RESULTS: The constructed integration system comprises of a lactococcal promoter (PnisA or P170), phage attachment site (attP) from bacteriophage TP901-1, a signal peptide (USP45 or SPK1) for translocation of the target protein, and a PrtP344 anchor domain in the case of the integrative vectors for surface display. There were eight successfully constructed integrative vectors with each having a different combination of promoter and signal peptide; pS1, pS2, pS3 and pS4 for secretion, and pSD1, pSD2, pSD3 and pSD4 for surface display of desired protein. The integration of the vectors into the host genome was assisted by a helper vector harbouring the integrase gene. A nuclease gene was used as a reporter and was successfully integrated into the L. lactis genome and Nuc was secreted or displayed as expected. The signal peptide SPK1 was observed to be superior to USP45-LEISSTCDA fusion in the secretion of Nuc. As for the surface display integrative vector, all systems developed were comparable with the exception of the combination of P170 promoter with USP45 signal peptide which gave very low signals in whole cell ELISA.
CONCLUSION: The engineered synthetic integrative vectors have the potential to be used for secretion or surface display of heterologous protein production in lactococcal expression system for research or industrial purposes, especially in live vaccine delivery.
RESULTS: Xylanase was successfully expressed in Lactococcus lactis. Recombinant xylanase fused to either signal peptide Usp45 or Spk1 showed halo zone on Remazol Brilliant Blue-Xylan plates. This indicated that the xylanase was successfully secreted from the cell. The culture supernatants of strains secreting the xylanase with help of the Spk1 and Usp45 signal peptides contained 49.7 U/ml and 34.4 U/ml of xylanase activity, respectively.
CONCLUSION: Although Usp45 is the most commonly used signal peptide when secreting heterologous proteins in Lactococcus lactis, this study shows that Spk1 isolated from Pediococcus pentosaceus was superior to Usp45 in regard to xylanase protein secretion.