Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Fakae LB, Harun MSR, Ting DSJ, Dua HS, Cave GWV, Zhu XQ, et al.
    Acta Trop, 2023 Jan;237:106729.
    PMID: 36280206 DOI: 10.1016/j.actatropica.2022.106729
    We examined the anti-acanthamoebic efficacy of green tea Camellia sinensis solvent extract (SE) or its chemical constituents against Acanthamoeba castellanii by using anti-trophozoite, anti-encystation, and anti-excystation assays. C. sinensis SE (625-5000 µg/mL) inhibited trophozoite replication within 24-72 h. C. sinensis SE exhibited a dose-dependent inhibition of encystation, with a marked cysticidal activity at 2500-5000 µg/mL. Two constituents of C. sinensis, namely epigallocatechin-3-gallate and caffeine, at 100 μM and 200 μM respectively, significantly inhibited both trophozoite replication and encystation. Cytotoxicity analysis showed that 156.25-2500 µg/mL of SE was not toxic to human corneal epithelial cells, while up to 625 µg/mL was not toxic to Madin-Darby canine kidney cells. This study shows the anti-acanthamoebic potential of C. sinensis SE against A. castellanii trophozoites and cysts. Pre-clinical studies are required to elucidate the in vivo efficacy and safety of C. sinensis SE.
    Matched MeSH terms: Camellia sinensis*
  2. Raguraj S, Kasim S, Jaafar NM, Nazli MH
    Environ Sci Pollut Res Int, 2023 Mar;30(13):37017-37028.
    PMID: 36564696 DOI: 10.1007/s11356-022-24758-z
    Modern agriculture prioritizes eco-friendly and sustainable strategies to enhance crop growth and productivity. The utilization of protein hydrolysate extracted from chicken feather waste as a plant biostimulant paves the path to waste recycling. A greenhouse experiment was performed to evaluate the implications of different doses (0, 1, 2, and 3 g L-1) of chicken feather protein hydrolysate (CFPH), application method (soil and foliar), and fertilizer rate (50% and 100%) on the growth performance of tea nursery plants. The highest dose of CFPH (3 g L-1) increased the shoot and root dry weights by 43% and 70%, respectively over control. However, no significant differences were observed between 2 and 3 g L-1 doses in plant dry weight, biometric, and root morphological parameters. Foliar application of CFPH significantly increased all the growth parameters compared to soil drenching except N, P, and K concentrations in leaves and roots. Plants grown under 100% fertilizer rate showed better growth performance than 50% fertilizer rate. Tea nursery plants treated with foliar 2 g L-1 dose and grown under full fertilizer rate recorded the highest plant dry weight, root length, and root surface area. However, tea plants under 50% fertilizer rate and treated with foliar 2 and 3 g L-1 doses sustained the growth similar to untreated plants under 100% fertilizer rate. The significantly higher N, P, and K concentrations in leaves were observed in plants treated with soil drenching of 2 and 3 g L-1 CFPH doses under 100% fertilizer rate. Our results indicate that the application of CFPH as a foliar spray is highly effective in producing vigorous tea nursery plants suitable for field planting, eventually capable of withstanding stress and higher yield.
    Matched MeSH terms: Camellia sinensis*
  3. Nor Qhairul Izzreen, M.N., Mohd Fadzelly, A.B.
    MyJurnal
    This study was conducted to determine the total phenolic (TPC) and total flavonoid content (TFC) as well as the antioxidant activity of 50% ethanolic extracts from different parts of Camellia sinensis (shoot, young and matured leaves). Comparison was also made between black (fermented) and green (unfermented) tea. For green tea, the results showed that the shoot contained significantly higher total phenolic content, followed by the young and matured leaves (p
    Matched MeSH terms: Camellia sinensis
  4. Zhou J, Chen L, Foo HL, Cao Z, Lin Q
    Food Chem, 2024 Nov 15;458:140293.
