RESULTS: The results showed that lipid content of cell dry weight in Snf-β knockout strain was increased by 32 % (from 19 to 25 %). However, in Snf-β overexpressing strain, lipid content of cell dry weight was decreased about 25 % (from 19 to 14.2 %) compared to the control strain. Total fatty acid analysis revealed that the expression of the Snf-β gene did not significantly affect the fatty acid composition of the strains. However, GLA content in biomass was increased from 2.5 % in control strain to 3.3 % in Snf-β knockout strain due to increased lipid accumulation and decreased to 1.83 % in Snf-β overexpressing strain. AMPK is known to inactivate acetyl-CoA carboxylase (ACC) which catalyzes the rate-limiting step in lipid synthesis. Snf-β manipulation also altered the expression level of the ACC1 gene which may indicate that Snf-β control lipid metabolism by regulating ACC1 gene.
CONCLUSIONS: Our results suggested that Snf-β gene plays an important role in regulating lipid accumulation in M. circinelloides WJ11. Moreover, it will be interesting to evaluate the potential of other key subunits of AMPK related to lipid metabolism. Better insight can show us the way to manipulate these subunits effectively for upscaling the lipid production. Up to our knowledge, it is the first study to investigate the role of Snf-β in lipid accumulation in M. circinelloides.
METHOD: Intriguing evidences discussed the contribution of different intracellular compartments in autophagy membrane formation. Furthermore, autophagy serves to mobilise membranes within cells, thereby promoting cytoplasmic components reorganisation. The intent of this review is to focus on the possibility of autophagy to act as a carrier for GLUT4 through regulating GLUT4 endocytosis, intracellular trafficking in different compartments, and translocation to cell membrane.
RESULTS: The common themes of autophagy and GLUT4 have been highlighted. The review discussed the overlapping of endocytosis mechanism and intracellular compartments, and has shown that autophagy and GLUT4 utilise similar proteins (SNAREs) which are used for exocytosis. On top of that, PI3K and AMPK also control both autophagy and GLUT4.
CONCLUSION: The control of GLUT4 trafficking through autophagy could be a promising field for treating type 2 diabetes.
OBJECTIVE: This study aims to determine the effect of age on the function of rostral C1 (rC1) neurons in mediating feeding response.
METHOD: Male Sprague Dawley rats at 3-months (n = 22) and 24-months (n = 22) old were used and further divided into two subgroups; 1) treatment group with 2-deoxy-d-glucose (2DG) and 2) vehicle group. Feeding hormones such as cholecystokinin (CCK), ghrelin and leptin were analysed using enzyme-linked immunosorbent assay (ELISA). Rat brain was carefully dissected to obtain the brainstem RVLM region. Further analysis was carried out to determine the level of proteins and genes in RVLM that were associated with feeding pathway. Protein expression of tyrosine hydroxylase (TH), phosphorylated TH at Serine40 (pSer40TH), AMP-activated protein kinase (AMPK), phosphorylated AMPK (phospho AMPK) and neuropeptide Y Y5 receptor (NPY5R) were determined by western blot. Expression of TH, AMPK and NPY genes were determined by real-time PCR.
RESULTS: This study showed that blood glucose level was elevated in young and old rats following 2DG administration. Plasma CCK-8 concentration was higher in the aged rats at basal and increased with 2DG administration in young rats, but the leptin and ghrelin showed no changes. Old rats showed higher TH and lower AMPK mRNA levels. Glucoprivation decreased AMPK mRNA level in young rats and decreased TH mRNA in old rats. Aged rC1 neurons showed higher NPY5R protein level. Following glucoprivation, rC1 neurons produced distinct molecular changes across age in which, in young rats, AMPK phosphorylation level was increased and in old rats, TH phosphorylation level was increased.
CONCLUSION: These findings suggest that glucose-counterregulatory responses by rC1 neurons at least, contribute to the ability of young and old rats in coping glucoprivation. Age-induced molecular changes within rC1 neurons may attenuate the glucoprivic responses. This situation may explain the impairment of feeding response in the elderly.
PURPOSE: Our previous proteomics analysis revealed that treatment with PA resulted in the upregulation of an autophagy marker, LC3B in melanoma cells. Therefore, the present study sought to investigate the role of PA-induced autophagy in melanoma cells.
METHODS: Transmission electron microscopy was performed for examination of autophagic ultra-structures in PA-treated A375 cells. Cytoplasmic LC3B and p62/SQSMT1 punctate structures were detected using immunofluorescene staining. Expression levels of LC3B II, p62/SQSMT1, ATG 12, Beclin 1, phospho S6 (ser235/236), phospho AMPK (Thr172) and cleaved PARP were evaluated by western blotting.
RESULTS: Autophagosomes, autolysosomes and punctuates of LC3 proteins could be observed in PA-treated A375 cells. PA-induced autophagy in A375 melanoma cells was found to be mediated through the inhibition of mTOR signaling and activation of AMPK pathway. Furthermore, we showed that PA-induced apoptosis was increased in the presence of an autophagy inhibitor, signifying the cytoprotective effect of PA-induced autophagy in melanoma cells.
CONCLUSION: Taken together, results from the present study suggest that the inhibition of autophagy by targeting mTOR and AMPK could potentiate the cytotoxicity effects of PA on melanoma cells.