Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Takayama H, Aimi N, Sakai S
    Yakugaku Zasshi, 2000 Oct;120(10):959-67.
    PMID: 11082707
    The leaves of a tropical plant, Mitragyna speciosa Korth. (Rubiaceae), have been traditionally used as a substitute for opium. By phytochemical studies on the constituents of the plant growing in Thailand as well as in Malaysia, several 9-methoxy-Corynanthe-type monoterpenoid indole alkaloids including new natural products were isolated. The structures of these new compounds were elucidated by the modern spectroscopic methods and/or chiral-total syntheses. The chiral total synthesis of (-)-mitragynine, a major component of this plant, was achieved. Potent opioid agonistic properties of mitragynine, which acts on mu- and delta-opioid subtype receptors, and of mitragynine pseudoindoxyl, whose analgesic activity is more potent than that of morphine, were clarified in in vitro experiments. The essential structural features in mitragynine for revealing the analgesic activity were elucidated by pharmacological evaluation of the natural and synthetic mitragynine derivatives.
    Matched MeSH terms: Receptors, Opioid/agonists
  2. Nagaya D, Zahari Z, Saleem M, Yahaya BH, Tan SC, Yusoff NM
    J Clin Pharm Ther, 2018 Feb;43(1):80-86.
    PMID: 28656735 DOI: 10.1111/jcpt.12585
    WHAT IS KNOWN: Drug addiction is a novelty-seeking personality trait that is associated with the candidate genes OPRD1 (opioid delta receptors), OPRK1 (opioid kappa receptors) and PDYN (prodynorphin). However, associations between single nucleotide polymorphisms (SNPs) rs1042114 (80G>T) of the OPRD1 gene, rs702764 (843 A>G) of the OPRK1 gene, and rs910080 (3' UTR _743T>C), rs1997794 (5' UTR -381A>G) and rs1022563 (3' UTR) of the PDYN gene and novelty seeking remain controversial as reported results have not been reproducible.

    OBJECTIVE: The goal of this study was to determine the frequencies of SNPs rs1042114, rs702764, rs1997794, rs1022563 and rs910080 in the Malaysian population and to study their association with opioid dependence in Malaysian Malays.

    METHODS: A total of 459 Malay male with opioid dependence and 543 healthy male (controls) subjects were included in this study. SNPs were genotyped using the TaqMan SNP genotyping assay. Statistical analysis was performed using Golden Helix SVS software suite to identify the distribution of allele and genotype frequencies, and SNP-SNP interactions were also analysed in this study.

    RESULTS AND DISCUSSION: SNP rs1042114 in the OPRD1 gene is strongly associated with opiate addiction (P=.0001). In individuals homozygous for this risk allele, the likelihood of opiate addiction is increased by a factor 1.62 (95% confidence interval (CI) 1.412-1.875). Polymorphic alleles at SNP rs702764 of OPRK1 were not associated with opioid dependence. A significant association between opioid dependence and SNP rs910080 of PDYN (P=.0217) was detected, but there was no association for SNPs rs199774 and rs1022563. A significant interaction was also identified between homozygous wild-type genotype TT of rs702764 with the risk genotypes TG/GG of rs1042114 (odds ratio (OR)=2.111 (95% CI 1.227-3.631), P=.0069) and with the risk genotypes GA/AA of rs910080 (OR=1.415 (95% CI 1.04-1.912), P=.0239).

    WHAT IS NEW AND CONCLUSION: The results indicate that SNPs rs1042114 and rs910080 contribute to vulnerability to opioid dependence in the Malaysian Malay population. These results will help us to understand the effect of the SNPs and the SNP-SNP interaction on opioid dependence and may assist in efforts to screen vulnerable individuals and match them with individually tailored prevention and treatment strategies.

    Matched MeSH terms: Receptors, Opioid, delta/genetics*; Receptors, Opioid, kappa/genetics*
  3. Harun N, Hassan Z, Navaratnam V, Mansor SM, Shoaib M
    Psychopharmacology (Berl), 2015 Jul;232(13):2227-38.
    PMID: 25616583 DOI: 10.1007/s00213-015-3866-5
    RATIONALE: Mitragynine (MG) is the primary active alkaloid extracted from the leaves of Mitragyna speciosa or kratom and exhibits pharmacological activities mediated by opioid receptors. The plant has been traditionally used for its opium and psychostimulant-like effects to increase work efficiency or as a substitute in the self-treatment of opiate addiction.

