Displaying publications 1 - 20 of 273 in total

Abstract:
Sort:
  1. Chong WC, Chellappan DK, Shukla SD, Peterson GM, Patel RP, Jha NK, et al.
    Viruses, 2021 Jul 18;13(7).
    PMID: 34372603 DOI: 10.3390/v13071397
    The recent coronavirus disease 2019 (COVID-19) outbreak has drawn global attention, affecting millions, disrupting economies and healthcare modalities. With its high infection rate, COVID-19 has caused a colossal health crisis worldwide. While information on the comprehensive nature of this infectious agent, SARS-CoV-2, still remains obscure, ongoing genomic studies have been successful in identifying its genomic sequence and the presenting antigen. These may serve as promising, potential therapeutic targets in the effective management of COVID-19. In an attempt to establish herd immunity, massive efforts have been directed and driven toward developing vaccines against the SARS-CoV-2 pathogen. This review, in this direction, is aimed at providing the current scenario and future perspectives in the development of vaccines against SARS-CoV-2.
    Matched MeSH terms: Immunity; Immunity, Herd
  2. Tan KK, Nellis S, Zulkifle NI, Sulaiman S, AbuBakar S
    Epidemiol Infect, 2018 10;146(13):1635-1641.
    PMID: 29860959 DOI: 10.1017/S0950268818001425
    Dengue virus type 3 genotype III (DENV-3/III) is widely distributed in most dengue-endemic regions. It emerged in Malaysia in 2008 and autochthonously spread in the midst of endemic DENV-3/I circulation. The spread, however, was limited and the virus did not cause any major outbreak. Spatiotemporal distribution study of DENV-3 over the period between 2005 and 2011 revealed that dengue cases involving DENV-3/III occurred mostly in areas without pre-existing circulating DENV-3. Neutralisation assays performed using sera of patients with the respective infection showed that the DENV-3/III viruses can be effectively neutralised by sera of patients with DENV-3 infection (50% foci reduction neutralisation titres (FRNT50) > 1300). Sera of patients with DENV-1 infection (FRNT50 ⩾ 190), but not sera of patients with DENV-2 infection (FRNT50 ⩽ 50), were also able to neutralise the virus. These findings highlight the possibility that the pre-existing homotypic DENV-3 and the cross-reacting heterotypic DENV-1 antibody responses could play a role in mitigating a major outbreak involving DENV-3/III in the Klang Valley, Malaysia.
    Matched MeSH terms: Immunity, Herd*; Immunity, Heterologous*
  3. Kotyla PJ, Islam MA
    Int J Mol Sci, 2020 Mar 18;21(6).
    PMID: 32197340 DOI: 10.3390/ijms21062076
    MicroRNAs (miRNAs) are single-stranded, endogenous RNA molecules that play a significant role in the regulation of gene expression as well as cell development, differentiation, and function. Recent data suggest that these small molecules are responsible for the regulation of immune responses. Therefore, they may act as potent modulators of the immune system and play an important role in the development of several autoimmune diseases. Antiphospholipid syndrome (APS) is an autoimmune systemic disease characterized by venous and/or arterial thromboses and/or recurrent fetal losses in the presence of antiphospholipid antibodies (aPLs). Several lines of evidence suggest that like other autoimmune disorders, miRNAs are deeply involved in the pathogenesis of APS, interacting with the function of innate and adaptive immune responses. In this review, we characterize miRNAs in the light of having a functional role in the immune system and autoimmune responses focusing on APS. In addition, we also discuss miRNAs as potential biomarkers and target molecules in treating APS.
    Matched MeSH terms: Immunity, Innate*; Adaptive Immunity*
  4. Saleena LAK, Teo MYM, How YH, In LLA, Pui LP
    J Biosci Bioeng, 2023 Jan;135(1):1-9.
    PMID: 36428209 DOI: 10.1016/j.jbiosc.2022.10.010
    Fermented foods are gaining popularity due to health-promoting properties with high levels of nutrients, phytochemicals, bioactive compounds, and probiotic microorganisms. Due to its unique fermentation process, Lactococcus lactis plays a key role in the food business, notably in the manufacturing of dairy products. The superior biological activities of L. lactis in these functional foods include anti-inflammatory and immunomodulatory capabilities. L. lactis boosted growth performance, controlled amino acid profiles, intestinal immunology, and microbiota. Besides that, the administration of L. lactis increased the rate of infection clearance. Innate and acquired immune responses would be upregulated in both local and systemic compartments, resulting in these consequences. L. lactis is often employed in the food sector and is currently being exploited as a delivery vehicle for biological research. These bacteria are being eyed as potential candidates for biotechnological applications. With this in mind, we reviewed the immunomodulatory effects of different L. lactis strains.
    Matched MeSH terms: Immunity
  5. Gong Y, Hu H, Zhao X, Wei W, Zhang M, Tran NT, et al.
    J Virol, 2024 Dec 17;98(12):e0151924.
    PMID: 39545727 DOI: 10.1128/jvi.01519-24
    As an enduring hot topic in the field of innate immunity, apoptosis is widely considered an effective approach to eliminate pathogenic microbes and plays a crucial role during host-pathogen interactions. Recently, researchers have found that the virus-containing host cells could transmit apoptotic signals to the surrounding uninfected cells during infection, but the mechanism remains unclear. Here, we found that exosomes secreted by WSSV-infected mud crab hemocytes contain viral nucleic acid wsv277, which could be transported to the recipient cells and further expressed viral protein with phosphokinase activity. Besides, by using transcriptome, proteome, ChIP-seq, and coIP techniques, the results revealed that wsv277 could activate the transcription and translation of apoptotic genes via interacting with CBF and EF-1α so as to suppress the spread of virus infection by inducing apoptosis of the surrounding cells. Therefore, for the first time, our study proved that the components of DNA virus could be encapsulated into exosomes and elucidated the mechanism of apoptotic signal transduction between cells from the perspective of exosomes.

