OBJECTIVES: The aim of this in vitro study was to evaluate the long-term effects of various staining solutions on the color stability of different temporary materials produced with the computer-aided design and computer-aided manufacturing (CAD/CAM) technology.
MATERIAL AND METHODS: In the study, the following materials were used: VITA CAD-Temp® (group 1); Ceramill® Temp (group 2); and Telio® CAD (group 3). Forty disk-shaped specimens (10 mm in diameter, 2 mm in thickness) of each material (N = 120) were produced with a CAD/CAM system. Staining solutions - of tea (A), of coffee (B) and cola (C) - and distilled water (D, control) were used, and color was evaluated before and after storing the samples in the solutions. Measurements were taken with a spectrophotometer and the color parameters (L*, a*, b*, and ΔE) were calculated according to the Commission internationale de l'éclairage system (CIELab). The results were evaluated with the two-way analysis of variance (ANOVA) and Tukey's tests (α = 0.05).
RESULTS: Clinically perceivable (ΔE00 > 0.8) and statistically significant (p < 0.001) color differences were detected in all specimens. The highest ΔE00 value was found in the Ceramill Temp specimens. In addition, the highest ΔE00 values were noted for the specimens stored in cola and the coffee solution for all groups. The lowest ΔE00 value was observed for the groups stored in the tea solution.
CONCLUSIONS: Clinically perceivable color changes were observed in all the specimens kept in the solutions. Color changes were greater for cola and coffee as compared to tea.
METHOD: Medical image data for five types of defects were selected, segmented, converted and decimated to 3D polygon models on a personal computer. The models were transferred to a computer aided design (CAD) software which aided in designing the prosthesis according to the virtual models. Two templates were designed for each defect, one by an OS (free) system and one by CS. The parameters for analyses were the virtual volume, Dice similarity coefficient (DSC) and Hausdorff's distance (HD) and were executed by the OS point cloud comparison tool.
RESULT: There was no significant difference (p > 0.05) between CS and OS when comparing the volume of the template outputs. While HD was within 0.05-4.33 mm, evaluation of the percentage similarity and spatial overlap following the DSC showed an average similarity of 67.7% between the two groups. The highest similarity was with orbito-facial prostheses (88.5%) and the lowest with facial plate prosthetics (28.7%).
CONCLUSION: Although CS and OS pipelines are capable of producing templates which are aesthetically and volumetrically similar, there are slight comparative discrepancies in the landmark position and spatial overlap. This is dependent on the software, associated commands and experienced decision-making. CAD-based templates can be planned on current personal computers following appropriate decimation.
MATERIALS AND METHODS: This is an in vitro study using two extracted sound human mandibular molars. One tooth was prepared to receive the metal onlays and another one for the RNC onlays which were fabricated using the computer-aided design and computer-aided manufacturing (CAD/CAM) technology. Twelve metals and 12 ceramic onlays were fabricated before they were placed at their respective preparation and examined under the Leica stereomicroscope, M125C (Leica Microsystems, Wetzlar, Germany) for a marginal analysis. The gap width was measured at 10 predefined landmarks which included 3 points on the buccal and lingual surfaces each and 2 points each on the mesial and distal surfaces, respectively.
STATISTICAL ANALYSIS: Mann-Whitney post hoc test was used for statistical analysis (P ≤ 0.05).
RESULTS: Overall, the RNC onlays showed significant lower marginal gap with the exception of the landmarks 5 and 6 (on distolingual) and no significant difference at landmark 7 (on midlingual). It was observed that the marginal gap were all within the clinically acceptable limit of 120 μm.
CONCLUSIONS: Based on the results obtained, it can be concluded that the RNC CAD/CAM onlays are a promising alternative to the metal onlays.
PURPOSE: The purpose of this simulation study was to establish a reference percentage value that can be used to effectively reduce the size and polygons of the 3D mesh without drastically affecting the dimensions of the prosthesis itself.
MATERIAL AND METHODS: Fifteen different maxillary palatal defects were simulated on a dental cast and scanned to create 3D casts. Digital bulbs were fabricated from the casts. Conventional bulbs for the defects were fabricated, scanned, and compared with the digital bulb to serve as a control. The polygon parameters of digital bulbs were then reduced by different percentages (75%, 50%, 25%, 10%, 5%, and 1% of the original mesh) which created a total of 105 meshes across 7 mesh groups. The reduced mesh files were compared individually with the original design in an open-source point cloud comparison software program. The parameters of comparison used in this study were Hausdorff distance (HD), Dice similarity coefficient (DSC), and volume.
RESULTS: The reduction in file size was directly proportional to the amount of mesh reduction. There were minute yet insignificant differences in volume (P>.05) across all mesh groups, with significant differences (P
MATERIALS AND METHODS: An auricular prosthesis, a complete denture, and anterior and posterior crowns were constructed using conventional methods and laser scanned to create computerized 3D meshes. The meshes were optimized independently by four computer-aided design software (Meshmixer, Meshlab, Blender, and SculptGL) to 100%, 90%, 75%, 50%, and 25% levels of original file size. Upon optimization, the following parameters were virtually evaluated and compared; mesh vertices, file size, mesh surface area (SA), mesh volume (V), interpoint discrepancies (geometric similarity based on virtual point overlapping), and spatial similarity (volumetric similarity based on shape overlapping). The influence of software and optimization on surface area and volume of each prosthesis was evaluated independently using multiple linear regression.
RESULTS: There were clear observable differences in vertices, file size, surface area, and volume. The choice of software significantly influenced the overall virtual parameters of auricular prosthesis [SA: F(4,15) = 12.93, R2 = 0.67, p < 0.001. V: F(4,15) = 9.33, R2 = 0.64, p < 0.001] and complete denture [SA: F(4,15) = 10.81, R2 = 0.67, p < 0.001. V: F(4,15) = 3.50, R2 = 0.34, p = 0.030] across optimization levels. Interpoint discrepancies were however limited to <0.1mm and volumetric similarity was >97%.
CONCLUSION: Open-source mesh optimization of smaller dental prostheses in this study produced minimal loss of geometric and volumetric details. SculptGL models were most influenced by the amount of optimization performed.