    OBJECTIVES: The present study was performed to investigate the discriminative stimulus effects of MG in rats. The pharmacological mechanism of MG action and its derivative, 7-hydroxymitragynine (7-HMG) with a specific focus on opioid receptor involvement was examined in rats trained to discriminate morphine from vehicle. In order to study the dual actions of MG, the effect of cocaine substitution to the MG discriminative stimulus was also performed in MG-trained rats.

    METHODS: Male Sprague Dawley rats were trained to discriminate MG from vehicle in a two-lever drug discrimination procedure under a tandem variable-interval (VI 60') fixed-ratio (FR 10) schedule of food reinforcement.

    RESULTS: Rats acquired the MG discrimination (15.0 mg/kg, i.p.) which was similar to the acquisition of morphine discrimination (5.0 mg/kg, i.p.) in another group of rats. MG substituted fully to the morphine discriminative stimulus in a dose-dependent manner, suggesting pharmacological similarities between the two drugs. The administration of 7-HMG derivative in 3.0 mg/kg (i.p.) dose engendered full generalisation to the morphine discriminative stimulus. In addition, the MG stimulus also partially generalised to cocaine (10.0 mg/kg, i.p.) stimulus.

    CONCLUSION: The present study demonstrates that the discriminative stimulus effect of MG possesses both opioid- and psychostimulant-like subjective effects.

    Matched MeSH terms: Receptors, Opioid, mu/physiology; Receptors, Opioid, mu/agonists; Receptors, Opioid, delta/physiology; Receptors, Opioid, delta/agonists
  4. Liew Y, Capule FR, Rahman RA, Nor NM, Teo R, Makmor-Bakry M
    Pharmacogenomics, 2023 Apr;24(5):247-259.
    PMID: 36999508 DOI: 10.2217/pgs-2023-0006
    Aims: To investigate the roles of MDR1 (1236C>T, 2677G>T/A, and 3435C>T) and OPRM1 (118A>G) gene polymorphisms on the anesthetic and adverse effects of propofol-remifentanil total intravenous anesthesia in pediatric surgery. Materials & methods: The genotypes were identified through Sanger sequencing. The clinical data including hemodynamics on anesthesia, postanesthesia pain and sedation score and the occurrence of adverse effects were recorded and compared against the genetic data. Results: A total of 72 pediatric patients undergoing surgery were recruited. A weak to no association was found between the genetic polymorphisms of MDR1 and OPRM1 and the anesthetic and adverse effects of propofol-remifentanil. Conclusion: Genetic polymorphisms in OPRM1, but not in MDR1, gene polymorphism, demonstrated plausible association with the effects of propofol-remifentanil.
    Matched MeSH terms: Receptors, Opioid, mu/genetics
  5. Annuar NAK, Azlan UK, Mediani A, Tong X, Han R, Al-Olayan E, et al.
    Biomed Pharmacother, 2024 Feb;171:116134.
    PMID: 38219389 DOI: 10.1016/j.biopha.2024.116134
    Mitragynine is one of the main psychoactive alkaloids in Mitragyna speciosa Korth. (kratom). It has opium-like effects by acting on μ-, δ-, and κ-opioid receptors in the brain. The compound also interacts with other receptors, such as adrenergic and serotonergic receptors and neuronal Ca2+ channels in the central nervous system to have its neuropharmacological effects. Mitragynine has the potential to treat diseases related to neurodegeneration such as Alzheimer's disease and Parkinson's disease, as its modulation on the opioid receptors has been reported extensively. This review aimed to provide an up-to-date and critical overview on the neuropharmacological effects, mechanisms of action, pharmacokinetics and safety of mitragynine as a prospective psychotropic agent. Its multiple neuropharmacological effects on the brain include antinociceptive, anti-inflammatory, antidepressant, sedative, stimulant, cognitive, and anxiolytic activities. The potential of mitragynine to manage opioid withdrawal symptoms related to opioid dependence, its pharmacokinetics and toxic effects were also discussed. The interaction of mitragynine with various receptors in the brain produce diverse neuropharmacological effects, which have beneficial properties in neurological disorders. However, further studies need to be carried out on mitragynine to uncover its complex mechanisms of action, pharmacokinetics, pharmacodynamic profiles, addictive potential, and safe dosage to prevent harmful side effects.
