin inclusion complex was evidenced using X-ray diffraction, differential scanning calorimetry, thermal gravimetric analysis, Fourier transform infrared, scanning electron microscopy and nuclear magnetic resonance. The release behavior of the complex, as well as of their mixtures, was examined in artificial gastric (pH 1.2) and intestinal (pH 6.8) dissolution media. The formulated complex released the drug rapidly at the initial stage, followed by a slow release. Thermodynamic parameters ΔH, ΔS and ΔG were calculated with temperatures ranging from 20 to 45 °C to evaluate the complexation process. The activity of the inclusion complex was evaluated on IgE-mediated allergic response in rat basophilic leukemia (RBL-2H3) cells by monitoring key allergic mediators. The results revealed that compared with free thymoquinone, the inclusion complex more strongly inhibited the release of histamine, tumor necrosis factor-α, and interleukin-4, and was not cytotoxic at the tested thymoquinone concentrations (0.125-4 μg/mL) indicating the inclusion complex possibly had better antiallergic effects. Our finding suggested that the inclusion complex achieved prolonged action and reduced side-effect of thymoquinone.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  13. Yap YH, Say YH
    Cell Biol Int, 2012 Mar 1;36(3):273-7.
    PMID: 21980981 DOI: 10.1042/CBI20110088
    Since the discovery of PrPC (cellular prion protein), most studies have focused on its role in neurodegenerative diseases, whereas its function outside the nervous system remains obscure. We investigated the ability of PrPC in resisting TNFα (tumour necrosis factor α) apoptosis in three PrPC-transiently transfected cancer cell lines, renal adenocarcinoma ACHN, oral squamous cell carcinoma HSC-2 and colon adenocarcinoma LS174T. PrPC-expressing ACHN and LS174T cells had higher viabilities compared with the mock-transfected cells, while the transient overexpression of PrPC had minimal overall effect on HSC-2 cells due to its high endogenous PrPC expression. Cell cycles were also analysed, with both PrPC expressing ACHN and LS174T cells having a significantly higher proliferative index than mock-transfected cells. Flow cytometry analysis indicated a G1/S-phase cell cycle transition in both PrPC-expressing ACHN and LS174T cells. PrPC resists TNFα apoptosis due to a modest, but statistically significant, cell-specific cytoprotection compared with mock-transfected cells.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  14. Fathy SA, Mohamed MR, Emam MA, Mohamed SS, Ghareeb DA, Elgohary SA, et al.
    Trop Biomed, 2019 Dec 01;36(4):972-986.
    PMID: 33597467
    Candida is the most frequent common causes of invasive fungal infections and associated with high morbidity and mortality. Most of available antifungal agents have side effects. This opened up new avenues to investigate the antifungal efficacy of active extracts from marine algae. So the aim of this study was to evaluate the protective and the curative effect of Ulva fasciata extract against an invasive candidiasis in mice and to study its underlying mechanism. The active ingredients of Ulva fasciata extract were evaluated using HPLC and GC/MS. Fifty mice were included in current work, and the level of inflammatory markers; Interleukin (IL)-4, IL-12, Interferon-gamma (IFN-γ) and Tumor necrosis factor-alpha (TNF-α) were determined using ELISA kits. Hematological, biochemical and oxidative stress parameters were determined using commercial kits. Moreover, the histopathological examinations were carried on liver, kidney and spleen for all groups. The results obtained showed that treatment with U. fasciata either before or after Candida infection significantly improved the hematological, biochemical alterations and antioxidant status caused by this infection. Furthermore, the U. fasciata reduced histopathological changes induced by Candida as well as it could increase the expression of IL-12 and IFN-γ while minimized the expression of TNF-α and IL-4 in all infected mice compared to infected untreated mice. These data propose that U. fasciata can ameliorate inflammatory reactions related to Candida albicans cytotoxicity via its ability to augment cellular antioxidant defenses by its active compounds.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  15. Swamy M, Suhaili D, Sirajudeen KN, Mustapha Z, Govindasamy C
    PMID: 25395704
    BACKGROUND: Increased nitric oxide (NO), neuronal inflammation and apoptosis have been proposed to be involved in excitotoxicity plays a part in many neurodegenerative diseases. To understand the neuro-protective effects of propolis, activities of Nitric oxide synthase (NOS) and caspase-3 along with NO and tumor necrosis factor-α (TNF-α) levels were studied in cerebral cortex (CC), cerebellum (CB) and brain stem (BS) in rats supplemented with propolis prior to excitotoxic injury with kainic acid (KA).

    MATERIALS AND METHODS: Male Sprague-Dawley rats were divided into four groups (n=6 rats per group) as Control, KA, Propolis and KA+Propolis. The control group and KA group have received vehicle and saline. Propolis group and propolis + KA group were orally administered with propolis (150 mg/kg body weight), five times every 12 hours. KA group and propolis +KA group were injected subcutaneously with kainic acid (15 mg/kg body weight) and were sacrificed after 2 hrs. CC, CB and BS were separated, homogenized and used for estimation of NOS, caspase-3, NO and TNF-α by commercial kits. Results were analyzed by one way ANOVA, reported as mean + SD (n=6 rats), and p<0.05 was considered statistically significant.

    RESULTS: The concentration of NO, TNF-α, NOS and caspase-3 activity were increased significantly (p<0.001) in all the three brain regions tested in KA group compared to the control. Propolis supplementation significantly (p<0.001) prevented the increase in NOS, NO, TNF-α and caspase-3 due to KA.

