Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Naomi R, Embong H, Othman F, Ghazi HF, Maruthey N, Bahari H
    Nutrients, 2021 Dec 22;14(1).
    PMID: 35010895 DOI: 10.3390/nu14010020
    Alzheimer's disease (AD) is the most common form of neurodegenerative disorders affecting mostly the elderly. It is characterized by the presence of Aβ and neurofibrillary tangles (NFT), resulting in cognitive and memory impairment. Research shows that alteration in gut microbial diversity and defects in gut brain axis are linked to AD. Probiotics are known to be one of the best preventative measures against cognitive decline in AD. Numerous in vivo trials and recent clinical trials have proven the effectiveness of selected bacterial strains in slowing down the progression of AD. It is proven that probiotics modulate the inflammatory process, counteract with oxidative stress, and modify gut microbiota. Thus, this review summarizes the current evidence, diversity of bacterial strains, defects of gut brain axis in AD, harmful bacterial for AD, and the mechanism of action of probiotics in preventing AD. A literature search on selected databases such as PubMed, Semantic Scholar, Nature, and Springer link have identified potentially relevant articles to this topic. However, upon consideration of inclusion criteria and the limitation of publication year, only 22 articles have been selected to be further reviewed. The search query includes few sets of keywords as follows. (1) Probiotics OR gut microbiome OR microbes AND (2) Alzheimer OR cognitive OR aging OR dementia AND (3) clinical trial OR in vivo OR animal study. The results evidenced in this study help to clearly illustrate the relationship between probiotic supplementation and AD. Thus, this systematic review will help identify novel therapeutic strategies in the future as probiotics are free from triggering any adverse effects in human body.
    Matched MeSH terms: Probiotics/therapeutic use*
  2. Bungau SG, Behl T, Singh A, Sehgal A, Singh S, Chigurupati S, et al.
    Nutrients, 2021 Sep 26;13(10).
    PMID: 34684377 DOI: 10.3390/nu13103376
    Rheumatoid arthritis (RA) is a progressive inflammatory disorder characterized by swollen joints, discomfort, tightness, bone degeneration and frailty. Genetic, agamogenetic and sex-specific variables, Prevotella, diet, oral health and gut microbiota imbalance are all likely causes of the onset or development of RA, perhaps the specific pathways remain unknown. Lactobacillus spp. probiotics are often utilized as relief or dietary supplements to treat bowel diseases, build a strong immune system and sustain the immune system. At present, the action mechanism of Lactobacillus spp. towards RA remains unknown. Therefore, researchers conclude the latest analysis to effectively comprehend the ultimate pathogenicity of rheumatoid arthritis, as well as the functions of probiotics, specifically Lactobacillus casei or Lactobacillus acidophilus, in the treatment of RA in therapeutic and diagnostic reports. RA is a chronic inflammation immunological illness wherein the gut microbiota is affected. Probiotics are organisms that can regulate gut microbiota, which may assist to relieve RA manifestations. Over the last two decades, there has been a surge in the use of probiotics. However, just a few research have considered the effect of probiotic administration on the treatment and prevention of arthritis. Randomized regulated experimental trials have shown that particular probiotics supplement has anti-inflammatory benefits, helps people with RA enhance daily activities and alleviates symptoms. As a result, utilizing probiotic microorganisms as therapeutics could be a potential possibility for arthritis treatment. This review highlights the known data on the therapeutic and preventative effects of probiotics in RA, as well as their interactions.
    Matched MeSH terms: Probiotics/therapeutic use*
  3. Lye HS, Lee YT, Ooi SY, Teh LK, Lim LN, Wei LK
    Front Biosci (Elite Ed), 2018 03 01;10:344-351.
    PMID: 29293462
    Aging, which affects most of the multi-cellular organisms, is due to a potentially complex set of mechanisms that collectively cause a time-dependent decline of physiological functions. Aging restrains longevity and leads to neurodegenerative diseases including dementia, Alzheimer's disease and lacunar stroke. Human microbiota is now considered to have a strong impact on the progression of aging. The impact of aging and the risk of neurodegenerative diseases can be reduced by using probiotics, or preferably by combining probiotics and prebiotics, also known as synbiotics, that can drastically modify the composition of gut microbiome.