    Matched MeSH terms: Receptors, Opioid
  6. Fazalul Rahiman SS, Morgan M, Gray P, Shaw PN, Cabot PJ
    PLoS One, 2016;11(4):e0153005.
    PMID: 27055013 DOI: 10.1371/journal.pone.0153005
    Dynorphin 1-17, (DYN 1-17) opioid peptide produces antinociception following binding to the kappa-opioid peptide (KOP) receptor. Upon synthesis and release in inflamed tissues by immune cells, DYN 1-17 undergoes rapid biotransformation and yields a unique set of opioid and non-opioid fragments. Some of these major fragments possess a role in immunomodulation, suggesting that opioid-targeted therapeutics may be effective in diminishing the severity of inflammatory disorders. This study aimed to examine the immunomodulatory effects of DYN 1-17 and major N-terminal fragments found in the inflammatory environment on nuclear factor-kappaB/p65 (NF-κB/p65) nuclear translocation and the release of interleukin-1beta (IL-1β) and tumor necrosis factor-alpha (TNF-α) from lipopolysaccharide (LPS)-stimulated, differentiated THP-1 cells. The results demonstrate that NF-κB/p65 nuclear translocation was significantly attenuated following treatment with DYN 1-17 and a specific range of fragments, with the greatest reduction observed with DYN 1-7 at a low concentration (10 nM). Antagonism with a selective KOP receptor antagonist, ML-190, significantly reversed the inhibitory effects of DYN 1-17, DYN 1-6, DYN 1-7 and DYN 1-9, but not other DYN 1-17 N-terminal fragments (DYN 1-10 and 1-11) on NF-κB/p65 nuclear translocation. DYN 1-17 and selected fragments demonstrated differential modulation on the release of IL-1β and TNF-α with significant inhibition observed with DYN 1-7 at low concentrations (1 nM and 10 pM). These effects were blocked by ML-190, suggesting a KOP receptor-mediated pathway. The results demonstrate that DYN 1-17 and certain N-terminal fragments, produced in an inflamed environment, play an anti-inflammatory role by inhibiting NF-κB/p65 translocation and the subsequent cytokine release through KOP receptor-dependent and independent pathways.
    Matched MeSH terms: Receptors, Opioid, kappa/metabolism; Receptors, Opioid, kappa/agonists
  7. Zakaria ZA, Abdul Rahim MH, Mohd Sani MH, Omar MH, Ching SM, Abdul Kadir A, et al.
    BMC Complement Altern Med, 2019 Apr 02;19(1):79.
    PMID: 30940120 DOI: 10.1186/s12906-019-2486-8
    BACKGROUND: Methanol extract (MECN) of Clinacanthus nutans Lindau leaves (family Acanthaceae) demonstrated peripherally and centrally mediated antinociceptive activity via the modulation of opioid/NO-mediated, but cGMP-independent pathway. In the present study, MECN was sequentially partitioned to obtain petroleum ether extract of C. nutans (PECN), which was subjected to antinociceptive study with aims of establishing its antinociceptive potential and determining the role of opioid receptors and L-arginine/nitric oxide/cyclic-guanosine monophosphate (L-arg/NO/cGMP) pathway in the observed antinociceptive activity.

    METHODS: The antinociceptive potential of orally administered PECN (100, 250, 500 mg/kg) was studied using the abdominal constriction-, hot plate- and formalin-induced paw licking-test in mice (n = 6). The effect of PECN on locomotor activity was also evaluated using the rota rod assay. The role of opioid receptors was determined by pre-challenging 500 mg/kg PECN (p.o.) with antagonist of opioid receptor subtypes, namely β-funaltrexamine (β-FNA; 10 mg/kg; a μ-opioid antagonist), naltrindole (NALT; 1 mg/kg; a δ-opioid antagonist) or nor-binaltorphimine (nor-BNI; 1 mg/kg; a κ-opioid antagonist) followed by subjection to the abdominal constriction test. In addition, the role of L-arg/NO/cGMP pathway was determined by prechallenging 500 mg/kg PECN (p.o.) with L-arg (20 mg/kg; a NO precursor), 1H-[1, 2, 4] oxadiazolo [4,3-a]quinoxalin-1-one (ODQ; 2 mg/kg; a specific soluble guanylyl cyclase inhibitor), or the combinations thereof (L-arg + ODQ) for 5 mins before subjection to the abdominal constriction test. PECN was also subjected to phytoconstituents analyses.