    IMPORTANCE: Our study revealed that the components of DNA virus could be packaged and transmitted through the exosomes of lower invertebrates, which strongly demonstrated the diversity of exosome-mediated viral immunity and its universality in animals. Furthermore, we elucidated the mechanism of apoptotic signal transduction between cells from the perspective of exosomes and revealed a novel strategy for the host to cope with viral infection.

    Matched MeSH terms: Immunity, Innate*
  6. Law KB, M Peariasamy K, Mohd Ibrahim H, Abdullah NH
    Sci Rep, 2021 10 18;11(1):20574.
    PMID: 34663839 DOI: 10.1038/s41598-021-00013-2
    The conventional susceptible-infectious-recovered (SIR) model tends to magnify the transmission dynamics of infectious diseases, and thus the estimated total infections and immunized population may be higher than the threshold required for infection control and eradication. The study developed a new SIR framework that allows the transmission rate of infectious diseases to decline along with the reduced risk of contact infection to overcome the limitations of the conventional SIR model. Two new SIR models were formulated to mimic the declining transmission rate of infectious diseases at different stages of transmission. Model A utilized the declining transmission rate along with the reduced risk of contact infection following infection, while Model B incorporated the declining transmission rate following recovery. Both new models and the conventional SIR model were then used to simulate an infectious disease with a basic reproduction number (r0) of 3.0 and a herd immunity threshold (HIT) of 0.667 with and without vaccination. Outcomes of simulations were assessed at the time when the total immunized population reached the level predicted by the HIT, and at the end of simulations. Further, all three models were used to simulate the transmission dynamics of seasonal influenza in the United States and disease burdens were projected and compared with estimates from the Centers for Disease Control and Prevention. For the simulated infectious disease, in the initial phase of the outbreak, all three models performed expectedly when the sizes of infectious and recovered populations were relatively small. As the infectious population increased, the conventional SIR model appeared to overestimate the infections even when the HIT was achieved in all scenarios with and without vaccination. For the same scenario, Model A appeared to attain the level predicted by the HIT and in comparison, Model B projected the infectious disease to be controlled at the level predicted by the HIT only at high vaccination rates. For infectious diseases with high r0, and at low vaccination rates, the level at which the infectious disease was controlled cannot be accurately predicted by the current theorem. Transmission dynamics of infectious diseases with herd immunity can be accurately modelled by allowing the transmission rate of infectious diseases to decline along with the reduction of contact infection risk after recovery or vaccination. Model B provides a credible framework for modelling infectious diseases with herd immunity in a randomly mixed population.
    Matched MeSH terms: Immunity, Herd/immunology; Immunity, Herd/physiology*
  7. Chow YP, Wan KL, Blake DP, Tomley F, Nathan S
    PLoS One, 2011;6(9):e25233.
    PMID: 21980402 DOI: 10.1371/journal.pone.0025233
    BACKGROUND: At least 19 glycosylphosphatidylinositol (GPI)-anchored surface antigens (SAGs) are expressed specifically by second-generation merozoites of Eimeria tenella, but the ability of these proteins to stimulate immune responses in the chicken is unknown.