    Matched MeSH terms: Probiotics/therapeutic use*
  4. Ghorbani M, Rajandas H, Parimannan S, Stephen Joseph GB, Tew MM, Ramly SS, et al.
    Psychiatr Genet, 2021 Apr 01;31(2):39-49.
    PMID: 33252574 DOI: 10.1097/YPG.0000000000000270
    Schizophrenia is a chronic mental disorder with marked symptoms of hallucination, delusion, and impaired cognitive behaviors. Although multidimensional factors have been associated with the development of schizophrenia, the principal cause of the disorder remains debatable. Microbiome involvement in the etiology of schizophrenia has been widely researched due to the advancement in sequencing technologies. This review describes the contribution of the gut microbiome in the development of schizophrenia that is facilitated by the gut-brain axis. The gut microbiota is connected to the gut-brain axis via several pathways and mechanisms, that are discussed in this review. The role of the oral microbiota, probiotics and prebiotics in shaping the gut microbiota are also highlighted. Lastly, future perspectives for microbiome research in schizophrenia are addressed.
    Matched MeSH terms: Probiotics/therapeutic use*
  5. Iqbal MZ, Qadir MI, Hussain T, Janbaz KH, Khan YH, Ahmad B
    Pak J Pharm Sci, 2014 Mar;27(2):405-15.
    PMID: 24577933
    Joint FAO/WHO expert's consultation report defines probiotics as: Live microorganisms which when administered in adequate amounts confer a health benefit on the host. Most commonly used probiotics are Lactic acid bacteria (LAB) and bifidobacteria. There are other examples of species used as probiotics (certain yeasts and bacilli). Probiotic supplements are popular now a days. From the beginning of 2000, research on probiotics has increased remarkably. Probiotics are now day's widely studied for their beneficial effects in treatment of many prevailing diseases. Here we reviewed the beneficiary effects of probiotics in some diseases.
    Matched MeSH terms: Probiotics/therapeutic use*
  6. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM, Hassan FA
    Food Chem, 2012 Nov 15;135(2):356-61.
    PMID: 22868099 DOI: 10.1016/j.foodchem.2012.04.120
    The effect of a yoghurt supplement containing Bifidobacterium pseudocatenulatum G4 or Bifidobacterium longum BB536 on plasma lipids, lipid peroxidation and the faecal excretion of bile acids was examined in rats fed a cholesterol-enriched diet. After 8 weeks, the rats in the positive control (PC) group who were fed the cholesterol-enriched diet showed significant increases in plasma total cholesterol (TC), low-density lipoprotein (LDL) cholesterol, and malondialdehyde (MDA). However, groups fed a cholesterol-enriched diet supplemented with yoghurt containing B. pseudocatenulatum G4 or B. longum BB536 had significantly lower plasma TC, LDL-C, very-low-density lipoprotein (VLDL) cholesterol, and MDA than had the PC group after 8 weeks of treatment. In addition, faecal excretion of bile acids was markedly increased in the rats fed the yoghurt containing B. pseudocatenulatum G4 or B. longum BB536 as compared to the PC and NC groups.
    Matched MeSH terms: Probiotics/therapeutic use*
  7. Lye HS, Kuan CY, Ewe JA, Fung WY, Liong MT
    Int J Mol Sci, 2009 Sep;10(9):3755-75.
    PMID: 19865517 DOI: 10.3390/ijms10093755
    Probiotics are live organisms that are primarily used to improve gastrointestinal disorders such as diarrhea, irritable bowel syndrome, constipation, lactose intolerance, and to inhibit the excessive proliferation of pathogenic intestinal bacteria. However, recent studies have suggested that probiotics could have beneficial effects beyond gastrointestinal health, as they were found to improve certain metabolic disorders such as hypertension. Hypertension is caused by various factors and the predominant causes include an increase in cholesterol levels, incidence of diabetes, inconsistent modulation of renin and imbalanced sexual hormones. This review discusses the antihypertensive roles of probiotics via the improvement and/or treatment of lipid profiles, modulation of insulin resistance and sensitivity, the modulation of renin levels and also the conversion of bioactive phytoestrogens as an alternative replacement of sexual hormones such as estrogen and progesterone.
    Matched MeSH terms: Probiotics/therapeutic use*
  8. Meimandipour A, Shuhaimi M, Soleimani AF, Azhar K, Hair-Bejo M, Kabeir BM, et al.
    Poult Sci, 2010 Mar;89(3):470-6.