    RESULTS: PECN significantly (p  0.05) affect the locomotor activity of treated mice. The antinociceptive activity of PECN was significantly (p opioid receptors. In addition, the antinociceptive activity of PECN was significantly (p  0.05) affected by ODQ. HPLC analysis revealed the presence of at least cinnamic acid in PECN.

    CONCLUSION: PECN exerted antinocicpetive activity at peripheral and central levels possibly via the activation of non-selective opioid receptors and modulation of the NO-mediated/cGMP-independent pathway partly via the synergistic action of phenolic compounds.

    Matched MeSH terms: Receptors, Opioid/drug effects*; Receptors, Opioid/metabolism
  8. Haerian BS, Haerian MS
    Pharmacogenomics, 2013 May;14(7):813-24.
    PMID: 23651028 DOI: 10.2217/pgs.13.57
    The OPRM1 gene encodes the µ-opioid receptor, which is the primary site of action of most opioids. Several studies and three meta-analyses have examined a possible link between the exonic OPRM1 A118G (rs1799971) polymorphism and opioid dependence; however, results have been inconclusive. Therefore, a systematic review and meta-analysis have been carried out to examine whether this polymorphism is associated with opioid dependence. Thirteen studies (n = 9385), comprising 4601 opioid dependents and 4784 controls, which evaluated association of the OPRM1 rs1799971 polymorphism with susceptibility to opioids, were included in this study. Our meta-analysis showed significant association between this polymorphism and susceptibility to opioid dependence in overall studies under a codominant model, as well as susceptibility to opioid dependence or heroin dependence in Asians under an autosomal dominant model. The nonsynonymous OPRM1 rs1799971 might be a risk factor for addiction to opioids or heroin in an Asian population.
    Matched MeSH terms: Receptors, Opioid, mu/genetics*
  9. Nagaya D, Ramanathan S, Ravichandran M, Navaratnam V
    J Integr Neurosci, 2012 Mar;11(1):117-22.
    PMID: 22744787
    Drug addiction is an important social problem in many countries. Genetic and environmental factors contribute to the predisposition of drug addiction. Genetic variations at the μ opioid receptor (OPRM1) gene locus have been associated with opiate addiction. The present study aims to delineate the frequency of A118G allele of OPRM1 among Malaysian subjects. The frequency of A allele and G allele were 51% and 49%, respectively for addicts and about 73% and 27% respectively for healthy volunteers. The frequency of G allele was 1.77-fold higher in addicts by odds ratio calculation at 95% Cl, which indicate the G allele to be strongly associated with addiction X(2) = 15.31,P < 0.0001; odds ratio 2.51; 95% Cl (1.575-3.994), compared to healthy volunteers. A significant association was observed between A118G polymorphism in μ opioid receptor gene and drug addiction.
    Matched MeSH terms: Receptors, Opioid, mu/genetics*
  10. Gopalsamy B, Chia JSM, Farouk AAO, Sulaiman MR, Perimal EK
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858809 DOI: 10.3390/molecules25173880
    Zerumbone, a monocyclic sesquiterpene from the wild ginger plant Zingiber zerumbet (L.) Smith, attenuates allodynia and hyperalgesia. Currently, its mechanisms of action in neuropathic pain conditions remain unclear. This study examines the involvement of potassium channels and opioid receptors in zerumbone-induced analgesia in a chronic constriction injury (CCI) neuropathic pain mice model. Male Institute of Cancer Research (ICR) mice were subjected to CCI and behavioral responses were tested on day 14. Responses toward mechanical allodynia and thermal hyperalgesia were tested with von Frey's filament and Hargreaves' tests, respectively. Symptoms of neuropathic pain were significantly alleviated following treatment with zerumbone (10 mg/kg; intraperitoneal, i.p.). However, when the voltage-dependent K+ channel blocker tetraethylammonium (TEA, 4 mg/kg; i.p.), ATP-sensitive K+ channel blocker, glibenclamide (GLIB, 10 mg/kg; i.p.); small-conductance Ca2+-activated K+ channel inhibitor apamin (APA, 0.04 mg/kg; i.p.), or large-conductance Ca2+-activated K+ channel inhibitor charybdotoxin (CHAR, 0.02 mg/kg; i.p.) was administered prior to zerumbone (10 mg/kg; i.p.), the antiallodynic and antihyperalgesic effects of zerumbone were significantly reversed. Additionally, non-specific opioid receptors antagonist, naloxone (NAL, 10 mg/kg; i.p.), selective µ-, δ- and κ-opioid receptor antagonists; β-funaltrexamine (β-FN, 40 mg/kg; i.p.), naltrindole (20 mg/kg; s.c.), nor-binaltorphamine (10 mg/kg; s.c.) respectively attenuated the antiallodynic and antihyperalgesic effects of zerumbone. This outcome clearly demonstrates the participation of potassium channels and opioid receptors in the antineuropathic properties of zerumbone. As various clinically used neuropathic pain drugs also share this similar mechanism, this compound is, therefore, a highly potential substitute to these therapeutic options.
