Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Ahmad A, Sattar MA, Rathore HA, Khan SA, Lazhari MI, Afzal S, et al.
    Indian J Pharmacol, 2015 May-Jun;47(3):243-7.
    PMID: 26069359 DOI: 10.4103/0253-7613.157106
    In the family of gas transmitters, hydrogen sulfide (H2S) is yet not adequately researched. Known for its rotten egg smell and adverse effects on the brain, lungs, and kidneys for more than 300 years, the vasorelaxant effects of H2S on blood vessel was first observed in 1997. Since then, research continued to explore the possible therapeutic effects of H2S in hypertension, inflammation, pancreatitis, different types of shock, diabetes, and heart failure. However, a considerable amount of efforts are yet needed to elucidate the mechanisms involved in the therapeutic effects of H2S, such as nitric oxide-dependent or independent vasodilation in hypertension and regression of left ventricular hypertrophy. More than a decade of good repute among researchers, H2S research has certain results that need to be clarified or reevaluated. H2S produces its response by multiple modes of action, such as opening the ATP-sensitive potassium channel, angiotensin-converting enzyme inhibition, and calcium channel blockade. H2S is endogenously produced from two sulfur-containing amino acids L-cysteine and L-methionine by the two enzymes cystathionine γ lyase and cystathionine β synthase. Recently, the third enzyme, 3-mercaptopyruvate sulfur transferase, along with cysteine aminotransferase, which is similar to aspartate aminotransferase, has been found to produce H2S in the brain. The H2S has interested researchers, and a great deal of information is being generated every year. This review aims to provide an update on the developments in the research of H2S in hypertension amid the ambiguity in defining the exact role of H2S in hypertension because of insufficient number of research results on this area. This critical review on the role of H2S in hypertension will clarify the gray areas and highlight its future prospects.
    Matched MeSH terms: Hypertension/metabolism*
  2. Leong XF, Ng CY, Badiah B, Das S
    ScientificWorldJournal, 2014;2014:768237.
    PMID: 24526921 DOI: 10.1155/2014/768237
    This review is to examine the current literatures on the relationship between periodontitis and hypertension as well as to explore the possible biological pathways underlying the linkage between these health conditions. Hypertension is one of the major risk factors for cardiovascular diseases. Oxidative stress and endothelial dysfunction are among the critical components in the development of hypertension. Inflammation has received much attention recently and may contribute to a pivotal role in hypertension. Periodontitis, a chronic low-grade inflammation of gingival tissue, has been linked to endothelial dysfunction, with blood pressure elevation and increased mortality risk in hypertensive patients. Inflammatory biomarkers are increased in hypertensive patients with periodontitis. Over the years, various researches have been performed to evaluate the involvement of periodontitis in the initiation and progression of hypertension. Many cross-sectional studies documented an association between hypertension and periodontitis. However, more well-designed prospective population trials need to be carried out to ascertain the role of periodontitis in hypertension.
    Matched MeSH terms: Hypertension/metabolism*
  3. Saqib F, Ahmed MG, Janbaz KH, Dewanjee S, Jaafar HZ, Zia-Ul-Haq M
    PMID: 26354022 DOI: 10.1186/s12906-015-0837-7
    Murraya paniculata is traditionally used for management of gut, air way and cardiovascular disorders. The study was conducted for provision of pharmacological rationalization for folkloric uses of Murraya paniculata in gut, air way and cardiovascular problems.
    Matched MeSH terms: Hypertension/metabolism*
  4. Amudha K, Wong LP, Choy AM, Lang CC
    Curr Pharm Des, 2003;9(21):1691-701.
    PMID: 12871202
    Physiological and pharmacological responses may be influenced by ethnicity as a result of genetic factors, environmental factors and/or their interaction. This review is divided into 2 parts. Firstly, there will be overview of ethnicity as a determinant of drug metabolism and response with reference to antihypertensive agents. The concept of ethnicity has been applied extensively to the study of hypertension especially in American blacks in whom the hypertension is more common and more aggressive. Thus, the second part of this review will then focus on examining the black-white differences in physiological responses to pharmacological challenge that may provide a link between these models and known ethnic differences in drug responses. We will discuss the hypertension studies that have examined the relative effectiveness of different classes of antihypertensive agents including several recent cardiovascular outcome trials that either have a high proportion of blacks or were conducted entirely in black subjects.
