Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Mbenza NM, Nasarudin N, Vadakkedath PG, Patel K, Ismail AZ, Hanif M, et al.
    Chembiochem, 2021 08 03;22(15):2521-2525.
    PMID: 34137488 DOI: 10.1002/cbic.202100181
    Hypoxia-inducible factor prolyl hydroxylase domain 2 (PHD2) is an important oxygen sensor in animals. By using the CO-releasing molecule-2 (CORM-2) as an in situ CO donor, we demonstrate that CO is an inhibitor of PHD2. This report provides further evidence about the emerging role of CO in oxygen sensing and homeostasis.
    Matched MeSH terms: Hypoxia-Inducible Factor-Proline Dioxygenases*
  2. Chan YY, Mbenza NM, Chan MC, Leung IKH
    Methods Mol Biol, 2023;2648:187-206.
    PMID: 37039992 DOI: 10.1007/978-1-0716-3080-8_12
    Molecular oxygen is essential for all multicellular life forms. In humans, the hypoxia-inducible factor (HIF) prolyl hydroxylase domain-containing enzymes (PHDs) serve as important oxygen sensors by regulating the activity of HIF, the master regulator that mediates cellular oxygen homeostasis, in an oxygen-dependent manner. In normoxia, PHDs catalyze the prolyl hydroxylation of HIF, which leads to its degradation and prevents cellular hypoxic response to be triggered. PHDs are current inhibition targets for the potential treatments of a number of diseases. In this chapter, we discuss in vitro and cell-based methods to study the modulation of PHD2, the most important human PHD isoform in normoxia and mild hypoxia. These include the production and purification of recombinant PHD2, the use of mass spectrometry to follow PHD2-catalyzed reactions and the studies of HIF stabilization in cells by immunoblotting.
    Matched MeSH terms: Procollagen-Proline Dioxygenase/metabolism; Procollagen-Proline Dioxygenase/chemistry; Hypoxia-Inducible Factor-Proline Dioxygenases*
  3. Neoh CF, Kong DC
    Expert Rev Pharmacoecon Outcomes Res, 2014 Jun;14(3):319-34.
    PMID: 24708054 DOI: 10.1586/14737167.2014.906306
    Hepatitis C virus (HCV) infection is costly to treat and, has high morbidity and mortality. The addition of new protease inhibitors (i.e., boceprevir, telaprevir), to the standard dual therapy with pegylated interferon-α and ribavirin, for the treatment of HCV infection has demonstrated superior efficacy with shorter treatment duration, but at higher drug acquisition costs and incidence of adverse events. Robust economic data are required to inform healthcare decision for the optimal use of these expensive antiviral agents. Accordingly, this review will explore the clinical and economic aspects of boceprevir-based treatment strategies. Important considerations, challenges and gaps for future pharmacoeconomic research in this setting are highlighted.
    Matched MeSH terms: Proline/adverse effects; Proline/analogs & derivatives*; Proline/economics; Proline/therapeutic use
  4. Agduma AR, Sese MD
    Trop Life Sci Res, 2016 Aug;27(2):37-52.
    PMID: 27688850 DOI: 10.21315/tlsr2016.27.2.4
    The biochemical changes in two Selaginella species namely, S. tamariscina (Beauv.) Spring and S. plana (Desv. ex Poir.) Heiron., as induced by desiccation and subsequent rehydration were explored. Plants were allowed to dehydrate naturally by withholding irrigation until shoot's relative water content (RWC) reached <10%. After which, dehydrated plants were watered until fully rehydrated states were obtained which was about 90% RWC or more. Desiccation-tolerance characteristics were observed in S. tamariscina while desiccation-sensitivity features were seen in S. plana. Membrane integrity was maintained in S. tamariscina but not in S. plana as evidenced in the relative electrolyte leakage measurements during desiccation phase and the subsequent rehydration stage. Pigment analyses revealed conservation of some chlorophylls and carotenoids during desiccation and reaching control levels following rehydration in S. tamariscina. Very low pigment contents were found in S. plana during desiccation phase and the pigments were not recovered during rehydration attempt. Meanwhile, compatible solute determination showed rise in total sugar and proline contents of desiccated S. tamariscina only, indicating presence of biochemical protection machineries in this species and absence of such in S. plana during dehydrating conditions. These data indicate that one key element for desiccation-tolerance in lower vascular plants is the ability to protect tissues from severe damages caused by intense desiccation.