    Matched MeSH terms: Receptors, Opioid/metabolism*
  11. Suhaimi FW, Yusoff NH, Hassan R, Mansor SM, Navaratnam V, Müller CP, et al.
    Brain Res Bull, 2016 09;126(Pt 1):29-40.
    PMID: 27018165 DOI: 10.1016/j.brainresbull.2016.03.015
    Kratom or its main alkaloid, mitragynine is derived from the plant Mitragyna speciosa Korth which is indigenous to Southeast Asian countries. This substance has become widely available in other countries like Europe and United States due to its opium- and coca-like effects. In this article, we have reviewed available reports on mitragynine and other M. speciosa extracts. M. speciosa has been proven to have a rewarding effect and is effective in alleviating the morphine and ethanol withdrawal effects. However, studies in human revealed that prolonged consumption of this plant led to dependence and tolerance while cessation caused a series of aversive withdrawal symptoms. Findings also showed that M. speciosa extracts possess antinociceptive, anti-inflammatory, anti-depressant, and muscle relaxant properties. Available evidence further supports the adverse effects of M. speciosa preparations, mitragynine on cognition. Pharmacological activities are mainly mediated via opioid receptors as well as neuronal Ca2+ channels, expression of cAMP and CREB protein and via descending monoaminergic system. Physicochemical properties of mitragynine have been documented which may further explain the variation in pharmacological responses. In summary, current researchs on its main indole alkaloid, mitragynine suggest both therapeutic and addictive potential but further research on its molecular effects is needed.
    Matched MeSH terms: Receptors, Opioid/metabolism
  12. Chear NJ, León F, Sharma A, Kanumuri SRR, Zwolinski G, Abboud KA, et al.
    J Nat Prod, 2021 04 23;84(4):1034-1043.
    PMID: 33635670 DOI: 10.1021/acs.jnatprod.0c01055
    Ten indole and oxindole alkaloids (1-10) were isolated from the freshly collected leaves of Malaysian Mitragyna speciosa (Kratom). The chemical structures of these compounds were established on the basis of extensive 1D and 2D NMR and HRMS data analysis. The spectroscopic data of mitragynine oxindole B (4) are reported herein for the first time. The spatial configuration of mitragynine oxindole B (4) was confirmed by single-crystal X-ray diffraction. Simultaneous quantification of the isolated alkaloids in the M. speciosa leaf specimens collected from different locations in the northern region of Peninsular Malaysia was also performed using UPLC-MS/MS. The oxindole alkaloids (1-4) and the indole alkaloid (10) were assessed for binding affinity at opioid receptors. Corynoxine (1) showed high binding affinity to μ-opioid receptors with a Ki value of 16.4 nM. Further, corynoxine (1) was 1.8-fold more potent than morphine in rats subjected to a nociceptive hot plate assay. These findings have important implications for evaluating the combined effects of the minor oxindole alkaloids in the overall therapeutic activity of M. speciosa.
    Matched MeSH terms: Receptors, Opioid, mu/drug effects*
  13. Islam MT, Rahman MA, Saeed M, Ul-Haq Z, Alam MJ, Mondal M, et al.
    Cell Mol Biol (Noisy-le-grand), 2020 Jun 25;66(4):243-249.