    PMID: 20181862 DOI: 10.3382/ps.2009-00495
    Among the bacterial fermentation end products in the chicken cecum, butyrate is of particular importance because of its nutritional properties for the epithelial cell and pathogen inhibitory effects in the gut. An in vitro experiment, operated with batch bioreactor, was conducted to quantify butyric-producing bacteria in a simulated broiler cecum supplemented with Lactobacillus salivarius ssp. salicinius JCM 1230 and Lactobacillus agilis JCM 1048 during 24 h of incubation. Selected bacterial species were determined by real-time PCR and short-chain fatty acids and lactate concentrations were monitored. The results showed that after 24 h of incubation, Lactobacillus supplementation significantly increased the number of lactobacilli, bifidobacteria and Faecalibacterium prausnitzii in medium containing cecal content and lactobacilli supplementation (Cc + L) compared with the control (Cc). Addition of lactobacilli did not alter Escherichia coli and Clostridium butyricum, whereas it significantly (P < 0.05) reduced Salmonella in treatment Cc + L compared with the Cc treatment. Propionate and butyrate formation were significantly (P < 0.05) increased in treatment Cc + L as compared with the Cc treatment. Lactate was only detected in treatment containing 2 Lactobacillus strains. After 24 h of incubation, acetate concentration significantly (P < 0.05) decreased in all treatments. It was suggested that lactate produced by Lactobacillus in the cecal content improved the growth of butyric producers such as F. prausnitzii, which significantly increased butyrate accumulation. Additionally, the results showed that butyrate and propionate inhibited Salmonella without influencing the E. coli profile.
    Matched MeSH terms: Probiotics/therapeutic use*
  9. Mazlyn MM, Nagarajah LH, Fatimah A, Norimah AK, Goh KL
    J Gastroenterol Hepatol, 2013 Jul;28(7):1141-7.
    PMID: 23432408 DOI: 10.1111/jgh.12168
    Evidence suggests that probiotics reduce certain constipation-related symptoms. Lactobacillus casei strain Shirota has never been tested as treatment for functional constipation in otherwise-healthy subjects. To evaluate the efficacy of this probiotic among adults with functional constipation was aimed.
    Matched MeSH terms: Probiotics/therapeutic use*
  10. Firouzi S, Barakatun-Nisak MY, Ismail A, Majid HA, Nor Azmi K
    Int J Food Sci Nutr, 2013 Sep;64(6):780-6.
    PMID: 23484591 DOI: 10.3109/09637486.2013.775227
    Evidences from several studies suggest that probiotics affect glucose homeostasis. This paper reviews the results of animal and human studies on the role of probiotics in modulating glucose homeostasis.
    Matched MeSH terms: Probiotics/therapeutic use*
  11. Tan CK, Said S, Rajandram R, Wang Z, Roslani AC, Chin KF
    World J Surg, 2016 08;40(8):1985-92.
    PMID: 27098538 DOI: 10.1007/s00268-016-3499-9
    INTRODUCTION: Disruption of normal gut function is a common side effect post abdominal surgery. It may result in reduced tolerance to oral nutrition and progress to postoperative ileus. Microbial cell preparation is beneficial as a pre-surgical nutritional supplement to aid in bowel recovery and promote the return of normal gut function following abdominal surgery. The aim of this study was to evaluate the efficacy of pre-surgical administration of microbial cell preparation in promoting the return of normal gut function.

    METHOD: The study is a randomized, double-blind, placebo-controlled trial. In total, 40 patients were recruited. Patients were randomized to receive either microbial cell preparation (n = 20) or placebo (n = 20) for 7 days prior to elective surgery. The primary end point was the time to return of normal gut function, while the secondary end point was the duration of hospital stay.

    RESULTS: The treatment group demonstrated significantly faster return of normal gut function with a median of 108.5 h (80-250 h) which was 48 h earlier than the placebo group at a median of 156.5 h (94-220 h), p = 0.022. The duration of hospital stay in the treatment group was also shorter at a median of 6.5 days (4-30 days), in comparison to the placebo group at 13 days (5-25 days), p = 0.012.

    CONCLUSION: Pre-surgical administration of microbial cell preparation promotes the return of normal gut function in patients after colorectal cancer surgery, thus associated with faster recovery and shorter duration of hospital stay.