    CONCLUSION: Results of this study clearly demonstrated that the propolis supplementation attenuated the NOS, caspase-3 activities, NO, and TNF-α concentration and in KA mediated excitotoxicity. Hence propolis can be a possible potential protective agent against excitotoxicity and neurodegenerative disorders.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism*
  16. Lee SS, Tan NH, Fung SY, Sim SM, Tan CS, Ng ST
    PMID: 25256382 DOI: 10.1186/1472-6882-14-359
    The sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) is used as a traditional medicine to relieve cough, asthma and chronic hepatitis. The traditional uses of the sclerotium are presumably related to its anti-inflammatory effect. The present study was carried out to evaluate the anti-inflammatory activity of the sclerotial powder of L. rhinocerotis (Cooke) Ryvarden (Tiger Milk mushroom) cultivar TM02.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  17. Beh JE, Khoo LT, Latip J, Abdullah MP, Alitheen NB, Adam Z, et al.
    J Ethnopharmacol, 2013 Oct 28;150(1):339-52.
    PMID: 24029250 DOI: 10.1016/j.jep.2013.09.001
    Adipocytes are major tissues involved in glucose uptake second to skeletal muscle and act as the main adipocytokines mediator that regulates glucose uptake mechanism and cellular differentiation. The objective of this study were to examine the effect of the SDF7, which is a fraction consists of four flavonoid compounds (quercetin: p-coumaric acid: luteolin: apigenin=8: 26: 1: 3) from Scoparia dulcis Linn., on stimulating the downstream components of insulin signalling and the adipocytokines expression on different cellular fractions of 3T3-F442a adipocytes.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  18. Kassim M, Yusoff KM, Ong G, Sekaran S, Yusof MY, Mansor M
    Fitoterapia, 2012 Sep;83(6):1054-9.
    PMID: 22626749 DOI: 10.1016/j.fitote.2012.05.008
    Malaysian Gelam honey has anti-inflammatory and antibacterial properties, a high antioxidant capacity, and free radical-scavenging activity. Lipopolysaccharide (LPS) stimulates immune cells to sequentially release early pro- and anti-inflammatory cytokines and induces the synthesis of several related enzymes. The aim of this study was to investigate the effect of the intravenous injection of honey in rats with LPS-induced endotoxemia. The results showed that after 4h of treatment, honey reduced cytokine (tumor necrosis factor-α, interleukins 1β, and 10) and NO levels and increased heme oxygenase-1 levels. After 24h, a decrease in cytokines and NO and an increase in HO-1 were seen in all groups, whereas a reduction in HMGB1 occurred only in the honey-treated groups. These results support the further examination of honey as a natural compound for the treatment of a wide range of inflammatory diseases.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  19. Harasstani OA, Moin S, Tham CL, Liew CY, Ismail N, Rajajendram R, et al.
    Inflamm Res, 2010 Sep;59(9):711-21.
    PMID: 20221843 DOI: 10.1007/s00011-010-0182-8
    OBJECTIVES: We evaluated several flavonoid combinations for synergy in the inhibition of proinflammatory mediator synthesis in the RAW 264.7 cellular model of inflammation.

    METHODS: The inhibitory effect of chrysin, kaempferol, morin, silibinin, quercetin, diosmin and hesperidin upon nitric oxide (NO), prostaglandin E(2) (PGE(2)) and tumour necrosis factor-alpha (TNF-alpha) secretion from the LPS-induced RAW 264.7 monocytic macrophage was assessed and IC(50) values obtained. Flavonoids that showed reasonable inhibitory effects in at least two out of the three assays were combined in a series of fixed IC(50) ratios and reassessed for inhibition of NO, PGE(2) and TNF-alpha. Dose-response curves were generated and interactions were analysed using isobolographic analysis.

    RESULTS: The experiments showed that only chrysin, kaempferol, morin, and silibinin were potent enough to produce dose-response effects upon at least two out of the three mediators assayed. Combinations of these four flavonoids showed that several combinations afforded highly significant synergistic effects.

    CONCLUSIONS: Some flavonoids are synergistic in their anti-inflammatory effects when combined. In particular chrysin and kaempferol significantly synergised in their inhibitory effect upon NO, PGE(2) and TNF-alpha secretion. These findings open further avenues of research into combinatorial therapeutics of inflammatory-related diseases and the pharmacology of flavonoid synergy.

    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
  20. Rasool M, Sabina EP
    J Nat Med, 2009 Apr;63(2):169-75.
    PMID: 19093070 DOI: 10.1007/s11418-008-0308-2
    In recent years, Spirulina has gained more and more attention from medical scientists as a nutraceutical and a source of potential pharmaceuticals. The present study was conducted to elucidate the immunomodulatory effect of Spirulina fusiformis (a cyanobacterium of the family Oscillatoriaceae) in vivo and in vitro. The in vivo effect of S. fusiformis (400 or 800 mg/kg body wt.) on humoral immune response, cell-mediated immune response and tumour necrosis factor alpha was investigated in mice. We also evaluated the effect of S. fusiformis (50 or 100 microg/ml) in vitro on mitogen (phytohaemagglutinin)-induced T lymphocyte proliferation in heparinized human peripheral blood. For comparison, dexamethasone was used as a standard. In mice, S. fusiformis (400 or 800 mg/kg body wt.) administration significantly inhibited the humoral immune response, cell-mediated immune response (delayed-type hypersensitivity reaction (DTH)) and tumour necrosis factor alpha in a dose-dependent manner. In vitro, S. fusiformis (50 or 100 microg/ml) decreased the mitogen (phytohaemagglutinin)-induced T lymphocyte proliferation in a concentration-dependent manner when compared with control cells. These observations clearly suggest that S. fusiformis has a remarkable immunosuppressive effect, which provides a scientific validation for the popular use of this drug, and helped us in further work on investigating its complete mechanism of action.
    Matched MeSH terms: Tumor Necrosis Factor-alpha/metabolism
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links