Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Muhammad Akmal Asraf Mohamad Sharom, Zainol Abidin Ibrahim, Wan Ahmad Tajuddin Wan Abdullah, Megat Harun Al Rashid Megat Ahmad, Faridah Mohamad Idris, Abdul Aziz Mohamed
    MyJurnal
    Small angle neutron scattering (SANS) is used for probing the microstructure of materials in the range between 1-100 nm in dimension. The scattered neutrons from the target material were detected by a 128 x 128 array area sensitive, Helium gas-filled proportional counter, which is known as Position Sensitive Detector (PSD). The small angle neutron scattering (SANS) facility in Malaysian Nuclear Agency has been developed since 1995. The data acquisition system of this prototype facility consists of the two-dimensional Position Sensitive Detector (2D-PSD) and neutron monitor as a data grabber, TDC Histogram as a memory processing processor, two units of ORTEC 994 as a counter and timer and a computer as a data acquisition controller via GPIB interfacing protocol. This paper will describe on the development of GPIB interface for data acquisition of the SANS instrument on Windows based platform. The GPIB device interface and graphical user interface (GUI) for this data acquisition is developed using WaveMetrics Igor software.
    Matched MeSH terms: Scattering, Small Angle
  2. Hafizal Yazid, Sahrim Ahmad, Laggner, P., Aziz Mohamed, A., Dahlan, H.M., M. Rawi M. Z., et al.
    MyJurnal
    Thermoplastic natural rubber sample is found isotropic based on SAXS pattern. Morphological parameter was obtained based on ideal lamellar morphology using 1-D correlation function. The fitting was carried out using Porod tail model and Vonk for back-extrapolated model. It is found that the long period value is 15.7nm which is comparable to results obtained from Lorents corrected profile, 20nm. Crystalline thickness and amorphous thickness was found as 13.4 and 2.31nm respectively
    Matched MeSH terms: Scattering, Small Angle
  3. Sun Y, Jia X, Tan CP, Zhang B, Fu X, Huang Q
    Int J Biol Macromol, 2023 Apr 30;235:123886.
    PMID: 36870635 DOI: 10.1016/j.ijbiomac.2023.123886
    The formation of inclusion complexes (ICs) between V-type starch and flavors is traditionally conducted in an aqueous system. In this study, limonene was solid encapsulated into V6-starch under ambient pressure (AP) and high hydrostatic pressure (HHP). The maximum loading capacity reached 639.0 mg/g after HHP treatment, and the highest encapsulation efficiency was 79.9 %. X-ray Diffraction (XRD) results showed that the ordered structure of V6-starch was ameliorated with limonene, which avoided the reduction of the space between adjacent helices within V6-starch generated by HHP treatment. Notably, HHP treatment may force molecular permeation of limonene from amorphous regions into inter-crystalline amorphous regions and crystalline regions as the Small-angle X-ray scattering (SAXS) patterns indicated, leading to better controlled-release behavior. Thermogravimetry analysis (TGA) revealed that the solid encapsulation of V-type starch improved the thermal stability of limonene. Further, the release kinetics study showed that a complex prepared with a mass ratio of 2:1 under HHP treatment sustainably released limonene over 96 h and exhibited a preferable antimicrobial effect, which could extend the shelf life of strawberries.
    Matched MeSH terms: Scattering, Small Angle
  4. Zahid NI, Conn CE, Brooks NJ, Ahmad N, Seddon JM, Hashim R
    Langmuir, 2013 Dec 23;29(51):15794-804.
    PMID: 24274824 DOI: 10.1021/la4040134
    Synthetic branched-chain glycolipids are suitable as model systems in understanding biological cell membranes, particularly because certain natural lipids possess chain branching. Herein, four branched-chain glycopyranosides, namely, 2-hexyl-decyl-α-D-glucopyranoside (α-Glc-OC10C6), 2-hexyl-decyl-β-D-glucopyranoside (β-Glc-OC10C6), 2-hexyl-decyl-α-D-galactopyranoside (α-Gal-OC10C6), and 2-hexyl-decyl-β-D-galactopyranoside (β-Gal-OC10C6), with a total alkyl chain length of 16 carbon atoms have been synthesized, and their phase behavior has been studied. The partial binary phase diagrams of these nonionic surfactants in water were investigated by optical polarizing microscopy (OPM) and small-angle X-ray scattering (SAXS). The introduction of chain branching in the hydrocarbon chain region is shown to result in the formation of inverse structures such as inverse hexagonal and inverse bicontinuous cubic phases. A comparison of the four compounds showed that they exhibited different polymorphism, especially in the thermotropic state, as a result of contributions from anomeric and epimeric effects according to their stereochemistry. The neat α-Glc-OC10C6 compound exhibited a lamellar (Lα) phase whereas dry α-Gal-OC10C6 formed an inverse bicontinuous cubic Ia3d (QII(G)) phase. Both β-anomers of glucoside and galactoside adopted the inverse hexagonal phase (HII) in the dry state. Generally, in the presence of water, all four glycolipids formed inverse bicontinuous cubic Ia3d (QII(G)) and Pn3m (QII(D)) phases over wide temperature and concentration ranges. The formation of inverse nonlamellar phases by these Guerbet branched-chain glycosides confirms their potential as materials for novel biotechnological applications such as drug delivery and crystallization of membrane proteins.
    Matched MeSH terms: Scattering, Small Angle*
  5. Wang Z, Li P, Ma K, Chen Y, Penfold J, Thomas RK, et al.
    J Colloid Interface Sci, 2019 Sep 05;557:124-134.