    PMID: 38970959 DOI: 10.1016/j.foodchem.2024.140293
    The present study aimed to determine microbial community, short-chain fatty acids (SCFAs), and volatilome of Bulang pickled tea during fermentation. Sequencing of 16S rRNA and ITS revealed that Bualng pickled tea was dominated by Lactobacillus plantarum, unclassified Enterobacteriaceae, unclassified Debaryomyces, Candida metapsilosis, Cladosporium sphaerospermum, and unclassified Aspergillus. The overall contents of SCFAs increased, with acetic acid showing the highest content. A total of 398 differential volatile metabolites were detected using differential metabolomics analysis. Out of these different volatile compounds, ten key volatile compounds including (Z)-4-heptenal, 1-(2-thienyl)-ethanone, 5-methyl-(E)-2-hepten-4-one, 2-ethoxy-3-methylpyrazine, p-cresol, 2-methoxy-phenol, ethy-4-methylvalerate, 3-ethyl-phenol, p-menthene-8-thiol, and 2-s-butyl-3-methoxypyrazinewere were screened based on odor activity value (OAV). The Spearman correlation analysis showed a high correlation of SCFAs and volatile compounds with microorganisms, especially L. plantarum and C. sphaerospermum. This study provided a theoretical basis for elucidating the flavor quality formation mechanism of Bulang pickled tea.
    Matched MeSH terms: Camellia sinensis/metabolism; Camellia sinensis/microbiology; Camellia sinensis/chemistry
  5. Shori AB, Muniandy P, Baba AS
    Recent Pat Food Nutr Agric, 2021;12(1):36-44.
    PMID: 33231153 DOI: 10.2174/2212798411999201123205022
    BACKGROUND: Green, white, and black tea water extracts are rich in phenolic compounds.

    OBJECTIVE: The changes in phenolic compound profiles of green, white, and black tea (GT, WT, & BT respectively) water extracts and their respective yogurt were investigated.

    METHODS: Three types of yogurt with tea water extracts were prepared, and the phenolic compound profiles were analyzed using the liquid chromatography-mass spectrometry (LC-MS) method.

    RESULTS: The present data found that flavonol glycosides such as kaempferol-3-rutinoside and quercetin-rhamnosylgalactoside or rutinoside were present in WT extract, whereas catechin derivatives such as gallocatechin (GC) and epigallocatechin (EGC) were present in GT extract. Moreover, theaflavin-3-O-gallate was observed in BT extract. Many of the catechin and its derivatives detected in the tea extracts were not identified in the tea yogurt samples. However, new phenolic compounds were present in GT-yogurt (i.e., kaempferol-3-rutinoside and quinic acid conjugate) but absent in GT extract.

    CONCLUSION: GT, WT, & BT extracts could be used to enriched-yogurt with phenolic compounds, which may have antioxidant properties.

    Matched MeSH terms: Camellia sinensis/chemistry*
  6. Goh, W.N., Rosma, A., Kaur, B., Fazilah, A., Karim, A.A., Rajeev Bhat
    MyJurnal
    The yield and properties of cellulose produced from bacterial fermentation of black tea broth (known as Kombucha) were investigated in this study. The tea broth was fermented naturally over a period of up to 8 days in the presence of sucrose. Tea broth with a sucrose concentration of 90 g/l produced highest yield of bacterial cellulose (66.9%). The thickness and yield of bacterial cellulose increased with fermentation time. The bacterial cellulose production increased correspondingly with increased surface area:depth ratio. Changes in pH were related to the symbiotic metabolic activities of yeasts and acetic acid bacteria, and the counts of both of these in the tea broths were relatively higher than those in the cellulose layer. Findings from this study suggest that the yield of cellulose depends on many factors that need to be optimized to achieve maximum yield.
    Matched MeSH terms: Camellia sinensis
  7. Gonbad RA, Rani Sinniah U, Aziz MA, Mohamad R
    ScientificWorldJournal, 2014;2014:943054.
