Displaying all 17 publications

Abstract:
Sort:
  1. Hong TB, Rahumatullah A, Yogarajah T, Ahmad M, Yin KB
    Int J Mol Sci, 2010;11(3):1057-69.
    PMID: 20479999 DOI: 10.3390/ijms11031057
    This study aims to elucidate the effects of chrysin on human ER-negative breast cancer cell line, MDA-MB-231. The study demonstrated that treatment of MDA-MB-231 cells with 20 microM chysin for 48 h significantly inhibited the growth of MDA-MB-231 cells and induced cytoplasmic lipid accumulation in the cells, but that the observed of cell death was not caused by apoptosis. The expression of PPARalpha mRNA in chrysin-treated MDA-MB-231 cells was significantly increased, which was likely associated to the proliferation of the cells post chrysin treatment.
    Matched MeSH terms: PPAR alpha/genetics; PPAR alpha/metabolism
  2. Chia JSM, Farouk AAO, Mohamad TAST, Sulaiman MR, Zakaria H, Hassan NI, et al.
    Molecules, 2021 Jun 24;26(13).
    PMID: 34202590 DOI: 10.3390/molecules26133849
    Neuropathic pain is a chronic pain condition persisting past the presence of any noxious stimulus or inflammation. Zerumbone, of the Zingiber zerumbet ginger plant, has exhibited anti-allodynic and antihyperalgesic effects in a neuropathic pain animal model, amongst other pharmacological properties. This study was conducted to further elucidate the mechanisms underlying zerumbone's antineuropathic actions. Research on therapeutic agents involving cannabinoid (CB) and peroxisome proliferator-activated receptors (PPARs) is rising. These receptor systems have shown importance in causing a synergistic effect in suppressing nociceptive processing. Behavioural responses were assessed using the von Frey filament test (mechanical allodynia) and Hargreaves plantar test (thermal hyperalgesia), in chronic constriction injury (CCI) neuropathic pain mice. Antagonists SR141716 (CB1 receptor), SR144528 (CB2 receptor), GW6471 (PPARα receptor) and GW9662 (PPARγ receptor) were pre-administered before the zerumbone treatment. Our findings indicated the involvement of CB1, PPARα and PPARγ in zerumbone's action against mechanical allodynia, whereas only CB1 and PPARα were involved against thermal hyperalgesia. Molecular docking studies also suggest that zerumbone has a comparable and favourable binding affinity against the respective agonist on the CB and PPAR receptors studied. This finding will contribute to advance our knowledge on zerumbone and its significance in treating neuropathic pain.
    Matched MeSH terms: PPAR alpha/antagonists & inhibitors*; PPAR alpha/metabolism
  3. Khor CY, Khoo BY
    Biotechnol Lett, 2020 Aug;42(8):1581-1595.
    PMID: 32385743 DOI: 10.1007/s10529-020-02904-2
    OBJECTIVE: This study aimed to examine the metabolising effect of chrysin by investigating the mRNA expression levels of PPARα and its related cellular mechanisms in HCT116 cells.

    RESULTS: The mRNA expression of PPARα was significantly induced in HCT116 cells following treatment with chrysin for 36 h, but the mRNA expression of PPARα was inhibited, when the cells were treated with a combination of chrysin and MK886 (PPARα inhibitor). This phenomenon proved that the incorporation of MK886 lowers the expression levels of PPARα, thus enabling us to study the function of PPARα. The cell population of the G0/G1 phase significantly increased in chrysin-treated cells, which was accompanied by a decrease in the percentage of S phase cell population after 12 h of treatment. However, treatments of HCT116 cells with chrysin only or a combination of chrysin and MK886 did not show the opposite situation in the G0/G1 and S phase cell populations, indicating that the expression of PPARα may not be associated with the cell cycle in the treated cells. The migration rate in chrysin-treated HCT116 cells was reduced significantly after 24 and 36 h of treatments. However, the activity was revived, when the expression of PPARα was inhibited, indicating that the migration activity of chrysin-treated cells is likely correlated with the expression of PPARα. Comparison of the CYP2S1 and CYP1B1 mRNA expression in chrysin only treated, and a combination of chrysin and MK886-treated HCT116 cells for 24 and 36 h showed a significant difference in the expression levels, indicating that PPARα inhibitor could also modify the expression of CYP2S1 and CYP1B1.