    METHODOLOGY/PRINCIPAL FINDINGS: Ten SAGs, belonging to two previously defined multigene families (A and B), were expressed as soluble recombinant (r) fusion proteins in E. coli. Chicken macrophages were treated with purified rSAGs and changes in macrophage nitrite production, and in mRNA expression profiles of inducible nitric oxide synthase (iNOS) and of a panel of cytokines were measured. Treatment with rSAGs 4, 5, and 12 induced high levels of macrophage nitric oxide production and IL-1β mRNA transcription that may contribute to the inflammatory response observed during E. tenella infection. Concomitantly, treatment with rSAGs 4, 5 and 12 suppressed the expression of IL-12 and IFN-γ and elevated that of IL-10, suggesting that during infection these molecules may specifically impair the development of cellular mediated immunity.

    CONCLUSIONS/SIGNIFICANCE: In summary, some E. tenella SAGs appear to differentially modulate chicken innate and humoral immune responses and those derived from multigene family A (especially rSAG 12) may be more strongly linked with E. tenella pathogenicity associated with the endogenous second generation stages.

    Matched MeSH terms: Immunity, Innate/immunology; Immunity, Humoral/immunology
  8. Housseau F, Wu S, Wick EC, Fan H, Wu X, Llosa NJ, et al.
    Cancer Res, 2016 04 15;76(8):2115-24.
    PMID: 26880802 DOI: 10.1158/0008-5472.CAN-15-0749
    IL17-producing Th17 cells, generated through a STAT3-dependent mechanism, have been shown to promote carcinogenesis in many systems, including microbe-driven colon cancer. Additional sources of IL17, such as γδ T cells, become available under inflammatory conditions, but their contributions to cancer development are unclear. In this study, we modeled Th17-driven colon tumorigenesis by colonizing Min(Ap) (c+/-) mice with the human gut bacterium, enterotoxigenic Bacteroides fragilis (ETBF), to investigate the link between inflammation and colorectal cancer. We found that ablating Th17 cells by knocking out Stat3 in CD4(+) T cells delayed tumorigenesis, but failed to suppress the eventual formation of colonic tumors. However, IL17 blockade significantly attenuated tumor formation, indicating a critical requirement for IL17 in tumorigenesis, but from a source other than Th17 cells. Notably, genetic ablation of γδ T cells in ETBF-colonized Th17-deficient Min mice prevented the late emergence of colonic tumors. Taken together, these findings support a redundant role for adaptive Th17 cell- and innate γδT17 cell-derived IL17 in bacteria-induced colon carcinogenesis, stressing the importance of therapeutically targeting the cytokine itself rather than its cellular sources. Cancer Res; 76(8); 2115-24. ©2016 AACR.
    Matched MeSH terms: Immunity, Innate*; Adaptive Immunity*
  9. Yahya MD, Watson RR
    Life Sci, 1987 Dec 07;41(23):2503-10.
    PMID: 2824957
    The immunomodulatory effects of morphine and the active components of marijuana, particularly tetrahydrocannabinol, on various aspects of the host immune parameters include alterations in humoral, cell-mediated and innate immunity. Most studies have shown immunosuppressive effects due to use of these abused substances, although there are reports that they may not produce any deleterious effect and may even enhance some aspects of host immunity. They reduce resistance to cancer growth and microbial pathogens in animals.
    Matched MeSH terms: Immunity, Cellular/drug effects*; Immunity, Innate/drug effects
  10. Sin YW, Newman C, Dugdale HL, Buesching C, Mannarelli ME, Annavi G, et al.
    PLoS One, 2016;11(10):e0163773.
    PMID: 27695089 DOI: 10.1371/journal.pone.0163773
    The innate immune system provides the primary vertebrate defence system against pathogen invasion, but it is energetically costly and can have immune pathological effects. A previous study in sticklebacks found that intermediate major histocompatibility complex (MHC) diversity correlated with a lower leukocyte coping capacity (LCC), compared to individuals with fewer, or many, MHC alleles. The organization of the MHC genes in mammals, however, differs to the highly duplicated MHC genes in sticklebacks by having far fewer loci. Using European badgers (Meles meles), we therefore investigated whether innate immune activity, estimated functionally as the ability of an individual's leukocytes to produce a respiratory burst, was influenced by MHC diversity. We also investigated whether LCC was influenced by factors such as age-class, sex, body condition, season, year, neutrophil and lymphocyte counts, and intensity of infection with five different pathogens. We found that LCC was not associated with specific MHC haplotypes, MHC alleles, or MHC diversity, indicating that the innate immune system did not compensate for the adaptive immune system even when there were susceptible MHC alleles/haplotypes, or when the MHC diversity was low. We also identified a seasonal and annual variation of LCC. This temporal variation of innate immunity was potentially due to physiological trade-offs or temporal variation in pathogen infections. The innate immunity, estimated as LCC, does not compensate for MHC diversity suggests that the immune system may function differently between vertebrates with different MHC organizations, with implications for the evolution of immune systems in different taxa.
    Matched MeSH terms: Immunity, Innate/genetics*; Adaptive Immunity/genetics*
  11. Nilashi M, Samad S, Yusuf SYM, Akbari E
    J Infect Public Health, 2020 Jun;13(6):893-896.
    PMID: 32451258 DOI: 10.1016/j.jiph.2020.05.009
    Matched MeSH terms: Immunity, Innate/physiology; Adaptive Immunity/physiology
  12. Prasad AN, Woolsey C, Geisbert JB, Agans KN, Borisevich V, Deer DJ, et al.
    J Infect Dis, 2020 05 11;221(Suppl 4):S436-S447.
    PMID: 32022850 DOI: 10.1093/infdis/jiz613
    BACKGROUND: The henipaviruses, Hendra virus (HeV) and Nipah virus (NiV), are capable of causing severe and often lethal respiratory and/or neurologic disease in animals and humans. Given the sporadic nature of henipavirus outbreaks, licensure of vaccines and therapeutics for human use will likely require demonstration of efficacy in animal models that faithfully reproduce the human condition. Currently, the African green monkey (AGM) best mimics human henipavirus-induced disease.