    PMID: 24605069 DOI: 10.1155/2014/943054
    The use of in vitro culture has been accepted as an efficient technique for clonal propagation of many woody plants. In the present research, we report the results of a number of experiments aimed at optimizing micropropagation protocol for tea (Camellia sinensis (L.) O. Kuntze) (clone Iran 100) using nodal segments as the explant. The effect of different combinations and concentrations of plant growth regulators (PGR) (BAP, TDZ, GA₃) on shoot multiplication and elongation was assessed. The influence of exposure to IBA in liquid form prior to transfer to solid media on rooting of tea microshoots was investigated. The results of this study showed that the best treatment for nodal segment multiplication in terms of the number of shoot per explant and shoot elongation was obtained using 3 mg/L BAP in combination with 0.5 mg/L GA₃. TDZ was found to be inappropriate for multiplication of tea clone Iran 100 as it resulted in hyperhydricity especially at concentrations higher than 0.05 mg/L. Healthy shoots treated with 300 mg/L IBA for 30 min followed by transfer to 1/2 strength MS medium devoid of PGR resulted in 72.3% of shoots producing roots and upon transferring them to acclimatization chamber 65% survival was obtained prior to field transfer.
    Matched MeSH terms: Camellia sinensis/drug effects; Camellia sinensis/growth & development*
  8. Hajiaghaalipour F, Sanusi J, Kanthimathi MS
    J Food Sci, 2016 Jan;81(1):H246-54.
    PMID: 26613545 DOI: 10.1111/1750-3841.13149
    Tea (Camellia sinensis) is the most highly consumed beverage in the world next to water. The common way of preparation is steeping in hot water which is varying for different type of tea. We investigated the antioxidant properties of 6 type of tea leaves under different time and temperatures of extraction method used. In general, all samples tested in this study demonstrated high levels of antioxidant capacity and antioxidant activity. The results indicate that the antioxidants activity is significantly affected by time and temperature of steeping and the highest was depending on the variety. White state values, green and black teas showed different levels of antioxidants under different extraction conditions. Overall, the highest activity for white tea was in prolonged hot and in some assays prolonged hot and cold extracts, whereas for green tea the highest activity observed in prolonged cold steeping while, for black tea was in short hot water infusion. The results of this study showed the antioxidant capacity of white and green tea was greater than black tea.
    Matched MeSH terms: Camellia sinensis
  9. Hossain MA, Islam JMM, Hoque MM, Nahar S, Khan MA
    Heliyon, 2021 Jan;7(1):e05881.
    PMID: 33458447 DOI: 10.1016/j.heliyon.2020.e05881
    Sodium alginate oligomers were tested for tea plant growth promoter and anti-fungal agent in this experiment. Sodium alginate solutions were irradiated by Co-60 gamma radiation with different radiation doses to produce the oligomers. Irradiated solutions were then diluted into 150, 300 and 500 ppm prior to foliar application. Solutions were applied through foliar spraying at 7 days interval and the best response of tea plants in terms of various attributes were recorded. Tea buds were collected in 10 days of interval and the growth attributes like- total number of buds, fresh weight of buds, average leaf area and weight per bud, weight of made tea etc. were calculated. The experiment was continued up to 12 weeks and the attributes were averaged to get results per plucking. 12 kGy radiation doses along with 300ppm solution showed the best results and about 36% increase in productivity was found based on the fresh weight of buds. Total fungal count in tea leaves was also found to be reduced greatly. Based on the present study, irradiated sodium alginate could be used as safe and environmentally friendly agent to increase tea production.
    Matched MeSH terms: Camellia sinensis
  10. Hajiaghaalipour F, Kanthimathi MS, Sanusi J, Rajarajeswaran J
    Food Chem, 2015 Feb 15;169:401-10.