    Matched MeSH terms: Proline
  5. Almashwali AA, Khan MS, Lal B, Jin QC, Sabil KM, Khor SF
    Chemosphere, 2023 Jan;312(Pt 2):137325.
    PMID: 36423723 DOI: 10.1016/j.chemosphere.2022.137325
    This experimental study evaluates the inhibition performance of kinetic hydrates inhibitors (KHIs) of three amino acids, namely: glycine, proline, and alanine. It includes the performance comparison with the conventional inhibitor i.e., polyvinyl pyrrolidine (PVP) on methane (CH4) hydrate in oil systems in two different systems, i.e., deionized and brine water systems. The experiments were conducted in a high-pressure hydrate reactor replicating subsea pipeline conditions, i.e., the temperature of 274 K, pressure 8 MPa, and concentration of 1 wt%, by applying the isochoric cooling technique. The formation kinetics results suggest that all the studied amino acids effectively worked as kinetic inhibitors by potentially delaying CH4 hydrate formations due to their steric hindrance abilities. The interesting phenomenon was observed that the different studied amino acids behave differently in the brine-oil and deionized water-oil systems due to their side chain interaction. In a deionized water-oil system, glycine gives the highest inhibition performance by reducing the hydrate formation risk. On the contrary, in the brine-oil system, proline showed a significant inhibition effect. It should be noted that both glycine and proline were giving almost similar inhibition performance compared to the conventional hydrate inhibitor PVP, however glycine and proline significantly reduced CH4 consumption into hydrate due to their high surface active under CH4 conditions, which strengths the surface tension of the liquid/CH4 interface. Furthermore, according to the findings, it shows that increased side alkyl chain lengths of amino acids increase the efficacy of their kinetic hydration inhibition performance due to better surface adsorption abilities. The amino acids' ability to suppress growth is also linked strongly with hydrophobicity and alkyl side chain length. The findings of this study contribute significantly to current efforts to limit gas hydrate formation in offshore pipelines, particularly in oil-dominant pipelines.
    Matched MeSH terms: Proline
  6. Zhang Y, Ren H, Li B, Udin SM, Maarof H, Zhou W, et al.
    Int J Biol Macromol, 2023 Jul 01;242(Pt 2):124829.
    PMID: 37210053 DOI: 10.1016/j.ijbiomac.2023.124829
    Deep eutectic solvents (DESs) composed by amino acids (L-arginine, L-proline, L-alanine) as the hydrogen bond acceptors (HBAs) and carboxylic acids (formic acid, acetic acid, lactic acid, levulinic acid) as hydrogen bond donors (HBDs) were prepared and used for the dissolution of dealkaline lignin (DAL). The mechanism of lignin dissolution in DESs was explored at molecular level by combining the analysis of Kamlet-Taft (K-T) solvatochromic parameters, FTIR spectrum and density functional theory (DFT) calculations of DESs. Firstly, it was found that the formation of new hydrogen bonds between lignin and DESs mainly drove the dissolution of lignin, which were accompanied by the erosion of hydrogen bond networks in both lignin and DESs. The nature of hydrogen bond network within DESs was fundamentally determined by the type and number of functional groups in both HBA and HBD, which affected its ability to form hydrogen bond with lignin. One hydroxyl group and carboxyl group in HBDs provided active protons, which facilitated proton-catalyzed cleavage of β-O-4, thus enhancing the dissolution of DESs. The superfluous functional group resulted in more extensive and stronger hydrogen bond network in the DESs, thus decreasing the lignin dissolving ability. Moreover, it was found that lignin solubility had a closed positive correlation with the subtraction value of α and β (net hydrogen donating ability) of DESs. Among all the investigated DESs, L-alanine/formic acid (1:3) with the strong hydrogen-bond donating ability (acidity), weak hydrogen-bond accepting ability (basicity) and small steric-hindrance effect showed the best lignin dissolving ability (23.99 wt%, 60 °C). On top of that, the value of α and β of L-proline/carboxylic acids DESs showed some positive correlation with the global electrostatic potential (ESP) maxima and minima of the corresponding DESs respectively, indicating the analysis of ESP quantitative distributions of DESs could be an effective tool for DESs screening and design for lignin dissolution as well as other applications.