    METHODS: The pathogenic potential of HeV and both strains of NiV (Malaysia, Bangladesh) was assessed in cynomolgus monkeys and compared with henipavirus-infected historical control AGMs. Multiplex gene and protein expression assays were used to compare host responses.

    RESULTS: In contrast to AGMs, in which henipaviruses cause severe and usually lethal disease, HeV and NiVs caused only mild or asymptomatic infections in macaques. All henipaviruses replicated in macaques with similar kinetics as in AGMs. Infection in macaques was associated with activation and predicted recruitment of cytotoxic CD8+ T cells, Th1 cells, IgM+ B cells, and plasma cells. Conversely, fatal outcome in AGMs was associated with aberrant innate immune signaling, complement dysregulation, Th2 skewing, and increased secretion of MCP-1.

    CONCLUSION: The restriction factors identified in macaques can be harnessed for development of effective countermeasures against henipavirus disease.

    Matched MeSH terms: Immunity, Cellular*; Immunity, Humoral*
  13. Kazi A, Chuah C, Majeed ABA, Leow CH, Lim BH, Leow CY
    Pathog Glob Health, 2018 05;112(3):123-131.
    PMID: 29528265 DOI: 10.1080/20477724.2018.1446773
    Immunoinformatics plays a pivotal role in vaccine design, immunodiagnostic development, and antibody production. In the past, antibody design and vaccine development depended exclusively on immunological experiments which are relatively expensive and time-consuming. However, recent advances in the field of immunological bioinformatics have provided feasible tools which can be used to lessen the time and cost required for vaccine and antibody development. This approach allows the selection of immunogenic regions from the pathogen genomes. The ideal regions could be developed as potential vaccine candidates to trigger protective immune responses in the hosts. At present, epitope-based vaccines are attractive concepts which have been successfully trailed to develop vaccines which target rapidly mutating pathogens. In this article, we provide an overview of the current progress of immunoinformatics and their applications in the vaccine design, immune system modeling and therapeutics.
    Matched MeSH terms: Immunity, Cellular*; Immunity, Humoral*
  14. Al-Herz W, Ziyab AH, Adeli M, Al Farsi T, Al-Hammadi S, Al Kuwaiti AA, et al.
    Pediatr Allergy Immunol, 2022 Dec;33(12):e13901.
    PMID: 36564872 DOI: 10.1111/pai.13901
    BACKGROUND: There is an increased demand for hematopoietic stem cell transplant (HSCT) to treat various diseases including combined immunodeficiencies (CID), with limited worldwide availability. Variables affecting the decision regarding CID patients' prioritization for HSCT are not known. We aimed to determine general, clinical, and immunologic factors associated with the higher risk of early death (≤6 months after diagnosis) in untransplanted CID patients.