    PMID: 25236244 DOI: 10.1016/j.foodchem.2014.07.005
    Tea (Camellia sinensis) is one of the most consumed beverages in the world. White tea is made from the buds and young leaves of the tea plant which are steamed and dried, whilst undergoing minimal oxidation. The MTT assay was used to test the extract on the effect of the proliferation of the colorectal cancer cell line, HT-29. The extract inhibited the proliferation of HT-29 cells with an IC50 of 87μg/ml. The extract increased the levels of caspase-3, -8, and -9 activity in the cells. DNA damage in 3T3-L1 normal cells was detected by using the comet assay. The extract protected 3T3-L1 cells against H2O2-induced DNA damage. The results from this study show that white tea has antioxidant and antiproliferative effects against cancer cells, but protect normal cells against DNA damage. Regular intake of white tea can help to maintain good health and protect the body against disease.
    Matched MeSH terms: Camellia sinensis*
  11. Rahim AA, Nofrizal S, Saad B
    Food Chem, 2014 Mar 15;147:262-8.
    PMID: 24206716 DOI: 10.1016/j.foodchem.2013.09.131
    A rapid reversed-phase high performance liquid chromatographic method using a monolithic column for the determination of eight catechin monomers and caffeine was developed. Using a mobile phase of water:acetonitrile:methanol (83:6:11) at a flow rate of 1.4 mL min(-1), the catechins and caffeine were isocratically separated in about 7 min. The limits of detection and quantification were in the range of 0.11-0.29 and 0.33-0.87 mg L(-1), respectively. Satisfactory recoveries were obtained (94.2-105.2 ± 1.8%) for all samples when spiked at three concentrations (5, 40 and 70 mg L(-1)). In combination with microwave-assisted extraction (MAE), the method was applied to the determination of the catechins and caffeine in eleven tea samples (6 green, 3 black and 2 oolong teas). Relatively high levels of caffeine were found in black tea, but higher levels of the catechins, especially epigallocatechin gallate (EGCG) were found in green teas.
    Matched MeSH terms: Camellia sinensis/chemistry*
  12. Musa KH, Abdullah A, Kuswandi B, Hidayat MA
    Food Chem, 2013 Dec 15;141(4):4102-6.
    PMID: 23993591 DOI: 10.1016/j.foodchem.2013.06.112
    A stable chromogenic radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) is commonly used for the determination of antioxidant activity. In this paper, DPPH was dried into 96 well microplate to produce DPPH dry reagent array plate, based on which the highly sensitive and high throughput determination of antioxidant activities was achieved. The spectrophotometric characterization of the microplate containing dried or fresh DPPH free radicals was reported. The response of the DPPH dry reagent array towards different standard antioxidants was studied. The reaction for DPPH in fresh or dry reagent array with Trolox was reported and compared. The DPPH dry reagent array was used to study the antioxidant activity of banana, green tea, pink guava, and honeydew and the results were compared to the samples reacted with freshly prepared DPPH. The proposed method is comparable to the classical DPPH method, more convenient, simple to operate with minimal solvent required and excellent sensitivity.
    Matched MeSH terms: Camellia sinensis/chemistry*
  13. Loo YY, Chieng BW, Nishibuchi M, Radu S
    Int J Nanomedicine, 2012;7:4263-7.
    PMID: 22904632 DOI: 10.2147/IJN.S33344
    The development of the biological synthesis of nanoparticles using microorganisms or plant extracts plays an important role in the field of nanotechnology as it is environmentally friendly and does not involve any harmful chemicals. In this study, the synthesis of silver nanoparticles using the leaves extract of Chinese tea from Camellia sinensis is reported. The synthesized nanoparticles were characterized using UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier transform infrared (FTIR) spectroscopy. The XRD analysis shows that the synthesized silver nanoparticles are of face-centered cubic structure. Well-dispersed silver nanoparticles with an approximate size of 4 nm were observed in the TEM image. The application of the green synthesized nanoparticles can be used in many fields such as cosmetics, foods, and medicine.
    Matched MeSH terms: Camellia sinensis/chemistry*
  14. Wiart C
    Nutr Res, 2015 Jun;35(6):545.