    CONCLUSION: The study indicates that PPARα may play an essential role in regulating the migration activity, and the expression of CYP2S1 and CYP1B1 in chrysin-treated colorectal cancer cells.

    Matched MeSH terms: PPAR alpha/analysis; PPAR alpha/genetics; PPAR alpha/metabolism*
  4. Kwong SC, Jamil AHA, Rhodes A, Taib NA, Chung I
    J Lipid Res, 2019 11;60(11):1807-1817.
    PMID: 31484694 DOI: 10.1194/jlr.M092379
    Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, partly due to the lack of targeted therapy available. Cancer cells heavily reprogram their metabolism and acquire metabolic plasticity to satisfy the high-energy demand due to uncontrolled proliferation. Accumulating evidence shows that deregulated lipid metabolism affects cancer cell survival, and therefore we sought to understand the function of fatty acid binding protein 7 (FABP7), which is expressed predominantly in TNBC tissues. As FABP7 was not detected in the TNBC cell lines tested, Hs578T and MDA-MB-231 cells were transduced with lentiviral particles containing either FABP7 open reading frame or red fluorescent protein. During serum starvation, when lipids were significantly reduced, FABP7 decreased the viability of Hs578T, but not of MDA-MB-231, cells. FABP7-overexpressing Hs578T (Hs-FABP7) cells failed to efficiently utilize other available bioenergetic substrates such as glucose to sustain ATP production, which led to S/G2 phase arrest and cell death. We further showed that this metabolic phenotype was mediated by PPAR-α signaling, despite the lack of fatty acids in culture media, as Hs-FABP7 cells attempted to survive. This study provides imperative evidence of metabolic vulnerabilities driven by FABP7 via PPAR-α signaling.
    Matched MeSH terms: PPAR alpha/metabolism*
  5. Zhao L, Yang L, Ahmad K
    Hum Exp Toxicol, 2023;42:9603271221146780.
    PMID: 36607234 DOI: 10.1177/09603271221146780
    OBJECTIVES: Kaempferol (KMF), has beneficial effects against hepatic lipid accumulation. In this study, we aimed to investigate molecular mechanism underlying the protective effect of KMF on lipid accumulation.

    METHODS: HepG2 cells were treated with different concentrations of KMF and 0.5 mM palmitate (PA) for 24  h. The mRNA and protein levels of genes involved in lipid metabolism were evaluated using real-time PCR and western blot. The expression of Nrf2 was silenced using siRNA.

    RESULTS: Data indicated that KMF (20 μM) reversed PA-induced increased triglyceride (TG) levels and total lipid content. These effects were accompanied by down-regulation of the mRNA and protein levels of lipogenic genes (FAS, ACC and SREBP1), and up-regulation of genes related to fatty acid oxidation (CPT-1, HADHα and PPARα). Kaempferol significantly decreased the levels of the oxidative stress markers (ROS and MDA) and enhanced the activities of antioxidant enzymes SOD and GPx in PA-challenged cells. Luciferase analysis showed that KMF increased the transactivation of Nrf2 in hepatocytes. The results also revealed that KMF-mediated activation of Nrf2 target genes was suppressed by Nrf2 siRNA. Furthermore, Nrf2 siRNA abolished the KMF-induced reduction in ROS and MDA levels in PA treated cells. In addition, the inhibitory effect of KMF on TG levels and the mRNA and protein levels of FAS, ACC and SREPB-1 were significantly abolished by Nrf2 inhibition. Nrf2 inhibition also suppressed the KMF-induced activation of genes involved in β oxidation (CPT-1 and PPAR-α).