    Matched MeSH terms: Hypertension/metabolism
  5. Abbas SA, Sharma JN, Yusof AP
    Immunopharmacology, 1999 Oct 15;44(1-2):93-8.
    PMID: 10604530
    It is known that BK does play a role in the cardioprotective effect of angiotensin converting enzyme (ACE) inhibitors. The present study therefore was conducted to examine the effects of bradykinin (BK) and its antagonist on survival time in spontaneously hypertensive rats (SHR) with coronary artery ligation for 15 min and continuously. We also evaluated the heart rate and blood pressure (BP) in the presence and absence of BK and BK2 receptor antagonist, D-Arg-[Hyp-D-Phe7]BK. Coronary artery was ligated in anaesthetized rats and they were artificially ventilated with room air (stroke volume, 4 ml; 48 strokes/min) as described by the previous investigators. Lead II elecrocardiogram (ECG) was recorded from subcutaneous steel needle electrodes. Results of this investigation indicated that BK treatment 4 microg/kg (i.v.) and 8 microg/kg (i.v.) caused significant (P < 0.05) increase in survival time in SHR with coronary artery ligation for 15 min and continuously as compare to their respective saline-treated controls. However, BK antagonist treatment 4 microg/kg (i.v.) abolished the increase in survival time caused by BK treatment. The mean values of survival time between the saline-treated and BK antagonist plus BK-treated rats did not differ significantly (P > 0.05). The heart rate and BP responses were greatly reduced (P < 0.001) in the presence of coronary artery ligation. These findings suggest that BK might have cardioprotective effect to increase the survival time in rats by activating BK2 receptors after coronary artery ligation.
    Matched MeSH terms: Hypertension/metabolism*
  6. Newaz MA, Nawal NN
    Am J Hypertens, 1998 Dec;11(12):1480-5.
    PMID: 9880131
    The aim of this study was to determine the effects of alpha-tocopherol on lipid peroxidation and total antioxidant status of spontaneously hypertensive rats (SHR), comparing them with normal Wistar-Kyoto (WKY) rats. SHR were divided into three groups and treated with different doses of alpha-tocopherol (alpha1, 17 mg/kg diet; alpha2, 34 mg/kg diet; and alpha3, 170 mg/kg diet). Normal WKY and untreated SHR were used as normal (N) and hypertensive control (HC). Blood pressures were recorded every 10 days for 3 months. At the end of the trial, animals were killed and measurement of plasma total antioxidant status, plasma superoxide dismutase (SOD) activity, and lipid peroxide levels in plasma and blood vessels was carried out following well-established methods. From our study it was found that lipid peroxides in thoracic aorta (N, 0.47 +/- 0.17; H, 0.96 +/- 0.37; P < .0001) and plasma (N, 0.06 +/- 0.01; H, 0.13 +/- 0.01) were significantly higher in hypertensives than in normal rats. SOD activity was significantly lower in hypertensive than normal rats (N, 172.93 +/- 46.91; H, 110.08 +/- 14.38; P < .005). Total antioxidant status was significantly higher in normal than hypertensive rats (N, 0.88 +/- 0.05; H, 0.83 +/- 0.02; P < .05). After the antioxidant trial, it was found that in the treated groups rise of blood pressure was prevented significantly (P < .001) and lipid peroxides in blood vessels were significantly reduced more than in the controls (P < .001). For plasma lipid peroxide it was only significant for groups alpha2 (P < .001) and alpha3 (P < .05). Although all three treated groups showed improved total antioxidant status, only groups alpha2 (0.87 +/- 0.04, P < .005) and alpha3 (1.20 +/- 0.18, P < .001) were statistically significant. All the three groups showed significant increases in their SOD activity (P < .001). Correlation studies showed that total antioxidant status and SOD were significantly negatively correlated with blood pressure in normal rats (P = .007; P = .008). Lipid peroxides in both blood vessel and plasma showed a positive correlation. In the treated groups, lipid peroxides in blood vessels maintained a significant positive correlation with blood pressure in all groups (alpha1, P = .021; alpha2, P = .019; alpha3, P = .002), whereas for plasma lipid peroxides the correlation was in groups alpha1 (P = .005) and alpha2 (P = .009). For SOD activity, significant negative correlations were found with blood pressure in the alpha2 (P = .017) and alpha3 (P = .025) groups. Total antioxidant status maintained a significant negative correlation with blood pressure in all three groups (alpha1, P = .012; alpha2, P = .044; alpha3, P = .014). In conclusion it was found that supplement of alpha-tocopherol may prevent development of increased blood pressure, reduce lipid peroxides in plasma and blood vessels, and enhance the total antioxidant status, including SOD activity.