    Matched MeSH terms: Proline
  7. Manickavasagam G, Saaid M, Lim V
    J Food Sci, 2024 Feb;89(2):811-833.
    PMID: 38224177 DOI: 10.1111/1750-3841.16921
    This systematic review paper aims to discuss the trend in quality assessment properties and constituents of honey at different storage conditions and confer the possible whys and wherefores associated with the significant changes. Initially, a literature search was conducted through Google Scholar, ScienceDirect, PubMed, and Scopus databases. In total, 43 manuscripts published between 2001 and 2023 that met the inclusion and exclusion criteria were chosen for the review. As an outcome of this review, prolonged honey storage could deteriorate sensory, nutritional, and antioxidant properties and promote fermentation, granulation, microbial growth, carcinogenicity, organotoxicity, and nephrotoxicity. This systematic review also recognized that diastase activity, invertase activity, 5-hydroxymethylfurfural content, proline content, sugar content, amino acids, and vitamins could be used as indicators to distinguish fresh and stored honey based on the significant test (p-value) in the reported studies. However, all the reported studies used the simplest approach (one-way ANOVA) to identify the significant differences in the analyzed parameter during the storage period and none of them reported an approach to identify the most influential parameter at different storage conditions. In conclusion, orthogonal partial least squares discriminant analysis (supervised multivariate statistical tool) has to be employed in future studies to find the most influential parameter and could be used to potent chemical markers to distinguish fresh and stored honey because this analysis is incorporated with S-plot, variable importance of projection, and one-way ANOVA, which can produce the most accurate and precise results rather solely depending on one-way ANOVA.
    Matched MeSH terms: Proline
  8. Hoe, S.Z., Pendek, R., Lam, S.K., Rahim, Z.H.A.
    Ann Dent, 1997;4(1):-.
    MyJurnal
    Human saliva contains a large number of proteins which can be separated using polyacrylamide gel electrophoresis (PAGE). In this study the protein profiles of whole saliva of diabetic and non-diabetic were compared. Considerable variations between individuals in the protein profiles were observed. The saliva from diabetic patients appeared to have more of proline-rich protein bands in the molecular weight region below 56 KOa. Further investigations using individual gland saliva should be carried out.
    Matched MeSH terms: Proline
  9. Raja Mohd Hafidz, R.N., Yaakob, C.M., Amin, I., Noorfaizan, A.
    MyJurnal
    The ability to compare bovine and porcine skin gelatin based on their amino acid composition, polypeptides pattern, bloom strength, turbidity and foaming properties were investigated. Amino acid composition of both gelatin showed that the content of glycine, proline and arginine in porcine gelatin were higher than bovine gelatin. However, the polypeptides pattern between both gelatin is closely similar. The bloom strength of porcine gelatin was higher than bovine gelatin from pH 3 to pH 10. Both gelatin possessed highest bloom strength at pH 9. The lowest bloom strength of bovine gelatin was at pH 3 while porcine gelatin at pH 5. The highest turbidity of bovine gelatin obtained at pH 7 while porcine gelatin at pH 9. Foam expansion and foam stability of bovine gelatin were higher than porcine gelatin at all concentrations.