    CONCLUSION: The results suggest that KMF protects HepG2 cells from PA-induced lipid accumulation via activation of the Nrf2 signaling pathway.

    Matched MeSH terms: PPAR alpha/metabolism
  6. Hajjar T, Meng GY, Rajion MA, Vidyadaran S, Othman F, Farjam AS, et al.
    BMC Neurosci, 2012;13:109.
    PMID: 22989138 DOI: 10.1186/1471-2202-13-109
    This study examined the effects of dietary polyunsaturated fatty acids (PUFA) as different n-6: n-3 ratios on spatial learning and gene expression of peroxisome- proliferator-activated receptors (PPARs) in the hippocampus of rats. Thirty male Sprague-Dawley rats were randomly allotted into 3 groups of ten animals each and received experimental diets with different n-6: n-3 PUFA ratios of either 65:1, 22:1 or 4.5:1. After 10 weeks, the spatial memory of the animals was assessed using the Morris Water Maze test. The expression of PPARα and PPARγ genes were determined using real-time PCR.
    Matched MeSH terms: PPAR alpha/genetics; PPAR alpha/metabolism*
  7. Ebrahimi M, Rajion MA, Jafari S, Faseleh Jahromi M, Oskoueian E, Qurni Sazili A, et al.
    PLoS One, 2018;13(8):e0188369.
    PMID: 30067750 DOI: 10.1371/journal.pone.0188369
    The present study was conducted to investigate the effects of altering the ratio of n-6 to n-3 fatty acids in the diet on meat quality, fatty acid composition of muscle, and expression of lipogenic genes in the muscle of Boer goats. A total of twenty-one Boer goats (5 months old; 31.66±1.07 kg body weight) were randomly assigned to three dietary treatments with n-6:n-3 fatty acid ratios of 2.27:1 (LR), 5.01:1 (MR) and 10.38:1 (HR), fed at 3.7% of body weight. After 100 days of feeding, all goats were slaughtered and the longissimus dorsi muscle was sampled for analysis of fatty acids and gene expression. The dietary treatments did not affect (P>0.05) the carcass traits, and meat quality of growing goats. The concentrations of cis-9,trans-11 conjugated linoleic acid, trans vaccenic acid, polyunsaturated fatty acids, and unsaturated/saturated fatty acid ratios linearly increased (P<0.01) with decreasing dietary n-6:n-3 fatty acid ratios, especially for LR in the longissimus dorsi muscle of goats. In contrast, the mRNA expression level of the PPARα and PPARγ was down-regulated and stearoyl-CoA desaturase up-regulated in the longissimus dorsi of growing goats with increasing dietary n-6:n-3 fatty acid ratios (P<0.01). In conclusion, the results obtained indicate that the optimal n-6:n-3 fatty acid ratio of 2.27:1 exerted beneficial effects on meat fatty acid profiles, leading towards an enrichment in n-3 polyunsaturated fatty acids and conjugated linoleic acid in goat intramuscular fat.
    Matched MeSH terms: PPAR alpha/genetics; PPAR alpha/metabolism
  8. Chuah C, Jones MK, McManus DP, Nawaratna SK, Burke ML, Owen HC, et al.
    Int J Parasitol, 2016 Apr;46(4):239-52.
    PMID: 26812024 DOI: 10.1016/j.ijpara.2015.12.004
    For hepatic schistosomiasis the egg-induced granulomatous response and the development of extensive fibrosis are the main pathologies. We used a Schistosoma japonicum-infected mouse model to characterise the multi-cellular pathways associated with the recovery from hepatic fibrosis following clearance of the infection with the anti-schistosomal drug, praziquantel. In the recovering liver splenomegaly, granuloma density and liver fibrosis were all reduced. Inflammatory cell infiltration into the liver was evident, and the numbers of neutrophils, eosinophils and macrophages were significantly decreased. Transcriptomic analysis revealed the up-regulation of fatty acid metabolism genes and the identification of Peroxisome proliferator activated receptor alpha as the upstream regulator of liver recovery. The aryl hydrocarbon receptor signalling pathway which regulates xenobiotic metabolism was also differentially up-regulated. These findings provide a better understanding of the mechanisms associated with the regression of hepatic schistosomiasis.
    Matched MeSH terms: PPAR alpha
  9. Yaacob NS, Kaderi MA, Norazmi MN
    J Clin Immunol, 2009 Sep;29(5):595-602.
    PMID: 19472040 DOI: 10.1007/s10875-009-9300-1
    BACKGROUND: The peroxisome proliferator-activated receptors (PPARs) have been implicated in immune regulation. We determined the transcriptional expression of the three isoforms, PPARalpha, PPARgamma1, and PPARgamma2 in the peritoneal macrophages, CD4- and CD8-positive lymphocytes in non-obese diabetic (NOD) mice at 5 and 10 weeks of age as well as at diabetic stage.