    Matched MeSH terms: Hypertension/metabolism
  7. Hejazi N, Huang MS, Lin KG, Choong LC
    Glob J Health Sci, 2014 Mar;6(2):58-71.
    PMID: 24576366 DOI: 10.5539/gjhs.v6n2p58
    There are increasing researches about non-communicable disease such as elevated blood pressure among people living with HIV before and after initiation of highly active antiretroviral therapy (HAART). This cross-sectional study was designed to determine the prevalence of hypertension and associated risk factors among 340 HIV-infected patients on antiretroviral therapy at a Malaysian public hospital providing HIV-related treatment. Data on socioeconomic background, anthropometry, medical history and dietary intake of the patients were collected. Hypertension is defined as blood pressure >=130/85 (mm Hg). Prevalence of hypertension was 45.60% (n=155) of which 86.5% of the hypertensive group were male (n=134). The results showed that increase in age (OR 1.051, 95% confidence interval (CI) 1.024-1.078), higher body mass index (OR 1.18, 95%CI 1.106-2.71), bigger waist circumference (OR 1.18, 95%CI 1.106-2.71), higher waist-hip ratio (OR 1.070, 95%CI 1.034-1.106), higher fasting plasma glucose (OR 1.332, 95%CI 0.845-2.100) and percentage energy intake from protein >15 (OR 2.519, 95%CI 1.391-4.561) were significant risk factors for hypertension (p<0.001). After adjusting for other variables, increasing age (adjusted odds ratio (aOR) 1.069 95%CI 1.016-1.124, p=0.010), being male (aOR 3.026, 95%CI 1.175-7.794, p=0.022) and higher body mass index (aOR 1.26, 95%CI 1.032-1.551, p=0.024) were independently associated with hypertension. None of the antiretroviral therapy and immunologic factors was linked to hypertension. In conclusion hypertension among PLHIV was linked to the well-known risk factors such as age, gender and body mass index. With HAART, people can live longer by making monitoring and control of some reversible factors, especially excessive weight gain for maintaining quality of life.
    Matched MeSH terms: Hypertension/metabolism
  8. Ng CY, Kamisah Y, Faizah O, Jaarin K
    Int J Exp Pathol, 2012 Oct;93(5):377-87.
    PMID: 22974219 DOI: 10.1111/j.1365-2613.2012.00839.x
    Thermally oxidized oil generates reactive oxygen species that have been implicated in several pathological processes including hypertension. This study was to ascertain the role of inflammation in the blood pressure raising effect of heated soybean oil in rats. Male Sprague-Dawley rats were divided into four groups and were fed with the following diets, respectively, for 6 months: basal diet (control); fresh soybean oil (FSO); five-time-heated soybean oil (5HSO); or 10-time-heated soybean oil (10HSO). Blood pressure was measured at baseline and monthly using tail-cuff method. Plasma prostacyclin (PGI(2) ) and thromboxane A(2) (TXA(2) ) were measured prior to treatment and at the end of the study. After six months, the rats were sacrificed, and the aortic arches were dissected for morphometric and immunohistochemical analyses. Blood pressure was increased significantly in the 5HSO and 10HSO groups. The blood pressure was maintained throughout the study in rats fed FSO. The aortae in the 5HSO and 10HSO groups showed significantly increased aortic wall thickness, area and circumferential wall tension. 5HSO and 10HSO diets significantly increased plasma TXA(2) /PGI(2) ratio. Endothelial VCAM-1 and ICAM-1 were significantly increased in 5HSO, as well as LOX-1 in 10HSO groups. In conclusion, prolonged consumption of repeatedly heated soybean oil causes blood pressure elevation, which may be attributed to inflammation.