    PMID: 25957969 DOI: 10.1016/j.nutres.2015.04.014
    Matched MeSH terms: Camellia sinensis/chemistry*
  15. Amirdivani S, Baba AS
    J Food Sci Technol, 2015 Jul;52(7):4652-60.
    PMID: 26139940 DOI: 10.1007/s13197-014-1670-6
    The purpose of this study was to evaluate fermentation of milk in the presence of green tea (Camellia sinensis) with respect to changes in antioxidant activity, phenolic compounds and the growth of lactic acid bacteria. Pasteurized full fat cow's milk and starter culture were incubated at 41 °C in the presence of two different types of green tea extracts. The yogurts formed were refrigerated (4 °C) for further analysis. The total phenolic content was highest (p 
    Matched MeSH terms: Camellia sinensis
  16. Hajiaghaalipour F, Kanthimathi MS, Abdulla MA, Sanusi J
    PMID: 23864889 DOI: 10.1155/2013/386734
    Camellia sinensis (tea) is reported to have health benefits, including the building of healthy skin. This study evaluated the effects of topical application of Camellia sinensis extract on the rate of wound closure and the histology of wound area. A uniform area of 2.00 cm in diameter was excised from the neck of adult male Sprague Dawley rats. The animals were topically treated with 0.2 mL of vehicle (CMC), Intrasite gel (positive control), or 200 and 400 mg/mL of extract. Wounds dressed with the extract and Intrasite gel healed significantly earlier than those with vehicle. Histological analysis of the wound area after 10 days showed that wounds dressed with the extract had less scar width when compared to the control. The tissue contained less inflammatory cells and more collagen and angiogenesis, compared to wounds dressed with vehicle. In this study, Camellia sinensis showed high potential in wound healing activity.
    Matched MeSH terms: Camellia sinensis
  17. Dadrasnia A, Pariatamby A
    Waste Manag Res, 2016 Mar;34(3):246-53.
    PMID: 26675494 DOI: 10.1177/0734242X15621375
    In phytoremediation of co-contaminated soil, the simultaneous and efficient remediation of multiple pollutants is a major challenge rather than the removal of pollutants. A laboratory-scale experiment was conducted to investigate the effect of 5% addition of each of three different organic waste amendments (tea leaves, soy cake, and potato skin) to enhance the phytoaccumulation of lead (60 mg kg(-1)) and diesel fuel (25,000 mg kg(-1)) in co-contaminated soil by Dracaena reflexa Lam for a period of 180 day. The highest rate of oil degradation was recorded in co-contaminated soil planted with D. reflexa and amended with soy cake (75%), followed by potato skin (52.8%) and tea leaves (50.6%). Although plants did not accumulate hydrocarbon from the contaminated soil, significant bioaccumulation of lead in the roots and stems of D. reflexa was observed. At the end of 180 days, 16.7 and 9.8 mg kg(-1) of lead in the stems and roots of D. reflexa were recorded, respectively, for the treatment with tea leaves. These findings demonstrate the potential of organic waste amendments in enhancing phytoremediation of oil and bioaccumulation of lead.
    Matched MeSH terms: Camellia sinensis/chemistry
  18. Eng QY, Thanikachalam PV, Ramamurthy S
    J Ethnopharmacol, 2018 Jan 10;210:296-310.
    PMID: 28864169 DOI: 10.1016/j.jep.2017.08.035
    ETHNOPHARMACOLOGICAL RELEVANCE: The compound epigallocatechin-3-gallate (EGCG), the major polyphenolic compound present in green tea [Camellia sinensis (Theaceae], has shown numerous cardiovascular health promoting activity through modulating various pathways. However, molecular understanding of the cardiovascular protective role of EGCG has not been reported.

    AIM OF THE REVIEW: This review aims to compile the preclinical and clinical studies that had been done on EGCG to investigate its protective effect on cardiovascular and metabolic diseases in order to provide a systematic guidance for future research.

    MATERIALS AND METHODS: Research papers related to EGCG were obtained from the major scientific databases, for example, Science direct, PubMed, NCBI, Springer and Google scholar, from 1995 to 2017.