    Matched MeSH terms: Probiotics/therapeutic use*
  12. Johnson D, Thurairajasingam S, Letchumanan V, Chan KG, Lee LH
    Nutrients, 2021 May 20;13(5).
    PMID: 34065187 DOI: 10.3390/nu13051728
    The field of probiotic has been exponentially expanding over the recent decades with a more therapeutic-centered research. Probiotics mediated microbiota modulation within the microbiota-gut-brain axis (MGBA) have been proven to be beneficial in various health domains through pre-clinical and clinical studies. In the context of mental health, although probiotic research is still in its infancy stage, the promising role and potential of probiotics in various mental disorders demonstrated via in-vivo and in-vitro studies have laid a strong foundation for translating preclinical models to humans. The exploration of the therapeutic role and potential of probiotics in major depressive disorder (MDD) is an extremely noteworthy field of research. The possible etio-pathological mechanisms of depression involving inflammation, neurotransmitters, the hypothalamic-pituitary-adrenal (HPA) axis and epigenetic mechanisms potentially benefit from probiotic intervention. Probiotics, both as an adjunct to antidepressants or a stand-alone intervention, have a beneficial role and potential in mitigating anti-depressive effects, and confers some advantages compared to conventional treatments of depression using anti-depressants.
    Matched MeSH terms: Probiotics/therapeutic use*
  13. Nami Y, Haghshenas B, Abdullah N, Barzegari A, Radiah D, Rosli R, et al.
    J Med Microbiol, 2015 Feb;64(Pt 2):137-46.
    PMID: 25525206 DOI: 10.1099/jmm.0.078923-0
    Genetic and environmental factors can affect the intestinal microbiome and microbial metabolome. Among these environmental factors, the consumption of antibiotics can significantly change the intestinal microbiome of individuals and consequently affect the corresponding metagenome. The term 'probiotics' is related to preventive medicine rather than therapeutic procedures and is, thus, considered the opposite of antibiotics. This review discusses the challenges between these opposing treatments in terms of the following points: (i) antibiotic resistance, the relationship between antibiotic consumption and microbiome diversity reduction, antibiotic effect on the metagenome, and disease associated with antibiotics; and (ii) probiotics as living drugs, probiotic effect on epigenetic alterations, and gut microbiome relevance to hygiene indulgence. The intestinal microbiome is more specific for individuals and may be affected by environmental alterations and the occurrence of diseases.
    Matched MeSH terms: Probiotics/therapeutic use*
  14. Jaffar N, Ishikawa Y, Mizuno K, Okinaga T, Maeda T
    PLoS One, 2016;11(7):e0159466.
    PMID: 27438340 DOI: 10.1371/journal.pone.0159466
    The biofilm degradation of Aggregatibacter actinomycetemcomitans is essential as a complete periodontal disease therapy, and here we show the effects of potential probiotic bacteria such as Lactobacillus spp. for the biofilm of several serotypes of A. actinomycetemcomitans strains. Eight of the 13 species showed the competent biofilm degradation of ≥ 90% reduction in biofilm values in A. actinomycetemcomitans Y4 (serotype b) as well as four of the seven species for the biofilm of A. actinomycetemcomitans OMZ 534 (serotype e). In contrast, the probiotic bacteria did not have a big impact for the degradation of A. actinomycetemcomitans SUNY 75 (serotype a) biofilm. The dispersed A. actinomycetemcomitans Y4 cells through the biofilm detachment were still viable and plausible factors for the biofilm degradation were not due to the lactic acid and low pH conditions. The three enzymes, protease, lipase, and amylase may be responsible for the biofilm degradation; in particular, lipase was the most effective enzyme for the biofilm degradation of A. actinomycetemcomitans Y4 along with the protease activity which should be also important for the other serotypes. Remarkable lipase enzyme activities were detected from some of the potential probiotics and a supporting result using a lipase inhibitor presented corroborating evidence that lipase activity is one of the contributing factors for biofilm degradation outside of the protease which is also another possible factor for the biofilm of the other serotype of A. actinomycetemcomitans strains. On the other hand, the biofilm of A. actinomycetemcomitans SUNY 75 (serotype a) was not powerfully degraded by the lipase enzyme because the lipase inhibitor was slightly functional for only two of potential probiotics.