    Matched MeSH terms: Hypertension/metabolism
  9. Erejuwa OO, Sulaiman SA, Ab Wahab MS, Sirajudeen KN, Salleh S, Gurtu S
    Oxid Med Cell Longev, 2012;2012:374037.
    PMID: 22315654 DOI: 10.1155/2012/374037
    Oxidative stress is implicated in the pathogenesis and/or maintenance of elevated blood pressure in hypertension. This study investigated the effect of honey on elevated systolic blood pressure (SBP) in spontaneously hypertensive rats (SHR). It also evaluated the effect of honey on the amelioration of oxidative stress in the kidney of SHR as a possible mechanism of its antihypertensive effect. SHR and Wistar Kyoto (WKY) rats were randomly divided into 2 groups and administered distilled water or honey by oral gavage once daily for 12 weeks. The control SHR had significantly higher SBP and renal malondialdehyde (MDA) levels than did control WKY. The mRNA expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and glutathione S-transferase (GST) were significantly downregulated while total antioxidant status (TAS) and activities of GST and catalase (CAT) were higher in the kidney of control SHR. Honey supplementation significantly reduced SBP and MDA levels in SHR. Honey significantly reduced the activities of GST and CAT while it moderately but insignificantly upregulated the Nrf2 mRNA expression level in the kidney of SHR. These results indicate that Nrf2 expression is impaired in the kidney of SHR. Honey supplementation considerably reduces elevated SBP via amelioration of oxidative stress in the kidney of SHR.
    Matched MeSH terms: Hypertension/metabolism
  10. Siew-Keah L, Sundaram A, Sirajudeen KN, Zakaria R, Singh HJ
    J Physiol Biochem, 2014 Mar;70(1):73-9.
    PMID: 23975651 DOI: 10.1007/s13105-013-0282-3
    Antenatal and postnatal environments are hypothesised to influence the development of hypertension. This study investigates the synergistic effect of cross-fostering and melatonin supplementation on the development of hypertension and renal glutathione system in spontaneously hypertensive rats (SHR). In one experiment, 1-day-old male SHR pups were fostered to either SHR (shr-SHR) or Wistar-Kyoto rats, (shr-WKY). In a concurrent experiment, SHR dams were given melatonin in drinking water (10 mg/kg body weight) from day 1 of pregnancy. Immediately following delivery, 1-day-old male pups were fostered either to SHR (Mel-shr-SHR) or WKY (Mel-shr-WKY) dams receiving melatonin supplementation until weaning on day 21. Upon weaning, melatonin supplementation was continued to these pups until the age of 16 weeks. Systolic blood pressures (SBP) were recorded at the age of 4, 6, 8, 12 and 16 weeks. Renal antioxidant activities were measured. Mean SBP of shr-WKY, Mel-shr-SHR and Mel-shr-WKY was significantly lower than that in shr-SHR until the age of 8 weeks. At 12 and 16 weeks of age, mean SBP of Mel-shr-WKY was lower than those in non-treated shr-SHR and shr-WKY pups but was not significantly different from that in Mel-shr-SHR. Renal glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities were significantly higher in Mel-shr-SHR and Mel-shr-WKY at 16 weeks of age. It appears that combination of cross-fostering and melatonin supplementation exerts no synergistic effect on delaying the rise in blood pressure in SHR. The elevated GPx and GST activities are likely to be due to the effect of melatonin supplementation.