    Matched MeSH terms: Proline
  10. Sanaei, A.V., Mahmoodani, F., See, S.F., Yusop, S.M., Babji, A.S.
    MyJurnal
    The extraction of catfish (Clarias gariepinus) bone gelatin was optimized by using Response Surface Methodology (RSM) involving 4-factors, 5-levels Central Composite Design (CCD). The optimum conditions for extraction were produced by a pre-treatment of 3.35% HCl for 14.5 h along with hot water extraction at 67.23°C for 5.2 h. Results showed that the predicted yield by RSM (61.81%) was closely matched the experimental yield of 60.54%. The results also indicated that the extracted bone gelatin possessed high protein content (81.75%) and imino acid (proline and hydroxyproline) (144 residues per 1000 residues), with gel strength (230.25 g), viscosity (4.64 mPa.s) and isoionic point (5.35) comparable to that of bovine gelatin. The results suggested that RSM is a great optimizing tool for extraction of gelatin from clarias catfish bone and values of the physicochemical properties of gelatin are higher or comparable than those from other fish species and bovine gelatin.
    Matched MeSH terms: Hydroxyproline; Proline
  11. Amiza, M.A., Wan Maizatul Shima, W.M., Nor Hayati, I., Nizaha Juhaida, M.
    MyJurnal
    This study reported the extraction optimization and characterization of cobia (Rachycentron canadum) skin gelatin. Optimization study was carried out to determine the effect of CH3COOH concentration, skin to water ratio, extraction temperature and extraction time on gelatin yield (GY) and gel strength (GS) using Response Surface Methodology (RSM). The optimum conditions were 0.15mol/L for CH3COOH concentration, 82.4oC of extraction temperature, 6 h of extraction time and 1:6 of skin to water ratio, which produced cobia gelatin with GY of 20.10% and GS of 205.6 g. Characteristics of cobia skin gelatin (CG) were then compared to that of commercial bovine gelatin (BG). It was found that the most dominant amino acid in CG was glycine, proline and alanine. There was no difference in foaming and emulsifying properties of CG and BG at 1% concentration, but at 2% and 3% concentration, BG performed better. CG was found to have higher fat binding capacity but lower water holding capacity than BG. Least gelling concentration for CG was recorded at 2% while for BG at 1%. CG and BG had a pI at pH 6.05 and 4.82, respectively. This study shows that cobia skin gelatin has potential as halal alternative to bovine gelatin in food industry.
    Matched MeSH terms: Proline
  12. Nasser Shahsavari, Hasnah Mohd. Jais, Amir Hossein Shirani Rad
    Sains Malaysiana, 2014;43:1549-1555.
    The effects of zeolite and zinc foliar applications on the biochemical characteristics of canola cultivars under different moisture regimes were investigated in a study conducted during the 2010 and 2011 growing seasons. The study was completed using a factorial split-plot experiment based on randomized complete block design (RCBD) with three replications at the Seed and Plant Improvement Institute (SPII), Karaj, Iran. The treatments were: irrigation (I): complete (I1) and restricted (I2); zeolite (Z): 0 (Z1) and 15 ton ha-1 (Z2) and Zn: 0, 0.1 and 0.2% concentrations of zinc sulfate (Zn1, Zn2, and Zn3) at the pod formation stage. These treatments were applied during the pod formation stage to the Licord, RGS003 and Opera cultivars. This study showed that although applying Z and Zn had positive effects on the quality of canola, the highest performance and the best results were obtained using a combination of Z and Zn. The combined application of Z and Zn decreased the proline and carbohydrate contents to 44.35 and 34.42%, respectively. Therefore, with the low cost of natural Z and moderate Zn intake, these treatments can be used to enhance the performance of canola, especially in regions frequently subjected to water stress.