    PMID: 32583783
    Phytol (PHY), a chlorophyll-derived diterpenoid, exhibits numerous pharmacological properties, including antioxidant, antimicrobial, and anticancer activities. This study evaluates the anti-diarrheal effect of phytol (PHY) along with its possible mechanism of action through in-vivo and in-silico models. The effect of PHY was investigated on castor oil-induced diarrhea in Swiss mice by using prazosin, propranolol, loperamide, and nifedipine as standards with or without PHY. PHY at 50 mg/kg (p.o.) and all other standards exhibit significant (p < 0.05) anti-diarrheal effect in mice. The effect was prominent in the loperamide and propranolol groups. PHY co-treated with prazosin and propranolol was found to increase in latent periods along with a significant reduction in diarrheal section during the observation period than other individual or combined groups. Furthermore, molecular docking studies also suggested that PHY showed better interactions with the α- and β-adrenergic receptors, especially with α-ADR1a and β-ADR1. In the former case, PHY showed interaction with hydroxyl group of Ser192 at a distance of 2.91Å, while in the latter it showed hydrogen bond interactions with Thr170 and Lys297 with a distance of 2.65 and 2.72Å, respectively. PHY exerted significant anti-diarrheal effect in Swiss mice, possibly through blocking α- and β-adrenergic receptors.
    Matched MeSH terms: Receptors, Opioid, mu/metabolism; Receptors, Opioid, mu/chemistry
  14. Sambasevam, Yogesvari, Wong, Siong Jiun, Farihah Hanani Ghazali, Ammar Izzati Amir Ramadan, Mohd Roslan Sulaiman, Mohd Khairi Hussain, et al.
    MyJurnal
    Introduction: Active compounds derived from plants are able to inhibit nerve conduction. Cardamonin, a naturally occurring chalcone, manifests anti-nociceptive, anti-inflammatory and anti-neuropathy properties. Consequently, cardamonin may potentially inhibit nerve action potential, whereby, it affects the nerve conduction. Compound action potential is the sum of the activity which is measured from a nerve trunk. Objective: The experiment was carried out to investigate the inhibitory effect of cardamonin on compound action potentials and its possible mechanism of action on frog sciatic nerve. Methodology: LabTutor software was used to record compound action potentials in frog sciatic nerve. Sciatic nerve was isolated from the frog and soaked in Ringer’s solution. Stimulating electrodes were used to stimulate the nerve and recording electrodes were used to record compound action potentials. Compound action potential of the nerve were recorded before and after treatments [vehicle, cardamonin (0.5, 1 & 2 mg/ml) & morphine (3mg/ml)]. Participation of opioid system was investigated by pre-treating the nerve with naloxone and followed by cardamonin. All the data were recorded and analysed via LabTutor software. The data were analysed by using Two-way ANOVA followed by Bonferonni’s post hoc test with significant value at P < 0.05. Results: The outcomes showed that all the doses of cardamonin significantly reduced the peak amplitude of compound action potential in frog sciatic nerves. Besides, co-treatment of naloxone and cardamonin significantly (P < 0.001) reversed the effect of cardamonin on peak amplitude of compound action potential, suggesting the involvement of opioid receptors to inhibit nerve conduction. Conclusion: Cardamonin reduces the nerve signal conduction via activation of opioid receptors to modulate pain and contribute to the analgesic effects.
    Matched MeSH terms: Receptors, Opioid
  15. Gopalsamy, Banulata, Chia, Jasmine Siew Min, Farihah Hanani Ghazali, Ammar Izzati Amir Ramadan, Wong, Siong Jun, Ahmad Akira Omar Farouk, et al.
    MyJurnal
    Boesenbergia rotunda, traditionally used to relieve stomach, abdomen, joint, muscle, and rheumatic pain was also reported for its antinociceptive effect on a mouse model. However, the possible pain relief effect of Boesenbergia rotunda ethanolic extract (BREE) via the inhibition to the neural pain pathway remains to be elucidated. This study investigated the inhibitory effect of BREE on compound action potentials (CAPs) and the possible involvement of the opioid receptors. The changes in the CAPs amplitudes of the frog’s sciatic nerves were evaluated following the exposure to three different dosages of BREE (1, 3 and 10 mg/ml and morphine (3 mg/ml). In another set of experiment, the nerves were pretreated with a non-selective opioid receptor antagonist, naloxone (0.1 mg/ml), before exposing the nerve to BREE (1 mg/ml) to investigate the involvement of opioid receptors in the CAPs inhibitory mechanism. The outcome showed a reduction in the CAPs amplitudes when treated with BREE (1, 3 and 10 mg/ml) whereby the effect was reversible. The CAPs inhibition by BREE was absent when the opioid receptors were blocked. Taken together, these findings suggest that BREE-induced CAPs amplitude reduction involves the activation of opioid receptors.