    RESULTS: Compared to the non-obese diabetic resistant (NOR) mice, the peritoneal macrophages of NOD mice expressed increased levels of PPARalpha but reduced levels of PPARgamma2, while PPARgamma1 expression was unchanged in all age groups. CD4-positive lymphocytes expressed low levels of PPARalpha in diabetic NOD mice and greatly reduced expression of PPARgamma2 in all age groups. Unlike peritoneal macrophages and CD4-positive cells, the CD8-positive cells expressed low levels of PPARgamma1 in diabetic NOD mice but no difference in PPARalpha and PPARgamma2 expression was observed compared to NOR mice.

    CONCLUSION: The current findings may suggest an important regulatory role of PPARs in the pathogenesis of autoimmune diabetes.

    Matched MeSH terms: PPAR alpha/genetics; PPAR alpha/immunology; PPAR alpha/metabolism*
  10. Zhang W, Lv Z, Zhang Y, Gopinath SCB, Yuan Y, Huang D, et al.
    Oxid Med Cell Longev, 2022;2022:6006601.
    PMID: 36211824 DOI: 10.1155/2022/6006601
    OBJECTIVE: The off-target effects and severe side effects of PPARα and LXRα agonists greatly limit their application in atherosclerosis (AS). Therefore, this study intended to use mesoporous silica nanoparticles as carriers to generate MnO nanoparticles in situ with T1WI-MRI in mesoporous pores and simultaneously load PPARα and LXRα agonists. Afterward, cRGD-chelated platelet membranes can be used for coating to construct a new nanotheranostic agent.

    METHODS: cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles were synthesized by a chemical method. Dynamic light scattering (DLS) was utilized to detect the size distribution and polydispersity index (PDI) of the nanoparticles. The safety of the nanoparticles was detected by CCK8 in vitro and HE staining and kidney function in vivo. Cell apoptosis was detected by flow cytometry detection and TUNEL staining. Oxidative stress responses (ROS, SOD, MDA, and NOX levels) were tested via a DCFH-DA assay and commercial kits. Immunofluorescence and phagocytosis experiments were used to detect the targeting of nanoparticles. Magnetic resonance imaging (MRI) was used to detect the imaging performance of cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles. Using western blotting, the expression changes in LXRα and ABCA1 were identified.

    RESULTS: cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles were successfully established, with a particle size of approximately 150 nm and PDI less than 0.3, and showed high safety both in vitro and in vivo. cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles showed good targeting properties and better MRI imaging performance in AS. cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles showed better antioxidative capacities, MRI imaging performance, and diagnostic and therapeutic effects on AS by regulating the expression of LXRα and ABCA1.

    CONCLUSION: In the present study, cRGD-platelet@MnO/MSN@PPARα/LXRα nanoparticles with high safety and the capacity to target vulnerable plaques of AS were successfully established. They showed better performance on MRI images and treatment effects on AS by promoting cholesterol efflux through the regulation of ABCA1. These findings might address the problems of off-target effects and side effects of nanoparticle-mediated drug delivery, which will enhance the efficiency of AS treatment and provide new ideas for the clinical treatment of AS.