    Matched MeSH terms: Proline
  13. Normah, I.
    MyJurnal
    Gelatin from sutchi catfish (Pangasius hypophthalmus) skin was extracted and applied in the preparation of gummy in order to determine the suitability of sutchi catfish gelatin in gummy production. The skin was subjected to pre-treatment in the following sequence; 0.8M NaCl, 0.19 N NaOH followed by 0.12 N acetic acid prior to 12 hours extraction in distilled water at 50oC. The physicochemical characteristics of sutchi catfish gelatin was analysed and compared with the commercial bovine gelatin. Gummy added with sutchi catfish gelatin was also compared with gummy added with commercial gelatin. Analysis comprises of yield, gel strength, setting point and setting time, amino acid composition, texture profile analysis and sensory evaluation. The extraction resulted in 14.47% yield of gelatin. Sutchi catfish gelatin showed higher gel strength value (360.86 g) compared to the commercial gelatin (217.37 g) which is in accordance with proline content. Texture profile analysis showed that gummies prepared using sutchi catfish gelatin had significantly higher (p
    Matched MeSH terms: Proline
  14. Hakim MA, Juraimi AS, Hanafi MM, Ismail MR, Rafii MY, Aslani F, et al.
    J Environ Biol, 2014 Sep;35(5):855-64.
    PMID: 25204059
    Six weed species (Leptochola chinensis, Echinochloa crus-galli, Echinochloa colona, Jussiaea linifolia, Oryza sativa (weedy rice) and Cyperus iria) were tested for their salt tolerant traits in terms of chlorophyll, proline and mineral nutrients accumulation against different salinity levels (0, 4, 8, 16, 24, 32, and 40 dS m(-1)). Chlorophyll a, b and total chlorophyll content, proline and mineral nutrients accumulation were determined. Salt stress showed prominent effect on all the parameters investigated and there were significant variations between the all weed species. Chlorophyll content, K+, Ca(2+) and Mg(2+) ions in both shoots and roots significantly decreased; while proline and Na+ accumulation significantly increased with increasing salinity up to 40 dS m(-1). In terms of overall performance, Cyperus iria and E. crus-galliwere relatively more tolerant; E. colona and J. linifolia were tolerant; L. chinensis and O. sativa L were salt sensitive, respectively.
    Matched MeSH terms: Proline/metabolism*
  15. Moniruzzaman M, Sulaiman SA, Azlan SA, Gan SH
    Molecules, 2013;18(12):14694-710.
    PMID: 24287998 DOI: 10.3390/molecules181214694
    Honey is a good source of several important chemical compounds and antioxidants and is harvested throughout the year. However, no study has determined how their contents change over the years. The aim of the present research was to investigate the changes in the phenolics, flavonoids and antioxidant properties, as well as other physicochemical properties, of Malaysian acacia honey collected during different months during a two year period. The DPPH (1,1-diphenyl-2-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods were used to determine the total antioxidant activity of the honey samples. Generally, honey samples collected in the beginning and the middle of the year tended to have higher sugar content, which may be attributed to its high acidic nature and low moisture content. There was a gradual increase in the phenolic content of the acacia honey samples collected between September 2010 and December 2010. The honey sample collected at the beginning of the year (January) showed the highest color intensity and was dark amber in color. It also contained the highest concentration of phenolic compounds (341.67 ± 2.94 mg(gallic acid)/kg), the highest flavonoid content (113.06 ± 6.18 mg(catechin)/kg) and the highest percentage of DPPH inhibition and the highest FRAP value, confirming its high antioxidant potential. There was a positive correlation between DPPH and total phenolic content, suggesting that phenolic compounds are the strongest contributing factor to the radical scavenging activity of Malaysian acacia honeys. Overall, our results indicated that there were significant seasonal variations in the antioxidant potentials of honey over the two year period and the time of honey collection affects its physicochemical properties. Therefore, acacia honey from Malaysia should ideally be collected during the dry season, particularly in the months of January, May and June.
    Matched MeSH terms: Proline/chemistry
  16. Khalil I, Moniruzzaman M, Boukraâ L, Benhanifia M, Islam A, Islam N, et al.
    Molecules, 2012 Sep 20;17(9):11199-215.
