METHODS: One hundred and twenty posterior teeth had their occlusal enamel removed, then the specimens were divided into two main groups according to dentin substrates; SoD and CID, three subgroups according to pretreatments protocols control (no pretreatment), NaOCl-treated, and Er, Cr:YSGG-treated and two divisions according to antioxidant application (with and without sodium ascorbate (SA) application). All-Bond Universal (ABU) universal adhesives was applied in self-etch (SE) mode then resin composite discs were built. The specimens were stored in distilled water for 24-hr at 37°C before SBS testing. Three-way ANOVA and Tukey HSD tests were used for data analysis (a = 0.05).
RESULTS: 6% NaOCl resulted in a significant reduction in SBS in SoD without antioxidant application. 10% SA application showed significant increase in SBS for 6% NaOCl group only in SoD. Laser application recorded a significantly higher SBS compared to 6% NaOCl group without or with antioxidant application, while 10% SA application revealed a significant increase in SBS for control group only.
CONCLUSIONS: Er, Cr:YSGG laser irradiation followed by antioxidant application has the potential to enhance the bonding quality of both tested dentin substrates. NaOCl application has significantly compromised the bonding to SoD and CID substrates.
MATERIAL AND METHODS: Periodontal tissues were obtained from extracted human teeth and processed for PDLF culture. The cells were then exposed to six experimental media: (i) HBSS, (ii) HBSS and ascorbic acid (HBSS + Vit C), (iii) HBSS and platelet-derived growth factor (HBSS + PDGF), (iv) a mixture of HBSS, PDGF, and Vit C (HBSS + PDGF + Vit C), (v) HBSS and platelet lysate (HBSS + PL), and (vi) DMEM for 3, 6, 12, and 24 h. A MTT assay was performed to determine the cell viability.
RESULTS: Vitamin C-containing media maintained PDLF viability significantly better than HBSS + PDGF and HBSS + PL at 3, 6, 12, and 24 h (p HBSS+Vit C; HBSS+PDGF+Vit C>HBSS+PL>HBSS+PDGF; HBSS). Although DMEM had the highest cell proliferative effect, it is impractical to be used as a transport medium due to its cost, storage, and availability. The supplementation of Vit C yielded significant cell proliferative effects; hence, HBSS + Vit C can be a better alternative as a storage medium than HBSS.
OBJECTIVE: This review aims to assess the current evidence of the bone-sparing effects of vitamin C derived from cell, animal and human studies.
RESULTS: Cell studies showed that vitamin C was able to induce osteoblast and osteoclast formation. However, high-dose vitamin C might increase oxidative stress and subsequently lead to cell death. Vitamin C-deficient animals showed impaired bone health due to increased osteoclast formation and decreased bone formation. Vitamin C supplementation was able to prevent bone loss in several animal models of bone loss. Human studies generally showed a positive relationship between vitamin C and bone health, indicated by bone mineral density, fracture probability and bone turnover markers. Some studies suggested that the relationship between vitamin C and bone health could be U-shaped, more prominent in certain subgroups and different between dietary and supplemental form. However, most of the studies were observational, thus could not confirm causality. One clinical trial was performed, but it was not a randomized controlled trial, thus confounding factors could not be excluded.
CONCLUSION: vitamin C may exert beneficial effects on bone, but more rigorous studies and clinical trials should be performed to validate this claim.