    Matched MeSH terms: PPAR alpha
  11. Ebrahimi M, Rajion MA, Goh YM, Sazili AQ, Schonewille JT
    Biomed Res Int, 2013;2013:194625.
    PMID: 23484090 DOI: 10.1155/2013/194625
    This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing high α -linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR) α , PPAR- γ , and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P < 0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR- γ (P < 0.05) but downregulated the expression of SCD (P < 0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).
    Matched MeSH terms: PPAR alpha/biosynthesis
  12. Ebrahimi M, Rajion MA, Goh YM
    Nutrients, 2014 Sep;6(9):3913-28.
    PMID: 25255382 DOI: 10.3390/nu6093913
    Alteration of the lipid content and fatty acid (FA) composition of foods can result in a healthier product. The aim of this study was to determine the effect of flaxseed oil or sunflower oil in the goat diet on fatty acid composition of muscle and expression of lipogenic genes in the semitendinosus (ST) muscle. Twenty-one entire male Boer kid goats were fed diets containing different levels of linoleic acid (LA) and α-linolenic acid (LNA) for 100 days. Inclusion of flaxseed oil increased (p < 0.05) the α-linolenic acid (C18:3n-3) concentration in the ST muscle. The diet high in α-linolenic acid (p < 0.05) decreased the arachidonic acid (C20:4n-6) and conjugated linolenic acid (CLA) c-9 t-11 content in the ST muscle. There was a significant (p < 0.05) upregulation of PPARα and PPARγ gene expression and downregulation of stearoyl-CoA desaturase (SCD) gene in the ST muscle for the high α-linolenic acid group compared with the low α-linolenic acid group. The results of the present study show that flaxseed oil as a source of α-linolenic acid can be incorporated into the diets of goats to enrich goat meat with n-3 fatty acids, upregulate the PPARα and PPARγ, and downregulate the SCD gene expression.
    Matched MeSH terms: PPAR alpha/genetics; PPAR alpha/metabolism
  13. Chew CH, Chew GS, Najimudin N, Tengku-Muhammad TS
    Int J Biochem Cell Biol, 2007;39(10):1975-86.
    PMID: 17616429
    Peroxisome proliferator activated receptor alpha has been implicated as a regulator of acute phase response genes in hepatocytes. Interleukin-6 is widely known as a major cytokine responsible in the regulation of acute phase proteins and, therefore, acute phase response. Unfortunately, to date, very little is understood about the molecular mechanisms by which interleukin-6 regulates the gene expression of peroxisome proliferator activated receptor alpha. Here, we report the molecular mechanisms by which peroxisome proliferator activated receptor alpha was regulated by interleukin-6 in human HepG2 cells. Interleukin-6 was shown to down-regulate the peroxisome proliferator activated receptor alpha gene expression at the level of gene transcription. Functional dissection of human peroxisome proliferator activated receptor alpha promoter B revealed the role of predicted CCAAT/enhancer-binding protein binding site (-164/+34) in mediating the interleukin-6 inhibitory effects on peroxisome proliferator activated receptor alpha mRNA expression and electrophoretic mobility shift assay showed the binding of CCAAT/enhancer-binding protein isoforms to this cis-acting elements was increased in interleukin-6-treated HepG2 cells. Co-transfection experiments, then, demonstrated that CCAAT/enhancer-binding protein beta either in homodimer or heterodimer with CCAAT/enhancer-binding protein alpha and CCAAT/enhancer-binding protein delta plays a predominant role in inhibiting the transcriptional activity of peroxisome proliferator activated receptor alpha promoter B, thus, reducing the peroxisome proliferator activated receptor alpha mRNA expression. These studies, therefore, suggest a novel mechanism for interleukin-6-mediated inhibition of peroxisome proliferator activated receptor alpha gene expression that involves the activation of CCAAT/enhancer-binding protein isoforms with CCAAT/enhancer-binding protein beta may play a major role.