    PMID: 22996344
    The aim of the present study was to characterize the physical, biochemical and antioxidant properties of Algerian honey samples (n = 4). Physical parameters, such as pH, moisture content, electrical conductivity (EC), total dissolved solids (TDS), color intensity, total sugar and sucrose content were measured. Several biochemical and antioxidant tests were performed to determine the antioxidant properties of the honey samples. The mean pH was 3.84 ± 0.01, and moisture the content was 13.21 ± 0.16%. The mean EC was 0.636 ± 0.001, and the mean TDS was 316.92 ± 0.92. The mean color was 120.58 ± 0.64 mm Pfund, and the mean 5-hydroxymethylfurfural (HMF) content was 21.49 mg/kg. The mean total sugar and reducing sugar contents were 67.03 ± 0.68 g/mL and 64.72 ± 0.52 g/g, respectively. The mean sucrose content was 2.29 ± 0.65%. High mean values of phenolic (459.83 ± 1.92 mg gallic acid/kg), flavonoid (54.23 ± 0.62 mg catechin/kg), ascorbic acid (159.70 ± 0.78 mg/kg), AEAC (278.15 ± 4.34 mg/kg), protein (3381.83 ± 6.19 mg/kg) and proline (2131.47 ± 0.90) contents, as well as DPPH (39.57% ± 4.18) and FRAP activities [337.77 ± 1.01 µM Fe (II)/100 g], were also detected, indicating that Algerian honey has a high antioxidant potential. Strong positive correlations were found between flavonoid, proline and ascorbic acid contents and color intensity with DPPH and FRAP values. Thus, the present study revealed that Algerian honey is a good source of antioxidants.
    Matched MeSH terms: Proline/analysis
  17. Juneta-Nor AS, Noordin NM, Azra MN, Ma HY, Husin NM, Ikhwanuddin M
    J Zhejiang Univ Sci B, 2020 10 13;21(10):823-834.
    PMID: 33043647 DOI: 10.1631/jzus.B2000126
    Ecdysis is a common phenomenon that happens throughout the life phase of the giant freshwater prawn Macrobrachium rosenbergii. It is vital to better understand the correlation between cannibalism and biochemical compound that exists during the moulting process. The objective of the present study was to determine the amino acid profile released by M. rosenbergii during the ecdysis process that promotes cannibalism. To accomplish this, changes in amino acid levels (total amino acid (TAA) and free amino acid (FAA)) of tissue muscle, exoskeleton, and sample water of culture medium from the moulting (E-stage) and non-moulting (C-stage) prawns were analysed using high-performance liquid chromatography (HPLC). Comparison study revealed that among the TAA compounds, proline and sarcosine of tissues from moulting prawn were found at the highest levels. The level of FAA from water that contains moulting prawns (E-stage) was dominated by tryptophan and proline. Significant values obtained in the present study suggested that these amino acid compounds act as a chemical cue to promote cannibalism in M. rosenbergii during ecdysis. The knowledge of compositions and compounds that were released during the moulting process should be helpful for better understanding of the mechanism and chemical cues that play roles on triggering cannibalism, and also for future dietary manipulation to improve feeding efficiencies and feeding management, which indirectly impacts productivity and profitability.
    Matched MeSH terms: Proline/chemistry
  18. Cook GM, Sousa C, Schaeffer J, Wiles K, Jareonsettasin P, Kalyanasundaram A, et al.
    Elife, 2020 05 28;9.
    PMID: 32452761 DOI: 10.7554/eLife.54612
    Contact repulsion of growing axons is an essential mechanism for spinal nerve patterning. In birds and mammals the embryonic somites generate a linear series of impenetrable barriers, forcing axon growth cones to traverse one half of each somite as they extend towards their body targets. This study shows that protein disulphide isomerase provides a key component of these barriers, mediating contact repulsion at the cell surface in chick half-somites. Repulsion is reduced both in vivo and in vitro by a range of methods that inhibit enzyme activity. The activity is critical in initiating a nitric oxide/S-nitrosylation-dependent signal transduction pathway that regulates the growth cone cytoskeleton. Rat forebrain grey matter extracts contain a similar activity, and the enzyme is expressed at the surface of cultured human astrocytic cells and rat cortical astrocytes. We suggest this system is co-opted in the brain to counteract and regulate aberrant nerve terminal growth.