    Matched MeSH terms: Hypertension/metabolism
  11. Lee SK, Arunkumar S, Sirajudeen KN, Singh HJ
    J Physiol Biochem, 2010 Dec;66(4):321-7.
    PMID: 20680541 DOI: 10.1007/s13105-010-0038-2
    Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar-Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.
    Matched MeSH terms: Hypertension/metabolism
  12. Muralitharan RR, Jama HA, Xie L, Peh A, Snelson M, Marques FZ
    Hypertension, 2020 12;76(6):1674-1687.
    PMID: 33012206 DOI: 10.1161/HYPERTENSIONAHA.120.14473
    There is increasing evidence of the influence of the gut microbiota on hypertension and its complications, such as chronic kidney disease, stroke, heart failure, and myocardial infarction. This is not surprising considering that the most common risk factors for hypertension, such as age, sex, medication, and diet, can also impact the gut microbiota. For example, sodium and fermentable fiber have been studied in relation to both hypertension and the gut microbiota. By combining second- and, now, third-generation sequencing with metabolomics approaches, metabolites, such as short-chain fatty acids and trimethylamine N-oxide, and their producers, have been identified and are now known to affect host physiology and the cardiovascular system. The receptors that bind these metabolites have also been explored with positive findings-examples include known short-chain fatty acid receptors, such as G-protein coupled receptors GPR41, GPR43, GPR109a, and OLF78 in mice. GPR41 and OLF78 have been shown to have inverse roles in blood pressure regulation, whereas GPR43 and GPR109A have to date been demonstrated to impact cardiac function. New treatment options in the form of prebiotics (eg, dietary fiber), probiotics (eg, Lactobacillus spp.), and postbiotics (eg, the short-chain fatty acids acetate, propionate, and butyrate) have all been demonstrated to be beneficial in lowering blood pressure in animal models, but the underlying mechanisms remain poorly understood and translation to hypertensive patients is still lacking. Here, we review the evidence for the role of the gut microbiota in hypertension, its risk factors, and cardiorenal complications and identify future directions for this exciting and fast-evolving field.
    Matched MeSH terms: Hypertension/metabolism
  13. Ling WC, Mustafa MR, Murugan DD
    J Cardiovasc Pharmacol, 2020 02;75(2):123-134.
    PMID: 31651673 DOI: 10.1097/FJC.0000000000000771
    Nitrite, an anion produced from the oxidative breakdown of nitric oxide (NO), has traditionally been viewed as an inert molecule. However, this dogma has been challenged with the findings that nitrite can be readily reduced to NO under pathological conditions, hence representing a physiologically relevant storage reservoir of NO either in the blood or tissues. Nitrite administration has been demonstrated to improve myocardial function in subjects with heart failure and to lower the blood pressure in hypertensive subjects. Thus, extensive amount of work has since been carried out to investigate the therapeutic potential of nitrite in treating cardiovascular diseases, especially hypertension. Studies done on several animal models of hypertension have demonstrated the efficacy of nitrite in preventing and ameliorating the pathological changes associated with the disease. This brief review of the current findings aims to re-evaluate the use of nitrite for the treatment of hypertension and in particular to highlight its role in improving endothelial function.
    Matched MeSH terms: Hypertension/metabolism
  14. Sharma JN, Kesavarao U, Yusof AP
    Immunopharmacology, 1999 Sep;43(2-3):129-32.
    PMID: 10596843 DOI: 10.1016/s0162-3109(99)00070-3
    The present investigation was aimed at evaluating the cardiac and total plasma kininogen levels, as well as LVWT in hypertensive and diabetic rats. STZ-induced diabetes produced a significant (P < 0.001) rise in mean arterial blood pressure (BP). The LVWT increased (P < 0.001) in SHR with and without diabetes) and diabetic WKYR. The cardiac tissue, as well as total plasma kininogen levels fell significantly (P < 0.001) in diabetic WKYR and SHR with and without diabetes compared to the control WKYR. These findings suggest that reduced kininogen levels may indicate a deficiency in kinin generation in the heart and in the peripheral circulation in diabetic and hypertensive rats. This effect may contribute to the development of LVH.