    Matched MeSH terms: PPAR alpha/genetics*; PPAR alpha/metabolism
  14. Lim WS, Ng DL, Kor SB, Wong HK, Tengku-Muhammad TS, Choo QC, et al.
    Cytokine, 2013 Jan;61(1):266-74.
    PMID: 23141142 DOI: 10.1016/j.cyto.2012.10.007
    Peroxisome proliferator activated receptor-alpha (PPARα) plays a major role in the regulation of lipid and glucose homeostasis, and inflammatory responses. The objectives of the study were to systematically investigate the effects of TNF-α and its regulatory pathway on PPARα expression in HepG2 cells using Real-Time RT-PCR and western blot analysis. Here, TNF-α suppressed PPARα mRNA expression in a dose- and time-dependent manner at the level of gene transcription. Pre-treatment of cells with 10μM of Wedelolactone for 2h was sufficient to restore PPARα expression to basal levels and also affected the expression of PPARα-regulated genes. This study also demonstrated that TNF-α represses PPARα expression by augmenting the activity of canonical NF-κB signalling pathway. This was shown by the abrogation of TNF-α-mediated PPARα down-regulation, after both p65 and p50 were knocked down via siRNA. The IKK contributes to IκBα degradation and mediates inducible phosphorylation of p105 at Ser933. Surprisingly, phosphorylation of p65 at Ser468 and Ser536 were severely abrogated with Wedelolactone inhibition, suggesting that Ser468 and Ser536, but not Ser276, may mediate the TNF-α inhibitory action on PPARα gene expression. These results suggest that TNF-α might, at least in part, suppress PPARα expression through activation of IKK/p50/p105/p65 pathway. Furthermore, phosphorylation of p65 at Ser468 and Ser536 may play a crucial role in the mechanism that limits PPARα production in the human HepG2 cells.
    Matched MeSH terms: PPAR alpha/biosynthesis*; PPAR alpha/genetics
  15. Chew GS, Myers S, Shu-Chien AC, Muhammad TS
    Mol Cell Biochem, 2014 Mar;388(1-2):25-37.
    PMID: 24242046 DOI: 10.1007/s11010-013-1896-z
    Interleukin-6 (IL-6) is the major activator of the acute phase response (APR). One important regulator of IL-6-activated APR is peroxisome proliferator-activated receptor alpha (PPARα). Currently, there is a growing interest in determining the role of PPARα in regulating APR; however, studies on the molecular mechanisms and signaling pathways implicated in mediating the effects of IL-6 on the expression of PPARα are limited. We previously revealed that IL-6 inhibits PPARα gene expression through CAAT/enhancer-binding protein transcription factors in hepatocytes. In this study, we determined that STAT1/3 was the direct downstream molecules that mediated the Janus kinase 2 (JAK2) and phosphatidylinositol-3 kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling pathways in IL-6-induced repression of PPARα. Treatment of cells with pharmacological inhibitors of JAK2, PI3K, AKT, and mTOR attenuated the inhibitory effect of IL-6 on PPARα protein in a dose-dependent manner. These inhibitors also decreased the IL-6-induced repression of PPARα mRNA expression and promoter activity. Overexpression of STAT1 and STAT3 in HepG2 cells cotransfected with a reporter vector containing this PPARα promoter region revealed that both the expression plasmids inhibited the IL-6-induced repression of PPARα promoter activity. In the presence of inhibitors of JAK2 and mTOR (AG490 and rapamycin, respectively), IL-6-regulated protein expression and DNA binding of STAT1 and STAT3 were either completely or partially inhibited simultaneously, and the IL-6-induced repression of PPARα protein and mRNA was also inhibited. This study has unraveled novel pathways by which IL-6 inhibits PPARα gene transcription, involving the modulation of JAK2/STAT1-3 and PI3K/AKT/mTOR by inducing the binding of STAT1 and STAT3 to STAT-binding sites on the PPARα promoter. Together, these findings represent a new model of IL-6-induced suppression of PPARα expression by inducing STAT1 and STAT3 phosphorylation and subsequent down-regulation of PPARα mRNA expression.