    Matched MeSH terms: Procollagen-Proline Dioxygenase/genetics; Procollagen-Proline Dioxygenase/metabolism
  19. Mahmoodani F, Ardekani VS, See SF, Yusop SM, Babji AS
    J Food Sci Technol, 2014 Nov;51(11):3104-13.
    PMID: 26396302 DOI: 10.1007/s13197-012-0816-7
    In the present study, to establish the optimum gelatin extraction conditions from pangasius catfish (Pangasius sutchi) bone, Response Surface Methodology (RSM) with a 4-factor, 5-level Central Composite Design (CCD) was conducted. The model equation was proposed with regard to the effects of HCl concentration (%, X1), treatment time (h, X2), extraction temperature (°C, X3) and extraction time (h, X4) as independent variables on the hydroxyproline recovery (%, Y) as dependent variable. X 1 = 2.74 %, X 2 = 21.15 h, X 3 = 74.73 °C and X 4 = 5.26 h were found to be the optimum conditions to obtain the highest hydroxyproline recovery (68.75 %). The properties of optimized catfish bone gelatin were characterized by amino acid analysis, SDS-PAGE, gel strength, TPA and viscosity in comparison to bovine skin gelatin. The result of SDS-PAGE revealed that pangasius catfish bone gelatin consisted of at least 2 different polypeptides (α1 and α2 chains) and their cross-linked chains. Moreover, the pangasius catfish bone gelatin was found to contain 17.37 (g/100 g) imino acids (proline and hydroxyproline). Pangasius catfish bone gelatin also indicated physical properties comparable with that of bovine and higher than those from cold water fish gelatin. Based on the results of the present study, there is a potential for exploitation of pangasius catfish bone for gelatin production. Furthermore, RSM provided the best method for optimizing the gelatin extraction parameters.
    Matched MeSH terms: Hydroxyproline; Proline
  20. Normah, I., Nur-Hani Suryati, M.Z.
    MyJurnal
    Collagen was isolated from threadfin bream (Nemipterus japonicas) waste (mixture of scale and fin) by using 0.5 M citric acid or calamansi juice (Citrofortunella microcarpa) for 12 and 24 hrs at 4°C. The physico-chemical characteristics of the collagens were then compared with the commercial collagen. Shorter extraction time (12 hrs) and extraction using calamansi juice resulted in higher yield. The yield was 22% (12 hrs) and 20.37% (24 hrs) for collagen extracted using calamansi juice and 8.3% (12 hrs) and 6.9% (24 hrs) for collagen extracted using citric acid. Collagen extracted using calamansi juice were light yellow (L = 93.70, a = -1.84, b = 13.44) while citric acid collagens were white (L = 94.82, a = 0.31, b = 0.20). Sensory evaluation on odor recognition test showed that collagen extracted with calamansi juice has a pleasant
    natural fragrance which is sweet citrus. Electrophoresis profile indicated that the collagen were of type I comprising of α1 and α2 chains. Threadfin bream collagen contained higher amount of imino acids proline (254.72 to 275.50/1000 residues) and hydroxyproline (7.56 to 13.50/1000 residues) than commercial collagen which is 21.25 and 5.16/1000 residues, respectively. Maximum transition temperature (Tmax) falls within a close range for all the collagens ranging from 24.81 to 25.91°C. Calamansi juice collagens were more viscous compared to others. The extraction of threadfin bream collagen for 12 hrs using calamansi juice generally leads to collagen characterised by pleasant odor, reasonably high yield and more viscous. Therefore, natural source such as calamansi juice could be an alternative medium for collagen extraction.
    Matched MeSH terms: Hydroxyproline; Proline
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links