    Matched MeSH terms: Hypertension/metabolism*
  15. Sharma JN, Kesavarao U
    Immunopharmacology, 1996 Jun;33(1-3):341-3.
    PMID: 8856181 DOI: 10.1016/0162-3109(96)00104-x
    This study examined the effects of streptozotocin-induced diabetes on blood pressure and cardiac tissue kallikrein levels in WKYR and SHR. Streptozotocin-induced diabetes caused significant (p < 0.001) increase in SBP and DBP in WKYR and SHR as compared with their respective controls. We also observed that the active cardiac tissue kallikrein levels reduced greatly (p < 0.001) in diabetic WKYR and SHR than the normal rats. These findings suggest for the first time that the cardiac tissue kallikrein formation may have a greater role in the regulation of blood pressure and cardiac function.
    Matched MeSH terms: Hypertension/metabolism*
  16. Loh YC, Ch'ng YS, Tan CS, Ahmad M, Asmawi MZ, Yam MF
    J Med Food, 2017 Sep;20(9):895-911.
    PMID: 28771084 DOI: 10.1089/jmf.2016.3804
    Uncaria rhynchophylla is one of the major components included in Traditional Chinese Medicine prescriptions for hypertensive treatment. Previous studies have suggested that U. rhynchophylla might contain vasodilation-mediating active compounds, especially indole alkaloids. Hence, this study was carried out to determine the vasodilatory effects of U. rhynchophylla, which was extracted by different solvents. The most effective extract was then further studied for its signaling mechanism pathways. The authenticity of U. rhynchophylla was assured by using modernized tri-step Fourier transform infrared (FTIR), including conventional 1D FTIR, second derivative scanning combined with 2D-correlated IR spectroscopy. Results obtained proved that the fingerprint of U. rhynchophylla used was identical to the atlas. Isolated aortic rings from male Sprague-Dawley rats were preconstricted with phenylephrine (PE) followed by cumulative addition of U. rhynchophylla extracts. The signaling mechanism pathways were studied by incubation with different receptor antagonists before the PE precontraction. In conclusion, the 95% ethanolic U. rhynchophylla extract (GT100) was found to be most effective with an EC50 value of 0.028 ± 0.002 mg/mL and an Rmax value of 101.30% ± 2.82%. The signaling mechanism pathways employed for exerting its vasodilatory effects included nitric oxide/soluble guanylyl cylcase/cyclic guanosine monophosphate (NO/sGC/cGMP) and PGI2 (endothelium-derived relaxing factors), G protein-coupled M3- and β2 receptors, regulation of membrane potential through voltage-operated calcium channel, intracellular Ca2+ released from inositol triphosphate receptor (IP3R), and all potassium channels except the Kca channel.
    Matched MeSH terms: Hypertension/metabolism
  17. Bukhari SN, Butt AM, Amjad MW, Ahmad W, Shah VH, Trivedi AR
    Pak J Biol Sci, 2013 Nov 01;16(21):1368-72.
    PMID: 24511749
    Hypertension is a widespread and frequently progressive ailment that imparts a foremost threat for cardiovascular and renal disorders. Mammoth efforts are needed for the synthesis of innovative antihypertensive agents to combat this lethal disease. Chalcones have shown antihypertensive activity through inhibition of Angiotensin Converting Enzyme (ACE). Hence, a series of chalcone analogues is synthesized and used as precursor for the synthesis of novel series of pyrimidines. Precursor chalcones were prepared by reacting aldehydes and ketones in presence of sodium hydroxide followed by synthesis of corresponding pyrimidines by reaction with urea in presence of potassium hydroxide. Both groups were then evaluated for their effects on ACE. The results depicted that pyrimidines were more active than chalcones with methoxy (C5 and P5) substitution showing best results to inhibit ACE. Given that chalcone analogues and pyrimidines show a potential as the angiotensin converting enzyme inhibitors.