    RESULTS: EGCG was found to exhibit a wide range of therapeutic properties including anti-atherosclerosis, anti-cardiac hypertrophy, anti-myocardial infarction, anti-diabetes, anti-inflammatory and antioxidant. These therapeutic effects are mainly associated with the inhibition of LDL cholesterol (anti-atherosclerosis), inhibition of NF-κB (anti-cardiac hypertrophy), inhibition of MPO activity (anti-myocardial infarction), reduction in plasma glucose and glycated haemoglobin level (anti-diabetes), reduction of inflammatory markers (anti-inflammatory) and the inhibition of ROS generation (antioxidant).

    CONCLUSION: EGCG shows different biological activities and in this review, a compilation of how this bioactive molecule plays its role in treating cardiovascular and metabolic diseases was discussed.

    Matched MeSH terms: Camellia sinensis/chemistry
  19. Umar KM, Abdulkarim SM, Radu S, Abdul Hamid A, Saari N
    ScientificWorldJournal, 2012;2012:529031.
    PMID: 22645428 DOI: 10.1100/2012/529031
    A mimicked biosynthetic pathway of catechin metabolite genes from C. sinensis, consisting of flavanone 3 hydroxylase (F3H), dihydroflavonol reductase (DFR), and leucoanthocyanidin reductase (LCR), was designed and arranged in two sets of constructs: (a) single promoter in front of F3H and ribosome-binding sequences both in front of DFR and LCR; (b) three different promoters with each in the front of the three genes and ribosome-binding sequences at appropriate positions. Recombinant E. coli BL (DE3) harbouring the constructs were cultivated for 65 h at 26 °C in M9 medium consisting of 40 g/L glucose, 1 mM IPTG, and 3 mM eriodictyol. Compounds produced were extracted in ethyl acetate in alkaline conditions after 1 h at room temperature and identified by HPLC. Two of the four major catechins, namely, (-)-epicatechin (0.01) and (-)-epicatechin gallate (0.36 mg/L), and two other types ((+)-catechin hydrate (0.13 mg/L) and (-)-catechin gallate (0.04 mg/L)) were successfully produced.
    Matched MeSH terms: Camellia sinensis/metabolism*
  20. Dieng H, Tan Yusop NS, Kamal NN, Ahmad AH, Ghani IA, Abang F, et al.
    J Agric Food Chem, 2016 May 11;64(18):3485-91.
    PMID: 27115536 DOI: 10.1021/acs.jafc.6b01157
    Dengue mosquitoes are evolving into a broader global public health menace, with relentless outbreaks and the rise in number of Zika virus disease cases as reminders of the continued hazard associated with Aedes vectors. The use of chemical insecticides-the principal strategy against mosquito vectors-has been greatly impeded due to the development of insecticide resistance and the shrinking spectrum of effective agents. Therefore, there is a pressing need for new chemistries for vector control. Tea contains hundreds of chemicals, and its waste, which has become a growing global environmental problem, is almost as rich in toxicants as green leaves. This paper presents the toxic and sublethal effects of different crude extracts of tea on Aedes albopictus. The survival rates of larvae exposed to tea extracts, especially fresh tea extract (FTE), were markedly lower than those in the control treatment group. In addition to this immediate toxicity against different developmental stages, the extracts tested caused a broad range of sublethal effects. The developmental time was clearly longer in containers with tea, especially in those with young larvae (YL) and FTE. Among the survivors, pupation success was reduced in containers with tea, which also produced low adult emergence rates with increasing tea concentration. The production of eggs tended to be reduced in females derived from the tea treatment groups. These indirect effects of tea extracts on Ae. albopictus exhibited different patterns according to the exposed larval stage. Taken together, these findings indicate that tea and its waste affect most key components of Ae. albopictus vectorial capacity and may be useful for dengue control. Reusing tea waste in vector control could also be a practical solution to the problems associated with its pollution.
    Matched MeSH terms: Camellia sinensis/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links