    Matched MeSH terms: Receptors, Opioid
  16. Veeramohan R, Azizan KA, Aizat WM, Goh HH, Mansor SM, Yusof NSM, et al.
    Data Brief, 2018 Jun;18:1212-1216.
    PMID: 29900296 DOI: 10.1016/j.dib.2018.04.001
    Mitragyna speciosa is a psychoactive plant known as "ketum" in Malaysia and "kratom" in Thailand. This plant is distinctly known to produce two important alkaloids, namely mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG) that can bind to opioid receptors [1]. MG was reported to exhibit antidepressant properties in animal studies [2]. These compounds were also proposed to have the potential to replace opioid analgesics with much lower risks of side effects [3]. To date, there are only over 40 metabolites identified in M. speciosa [4,5]. To obtain a more complete profile of secondary metabolites in ketum, we performed metabolomics study using mature leaves of the green M. speciosa variety. The leaf samples were extracted using methanol prior to liquid chromatography-electrospray ionization-time of flight-mass spectrometry (LC-ESI-TOF-MS) analysis. This data can be useful to for the identification of unknown metabolites that are associated with alkaloid biosynthesis pathway in M. speciosa.
    Matched MeSH terms: Receptors, Opioid
  17. Mat NH, Bakar SNS, Murugaiyah V, Chawarski MC, Hassan Z
    Behav Brain Res, 2023 Feb 15;439:114251.
    PMID: 36503042 DOI: 10.1016/j.bbr.2022.114251
    Mitragynine exerts its analgesic effect mainly via opioid receptors activation. Additionally, the effect may be mediated via mitragynine's anti-inflammatory property and non-opioid receptor pain pathways, namely through the TRPV1 receptor. No studies identify hitherto, hence, the current study aimed to investigate the mitragynine's analgesic effect via the anti-inflammatory property, non-opioid receptor (TRPV1) and the effective dose (ED) to alleviate pain. Male and female Sprague Dawley rats were pre-treated intraperitoneally with either mitragynine (1, 5, 10, 13, 15 or 30 mg/kg), vehicle, or indomethacin (1 mg/kg) 30 min before inducing inflammatory pain using acetic acid. The writhes and pain-related withdrawal behaviour occurrence were counted within a 1-h duration. Percentage of writhes inhibition, pain-related withdrawal behaviour aggregate, ED50 and ED95 were determined. The body temperature was recorded and TRPV1 expression in the rats' brains was measured. Mitragynine (except 1 mg/kg) significantly reduced the number of writhes compared with the vehicle administered group. Mitragynine (30 mg/kg) demonstrated 99.5% inhibition of writhing behaviour and low withdrawal behaviour score compared with vehicle and indomethacin and successfully blocked the hypothermia induced by acetic acid. The overall ED50 and ED95 values of mitragynine were 3.62 and 20.84 mg/kg, respectively. The percentage of writhing inhibition and withdrawal behaviour were similar in both genders. Mitragynine (15 and 30 mg/kg) significantly reduced the TRPV1 expression in the brain of the rats. Mitragynine alleviated pain-like behaviour and showed analgesic effects via anti-inflammatory and non-opioid receptor pathways. The findings also suggest that mitragynine might regulate some physiological functions of the rat.