    Matched MeSH terms: Probiotics/therapeutic use*
  15. Wang MC, Zaydi AI, Lin WH, Lin JS, Liong MT, Wu JJ
    Probiotics Antimicrob Proteins, 2020 09;12(3):840-850.
    PMID: 31749128 DOI: 10.1007/s12602-019-09615-9
    The dairy products remain as the largest reservoir for isolation of probiotic microorganisms. While probiotics have been immensely reported to exert various health benefits, it is also a common notion that these health potentials are strain and host dependent, leading to the need of more human evidence based on specific strains, health targets, and populations. This randomized, single-blind, and placebo-controlled human study aimed to evaluate the potential benefits of putative probiotic strains isolated from kefir on gastrointestinal parameters in fifty-six healthy adults. The consumption of AB-kefir (Bifidobacterium longum, Lactobacillus acidophilus, L. fermentum, L. helveticus, L. paracasei, L. rhamnosus, and Streptococcus thermophiles; total 10 log CFU/sachet) daily for 3 week reduced symptoms of abdominal pain, bloating (P = 0.014), and appetite (P = 0.041) in male subjects as compared to the control. Gut microbiota distribution profiles were shifted upon consumption of AB-kefir compared to baseline, where the abundance of bifidobacteria was increased in male subjects and maintained upon cessation of AB-kefir consumption. The consumption of AB-kefir also increased gastrointestinal abundance of total anaerobes (P = 0.038) and total bacterial (P = 0.049) in female subjects compared to the control after 3 weeks. Our results indicated that AB-kefir could potentially be developed as a natural strategy to improve gastrointestinal functions in adults.
    Matched MeSH terms: Probiotics/therapeutic use*
  16. Hasain Z, Che Roos NA, Rahmat F, Mustapa M, Raja Ali RA, Mokhtar NM
    Nutrients, 2021 Aug 30;13(9).
    PMID: 34578921 DOI: 10.3390/nu13093045
    Dynamic interactions among gestational diabetes mellitus (GDM), gut microbiota, inflammation, oxidative stress, and probiotics are increasingly acknowledged. This meta-analysis aimed to summarize the effects of probiotics in GDM, focusing on lifestyle intervention and pre-intervention washout, in addition to metabolic, inflammation, oxidative stress, and pregnancy outcomes. Three electronic databases (i.e., PubMed, Scopus, and CENTRAL) were searched from inception until October 2020. A meta-analysis was performed, and the effect sizes were reported as either mean differences or odds ratios with 95% confidence intervals. Altogether, 10 randomized controlled trials enrolling 594 participants were included. The meta-analysis indicated that probiotics supplementation effectively reduced fasting plasma glucose by 3.10 mg/dL, and subgroup analyses suggested that the duration of intervention, number of species, pre-intervention washout period, and dietary intervention may determine the effects of probiotics. Probiotics also reduced the level of inflammatory markers (high-sensitivity C-reactive protein, interleukin-6, tumor necrosis factor-α, and malondialdehyde), incidence of macrosomia, and newborn hospitalization. In conclusion, this meta-analysis suggests that probiotics may have positive effects on metabolic, inflammation, oxidative stress, and neonatal outcomes in women with GDM. Additionally, diet and pre-intervention washout may modify the effects of probiotics. Future studies are warranted on a larger scale to ascertain the clinical significance.
    Matched MeSH terms: Probiotics/therapeutic use*
  17. Misra S, Mohanty D
    Crit Rev Food Sci Nutr, 2019;59(8):1230-1236.
    PMID: 29190117 DOI: 10.1080/10408398.2017.1399860
    Gut microbiomes may have a significant impact on mood and cognition, which is leading experts towards a new frontier in neuroscience. Studies have shown that increase in the amount of good bacteria in the gut can curb inflammation and cortisol level, reduces symptoms of depression and anxiety, lowers stress reactivity, improves memory and even lessens neuroticism and social anxiety. This shows that, probably the beneficial gut bacteria or probiotics function mechanistically as delivery vehicles for neuroactive compounds. Thus, a psychobiotic is a live organism, when ingested in adequate amounts, produces a health benefit in patients suffering from psychiatric illness. Study of these novel class of probiotics may open up the possibility of rearrangement of intestinal microbiota for effective management of various psychiatric disorders.