    Matched MeSH terms: Hypertension/metabolism
  18. Chandran G, Sirajudeen KN, Yusoff NS, Swamy M, Samarendra MS
    Oxid Med Cell Longev, 2014;2014:608512.
    PMID: 25254079 DOI: 10.1155/2014/608512
    Oxidative stress has been suggested to play a role in hypertension and hypertension induced organ damage. This study examined the effect of enalapril, an antihypertensive drug, on oxidative stress markers and antioxidant enzymes in kidney of spontaneously hypertensive rat (SHR) and Nω -nitro-L-arginine methyl ester (L-NAME) administered SHR. Male rats were divided into four groups (SHR, SHR+enalapril, SHR+L-NAME, and SHR+enalapril+L-NAME). Enalapril (30 mg kg(-1) day(-1)) was administered from week 4 to week 28 and L-NAME (25 mg kg(-1) day(-1)) was administered from week 16 to week 28 in drinking water. Systolic blood pressure (SBP) was measured during the experimental period. At the end of experimental periods, rats were sacrificed; urine, blood, and kidneys were collected for the assessment of creatinine clearance, total protein, total antioxidant status (TAS), thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), and catalase (CAT), as well as histopathological examination. Enalapril treatment significantly enhanced the renal TAS level (P < 0.001) and SOD activity (P < 0.001), reduced the TBARS levels (P < 0.001), and also prevented the renal dysfunction and histopathological changes. The results indicate that, besides its hypotensive and renoprotective effects, enalapril treatment also diminishes oxidative stress in the kidneys of both the SHR and SHR+L-NAME groups.
    Matched MeSH terms: Hypertension/metabolism
  19. Jaffri JM, Mohamed S, Rohimi N, Ahmad IN, Noordin MM, Manap YA
    J Med Food, 2011 Jul-Aug;14(7-8):775-83.
    PMID: 21631357 DOI: 10.1089/jmf.2010.1170
    Oil palm (Elaeis guineensis) leaf extract (OPLE) possesses good ex vivo vasodilation and antioxidant properties. This study evaluated the catechin-rich OPLE antioxidant, antihypertensive, and cardiovascular effects in normal and nitric oxide (NO)-deficient hypertensive rats. OPLE was administered orally (500 mg/kg of body weight/day) to normotensive Wistar rats and N(ω)-nitro-L-arginine methyl ester (L-NAME)-induced NO-deficient hypertensive rats. OPLE significantly (P
    Matched MeSH terms: Hypertension/metabolism
  20. Nazratun N, Mahmood AA, Kuppusamy UR, Ahmad TS, Tan SY
    Vasc Med, 2006 Nov;11(4):245-50.
    PMID: 17390548
    The excess accumulation of advanced glycation end products (AGEs) contributes to the chronic complications of type 2 diabetes mellitus (DM) and renal failure. Biopsy specimens (n = 184) of arterial (n = 92) and venous (n = 92) tissues were obtained (radial artery and cephalic vein) from end-stage renal disease (ESRD) patients with or without DM and normal healthy subjects (n = 12) requiring surgery (trauma patients). Immunohistochemical assessment of the blood vessels revealed the presence of pentosidine (AGE marker) in both veins and arteries in 72% of the ESRD patients. The percentage of arteries and veins that showed positive pentosidine staining in ESRD patients with type 2 DM alone was 100% and 92% respectively, in the non-diabetic ESRD patients it was < 70% (for arteries and veins), and in the ESRD patients with hypertension as an additional co-morbidity to type 2 DM it was 70% and 82%, respectively. The veins of ESRD patients with DM showed a strong (+++) positive staining and very strong (++++) positive staining was observed in the patients with DM and hypertension. Only mild (+) or moderate (++) pentosidine staining intensity was observed in the arteries of ESRD patients without or with comorbidities, respectively. The accumulation of AGE in the vein rather than the artery may be a better reflection of the extent of complications of ESRD.
    Matched MeSH terms: Hypertension/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links