    Matched MeSH terms: PPAR alpha/biosynthesis; PPAR alpha/genetics*
  16. Mohd MA, Ahmad Norudin NA, Muhammad TST
    Mol Cell Endocrinol, 2020 04 05;505:110702.
    PMID: 31927097 DOI: 10.1016/j.mce.2020.110702
    Interleukin-6 (IL-6) is a major mediator of the acute phase response (APR) that regulates the transcription of acute phase proteins (APPs) in the liver. During APR, the plasma levels of negative APPs including retinol binding protein 4 (RBP4) are reduced. Activation of the IL-6 receptor and subsequent signaling pathways leads to the activation of transcription factors, including peroxisome proliferator-activated receptor alpha (PPARα) and CCAAT/enhancer binding protein (C/EBP), which then modulate APP gene expression. The transcriptional regulation of RBP4 by IL-6 is not fully understood. Therefore, this study aimed to elucidate the molecular mechanisms of PPARα and C/EBP isoforms in mediating IL-6 regulation of RBP4 gene expression. IL-6 was shown to reduce the transcriptional activity of RBP4, and functional dissection of the RBP4 promoter further identified the cis-acting regulatory elements that are responsible in mediating the inhibitory effect of IL-6. The binding sites for PPARα and C/EBP present in the RBP4 promoter were predicted at -1079 bp to -1057 bp and -1460 bp to -1439 bp, respectively. The binding of PPARα and C/EBPs to their respective cis-acting elements may lead to antagonistic interactions that modulate the IL-6 regulation of RBP4 promoter activity. Therefore, this study proposed a new mechanism of interaction involving PPARα and different C/EBP isoforms. This interaction is necessary for the regulation of RBP4 gene expression in response to external stimuli, particularly IL-6, during physiological changes.
    Matched MeSH terms: PPAR alpha/metabolism*
  17. Cheng HS, Ton SH, Phang SCW, Tan JBL, Abdul Kadir K
    J Adv Res, 2017 Nov;8(6):743-752.
    PMID: 29062573 DOI: 10.1016/j.jare.2017.10.002
    The present study aimed to examine the effects of the types of high-calorie diets (high-fat and high-fat-high-sucrose diets) and two different developmental stages (post-weaning and young adult) on the induction of metabolic syndrome. Male, post-weaning and adult (3- and 8-week old, respectively) Sprague Dawley rats were given control, high-fat (60% kcal), and high-fat-high-sucrose (60% kcal fat + 30% sucrose water) diets for eight weeks (n = 6 to 7 per group). Physical, biochemical, and transcriptional changes as well as liver histology were noted. Post-weaning rats had higher weight gain, abdominal fat mass, fasting glucose, high density lipoprotein cholesterol, faster hypertension onset, but lower circulating advanced glycation end products compared to adult rats. This is accompanied by upregulation of peroxisome proliferator-activated receptor (PPAR) α and γ in the liver and receptor for advanced glycation end products (RAGE) in the visceral adipose tissue. Post-weaning rats on high-fat diet manifested all phenotypes of metabolic syndrome and increased hepatic steatosis, which are linked to increased hepatic and adipocyte PPARγ expression. Adult rats on high-fat-high-sucrose diet merely became obese and hypertensive within the same treatment duration. Thus, it is more effective and less time-consuming to induce metabolic syndrome in male post-weaning rats with high-fat diet compared to young adult rats. As male rats were selectively included into the study, the results may not be generalisable to all post-weaning rats and further investigation on female rats is required.
    Matched MeSH terms: PPAR alpha
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links