    Matched MeSH terms: Probiotics/therapeutic use*
  18. Ong F, Seah Lee W, Lin C, Ng RT, Yee Wong S, Lim SL, et al.
    Pediatr Neonatol, 2018 10;59(5):494-500.
    PMID: 29352665 DOI: 10.1016/j.pedneo.2017.12.007
    BACKGROUND: The use of complementary and alternative medicine (CAM) has been associated with adverse effects and self-imposed dietary restrictions. The prevalence of its use in Asian children with inflammatory bowel disease (IBD) is unknown. We aimed to determine the prevalence, types, and factors associated with the use of CAM among children with IBD from Singapore and Malaysia, and to ascertain if dietary restriction was prevalent in patients who used CAM.
    METHODS: A cross-sectional study was conducted in which parents of children with IBD attending two tertiary pediatric IBD referral centres in Singapore and Malaysia were interviewed. Data about demographics, conventional treatment, complementary therapies and dietary patterns were collected in a questionnaire.
    RESULTS: Of 64 children with IBD interviewed, 83% (n = 53) reported the use of CAM (Singapore [90%] vs. Malaysia [76%]; p = 0.152). The median number of CAM agents used was two (range 1-10). The three most common types of CAM used were probiotics (64%), vitamin and mineral supplements (55%), and food-based therapies (36%). Among individual CAM categories, the use of food-based therapies was correlated significantly with nationality (r = 0.497, p 
    Matched MeSH terms: Probiotics/therapeutic use
  19. Golkhalkhali B, Paliany AS, Chin KF, Rajandram R
    Nutr Cancer, 2018 01 11;70(2):184-191.
    PMID: 29324050 DOI: 10.1080/01635581.2018.1412470
    The prevalence of colorectal cancer (CRC) is on a steady rise over the years, with the World Health Organization (WHO) reporting CRC as the fourth leading cause of cancer-related death worldwide. While treatment modalities may differ in accordance to the staging and severity of the disease itself, chemotherapy is almost unavoidable in most cases. Though effective in its mode of action, chemotherapy is commonly associated with undesirable side effects that negatively affects the patient in terms of quality of life, and in some cases may actually interfere with their treatment regimens, thus escalating to poor prognosis. Gastrointestinal disturbances is a major side effect of chemotherapy and in CRC, gastrointestinal disturbances may be further aggravated and grave in nature mainly due to the affected site, being the gastrointestinal tract. The use of complementary therapies as adjuncts to alleviate the side effects of chemotherapy in CRC patients is gaining prominence with dietary supplements being the most commonly employed adjunct. Some of the frequently used dietary supplements for CRC patients are probiotics, omega-3 fatty acid and glutamine. The successful crosstalk between these dietary supplements with important metabolic pathways is crucial in the alleviation of chemotherapy side effects.
    Matched MeSH terms: Probiotics/therapeutic use*
  20. Johnson D, Letchumanan V, Thurairajasingam S, Lee LH
    Nutrients, 2020 Jul 03;12(7).
    PMID: 32635373 DOI: 10.3390/nu12071983
    The study of human microbiota and health has emerged as one of the ubiquitous research pursuits in recent decades which certainly warrants the attention of both researchers and clinicians. Many health conditions have been linked to the gut microbiota which is the largest reservoir of microbes in the human body. Autism spectrum disorder (ASD) is one of the neurodevelopmental disorders which has been extensively explored in relation to gut microbiome. The utilization of microbial knowledge promises a more integrative perspective in understanding this disorder, albeit being an emerging field in research. More interestingly, oral and vaginal microbiomes, indicating possible maternal influence, have equally drawn the attention of researchers to study their potential roles in the etiopathology of ASD. Therefore, this review attempts to integrate the knowledge of microbiome and its significance in relation to ASD including the hypothetical aetiology of ASD and its commonly associated comorbidities. The microbiota-based interventions including diet, prebiotics, probiotics, antibiotics, and faecal microbial transplant (FMT) have also been explored in relation to ASD. Of these, diet and probiotics are seemingly promising breakthrough interventions in the context of ASD for lesser known side effects, feasibility and easier administration, although more studies are needed to ascertain the actual clinical efficacy of these interventions. The existing knowledge and research gaps call for a more expanded and resolute research efforts in establishing the relationship between autism and microbiomes.
    Matched MeSH terms: Probiotics/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links