    Matched MeSH terms: Receptors, Opioid
  18. Guilhon CC, Abdul Wahab IR, Boylan F, Fernandes PD
    PMID: 26273315 DOI: 10.1155/2015/915927
    Pereskia bleo (Kunth) DC. (Cactaceae) is a plant commonly used in popular medicine in Malaysia. In this work, we evaluate the antinociceptive effect of P. bleo leaf extracts and isolated compounds in central antinociceptive model. Ethanol extract (E), hexane (H), ethyl acetate (EA), or butanol (B) fractions (30, 50, or 100 mg/kg, p.o.), sitosterol (from hexane) and vitexin (from ethyl acetate), were administered to mice. Antinociceptive effect was evaluated in the hot plate and capsaicin- or glutamate-induced licking models. Morphine (1 mg/kg, p.o.) was used as reference drug. Naloxone (1 mg/kg, i.p.), atropine (1 mg/kg, i.p.), and L-nitro arginine methyl ester (L-NAME, 3 mg/kg, i.p.) were administered 30 min earlier (100 mg/kg, p.o.) in order to evaluate the mechanism of the antinociceptive action. Higher dose of B developed an effect significantly superior to morphine-treated group. Naloxone prevented the antinociceptive effect of all fractions. L-NAME demonstrated effect against E, EA, and B. In all fractions, sitosterol and vitexin reduced the licking time after capsaicin injection. Glutamate-induced licking response was blocked by H, EA, and B. Our results indicate that Pereskia bleo fractions, sitosterol and vitexin, possessed a central antinociceptive effect. Part of this effect is mediated by opioid receptors and nitrergic pathway.
    Matched MeSH terms: Receptors, Opioid
  19. Sani MH, Zakaria ZA, Balan T, Teh LK, Salleh MZ
    PMID: 22611437 DOI: 10.1155/2012/890361
    Muntingia calabura L. (family Elaeocarpaceae) has been traditionally used to relieve various pain-related ailments. The present study aimed to determine the antinociceptive activity of methanol extract of M. calabura leaves (MEMC) and to elucidate the possible mechanism of antinociception involved. The in vivo chemicals (acetic acid-induced abdominal constriction and formalin-, capsaicin-, glutamate-, serotonin-induced paw licking test) and thermal (hot plate test) models of nociception were used to evaluate the extract antinociceptive activity. The extract (100, 250, and 500 mg/kg) was administered orally 60 min prior to subjection to the respective test. The results obtained demonstrated that MEMC produced significant (P < 0.05) antinociceptive response in all the chemical- and thermal-induced nociception models, which was reversed after pretreatment with 5 mg/kg naloxone, a non-selective opioid antagonist. Furthermore, pretreatment with L-arginine (a nitric oxide (NO) donor), N(G)-nitro-L-arginine methyl esters (L-NAME; an inhibitor of NO synthase (NOS)), methylene blue (MB; an inhibitor of cyclic-guanosine monophosphate (cGMP) pathway), or their combination also caused significant (P < 0.05) change in the intensity of the MEMC antinociception. In conclusion, the MEMC antinociceptive activity involves activation of the peripheral and central mechanisms, and modulation via, partly, the opioid receptors and NO/cGMP pathway.
    Matched MeSH terms: Receptors, Opioid
  20. Ming-Tatt L, Khalivulla SI, Akhtar MN, Lajis N, Perimal EK, Akira A, et al.
    Pharmacol. Biochem. Behav., 2013 Dec;114-115:58-63.
    PMID: 24201054 DOI: 10.1016/j.pbb.2013.10.019
    The present study investigated the analgesic effect of a novel synthetic cyclohexanone derivative, 2,6-bis-4-(hydroxyl-3-methoxybenzilidine)-cyclohexanone or BHMC in a mouse model of chronic constriction injury-induced neuropathic pain. It was demonstrated that intraperitoneal administration of BHMC (0.03, 0.1, 0.3 and 1.0mg/kg) exhibited dose-dependent inhibition of chronic constriction injury-induced neuropathic pain in mice, when evaluated using Randall-Selitto mechanical analgesiometer. It was also demonstrated that pretreatment of naloxone (non-selective opioid receptor blocker), nor-binaltorphimine (nor-BNI, selective κ-opioid receptor blocker), but not β-funaltrexamine (β-FN, selective μ-opioid receptor blocker) and naltrindole hydrochloride (NTI, selective δ-opioid receptor blocker), reversed the anti-nociceptive effect of BHMC. In addition, the analgesic effect of BHMC was also reverted by pretreatment of 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ, soluble guanosyl cyclase blocker) and glibenclamide (ATP-sensitive potassium channel blocker) but not Nω-nitro-l-arginine (l-NAME, a nitric oxide synthase blocker). Taken together, the present study demonstrated that the systemic administration of BHMC attenuated chronic constriction, injury-induced neuropathic pain. We also suggested that the possible mechanisms include κ-opioid receptor activation and nitric oxide-independent cyclic guanosine monophosphate activation of ATP-sensitive potassium channel opening.
    Matched MeSH terms: Receptors, Opioid, kappa/physiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links