    METHODS: Data collection was done retrospectively from five centers and included general patients' information, and clinical and laboratory variables. Inclusion criteria were untransplanted patients who are either dead or alive with a follow-up period ≥6 months after diagnosis.

    RESULTS: Two hundred and thirty-six CID patients were reported by participating centers, of whom 111 were included in the study with a cumulative follow-up period of 278.6 years. Seventy-two patients died with the median age of death of 10.5 months. 35.1% of the patients succumbed within 6 months after the diagnosis. Having a history of Candida infections, sepsis or hepatomegaly was associated with an increased risk of early death. None of the other general or clinical variables was associated with such risk. Bivariate analysis of lymphocyte subsets showed that patients with the following counts: CD3+  

    Matched MeSH terms: Immunity, Humoral
  15. Lan X, Huang W, Sun B, Waiho K, Song H, Hu M, et al.
    Aquat Toxicol, 2024 May;270:106900.
    PMID: 38537436 DOI: 10.1016/j.aquatox.2024.106900
    Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 μg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.
    Matched MeSH terms: Immunity
  16. Hattab D, Amer MFA, Mohd Gazzali A, Chuah LH, Bakhtiar A
    Crit Rev Clin Lab Sci, 2023 Aug;60(5):321-345.
    PMID: 36825325 DOI: 10.1080/10408363.2023.2177605
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the coronavirus disease 2019 (COVID-19) outbreaks that resulted in a catastrophic threat to global health, with more than 500 million cases detected and 5.5 million deaths worldwide. Patients with a COVID-19 infection presented with clinical manifestations ranging from asymptomatic to severe symptoms, resulting in acute lung injury, acute respiratory distress syndrome, and even death. Immune dysregulation through delayed innate immune response or impairment of the adaptive immune response is the key contributor to the pathophysiology of COVID-19 and SARS-CoV-2-induced cytokine storm. Symptomatic and supportive therapy is the fundamental strategy in treating COVID-19 infection, including antivirals, steroid-based therapies, and cell-based immunotherapies. Various studies reported substantial effects of immune-based therapies for patients with COVID-19 to modulate the over-activated immune system while simultaneously refining the body's ability to destroy the virus. However, challenges may arise from the complexity of the disease through the genetic variance of the virus itself and patient heterogeneity, causing increased transmissibility and heightened immune system evasion that rapidly change the intervention and prevention measures for SARS-CoV-2. Cell-based therapy, utilizing stem cells, dendritic cells, natural killer cells, and T cells, among others, are being extensively explored as other potential immunological approaches for preventing and treating SARS-CoV-2-affected patients the similar process was effectively proven in SARS-CoV-1 and MERS-CoV infections. This review provides detailed insights into the innate and adaptive immune response-mediated cell-based immunotherapies in COVID-19 patients. The immune response linking towards engineered autologous or allogenic immune cells for either treatment or preventive therapies is subsequently highlighted in an individual study or in combination with several existing treatments. Up-to-date data on completed and ongoing clinical trials of cell-based agents for preventing or treating COVID-19 are also outlined to provide a guide that can help in treatment decisions and future trials.
    Matched MeSH terms: Immunity, Innate
  17. Tan LY, Komarasamy TV, Rmt Balasubramaniam V
    Front Immunol, 2021;12:742941.
    PMID: 34659238 DOI: 10.3389/fimmu.2021.742941
    The coronavirus disease-19 (COVID-19) elicited by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastating health, economic and social impact worldwide. Its clinical spectrum ranges from asymptomatic to respiratory failure and multi-organ failure or death. The pathogenesis of SARS-CoV-2 infection is attributed to a complex interplay between virus and host immune response. It involves activation of multiple inflammatory pathways leading to hyperinflammation and cytokine storm, resulting in tissue damage, acute respiratory distress syndrome (ARDS) and multi-organ failure. Accumulating evidence has raised concern over the long-term health effects of COVID-19. Importantly, the neuroinvasive potential of SARS-CoV-2 may have devastating consequences in the brain. This review provides a conceptual framework on how the virus tricks the host immune system to induce infection and cause severe disease. We also explore the key differences between mild and severe COVID-19 and its short- and long-term effects, particularly on the human brain.
    Matched MeSH terms: Immunity, Innate/immunology*; Adaptive Immunity/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links