    PMID: 31518834 DOI: 10.1016/j.jcis.2019.09.016
    The ester sulfonate anionic surfactants are a potentially valuable class of sustainable surfactants. The micellar growth, associated rheological changes, and the onset of precipitation are important consequences of the addition of electrolyte and especially multi-valent electrolytes in anionic surfactants. Small angle neutron scattering, SANS, has been used to investigate the self-assembly and the impact of different valence electrolytes on the self-assembly of a range of ester sulfonate surfactants with subtly different molecular structures. The results show that in the absence of electrolyte small globular micelles form, and in the presence of NaCl, and AlCl3 relatively modest micellar growth occurs before the onset of precipitation. The micellar growth is more pronounced for the longer unbranched and branched alkyl chain lengths. Whereas changing the headgroup geometry from methyl ester to ethyl ester has in general a less profound impact. The study highlights the importance of relative counterion binding strengths and shows how the surfactant structure affects the counterion binding and hence the micelle structure. The results have important consequences for the response of such surfactants to different operational environments.
    Matched MeSH terms: Scattering, Small Angle
  6. Megat Harun Al Rashid Megat Ahmad, Abdul Aziz Mohamed, Azmi Ibrahim, Che Seman Mahmood, Putra, Edy Giri Rachman, Muhammad Rawi Muhammad Zin, et al.
    MyJurnal
    Alumina powder was synthesized from an aluminum precursor and studied using small angle neutron scattering (SANS) technique and complemented with transmission electron microscope (TEM). XRD measurement confirmed that the alumina produced was of high purity and highly crystalline D-phase. SANS examination indicates the formation of mass fractals microstructures with fractal dimension of about 2.8 on the alumina powder.
    Matched MeSH terms: Scattering, Small Angle
  7. Loo YS, Zahid NI, Madheswaran T, Ikeno S, Nurdin A, Mat Azmi ID
    Mol Pharm, 2023 Sep 04;20(9):4611-4628.
    PMID: 37587099 DOI: 10.1021/acs.molpharmaceut.3c00333
    Lyotropic liquid crystalline nanoassemblies (LLCNs) are internally self-assembled (ISA)-somes formed by amphiphilic molecules in a mixture comprising a lipid, stabilizer, and/or surfactant and aqueous media/dispersant. LLCNs are unique nanoassemblies with versatile applications in a wide range of biomedical functions. However, they comprise a nanosystem that is yet to be fully explored for targeted systemic treatment of breast cancer. In this study, LLCNs proposed for gemcitabine and thymoquinone (Gem-TQ) co-delivery were prepared from soy phosphatidylcholine (SPC), phytantriol (PHYT), or glycerol monostearate (MYVR) in optimized ratios containing a component of citric and fatty acid ester-based emulsifier (Grinsted citrem) or a triblock copolymer, Pluronic F127 (F127). Hydrodynamic particle sizes determined were below 400 nm (ranged between 96 and 365 nm), and the series of nanoformulations displayed negative surface charge. Nonlamellar phases identified by small-angle X-ray scattering (SAXS) profiles comprise the hexagonal, cubic, and micellar phases. In addition, high entrapment efficiency that accounted for 98.3 ± 0.1% of Gem and 99.5 ± 0.1% of TQ encapsulated was demonstrated by the coloaded nanocarrier system, SPC/citrem/Gem-TQ hexosomes. Low cytotoxicity of SPC-citrem hexosomes was demonstrated in MCF10A cells consistent with hemo- and biocompatibility observed in zebrafish (Danio rerio) embryos for up to 96 h postfertilization (hpf). SPC/citrem/Gem-TQ hexosomes demonstrated IC50 of 24.7 ± 4.2 μM in MCF7 breast cancer cells following a 24 h treatment period with the moderately synergistic interaction between Gem and TQ retained (CI = 0.84). Taken together, biocompatible SPC/citrem/Gem-TQ hexosomes can be further developed as a multifunctional therapeutic nanodelivery approach, plausible for targeting breast cancer cells by incorporation of targeting ligands.
    Matched MeSH terms: Scattering, Small Angle
  8. Azraf Azman, Mohd Rizal Mamat@Ibrahim, Anwar Abdul Rahman, Megat Harun Al Rashid Megat Ahmad, Abdul Aziz Mohamed, Muhammad Rawi Mohd Zin, et al.
    MyJurnal
    The temperature profile of a cryogenic system for cooling of beryllium filter of a small-angle neutron scattering (SANS) instrument of TRIGA MARK II PUSPATI research reactor was investigated using computational fluid dynamics (CFD) modeling and simulation. The efficient cooling of beryllium filter is important for obtaining higher cold neutron transmission for the SANS instrument. This paper presents the transient CFD results of temperature distributions via the thermal link to the beryllium and simulation of heat
    flux. The temperature simulation data are also compared with the experimental results for the cooling time and distribution to the beryllium.
    Matched MeSH terms: Scattering, Small Angle
  9. Daood U, Akram Z, Matinlinna JP, Fawzy AS
    Dent Mater, 2019 07;35(7):1017-1030.
    PMID: 31064669 DOI: 10.1016/j.dental.2019.04.005
    OBJECTIVE: The aim of this study was to investigate EDC-assisted collagen crosslinking effect with different concentrations of tiopronin-protected gold (TPAu) nanoparticles on demineralized dentine.

    METHODS: TPAu nanoparticles were fabricated from 0.31-g tetrachloroauric acid and 0.38-g of N-(2-mercaptopropionyl) glycine (2.4-mmol). Then co-dissolved using 35-mL of 6:1 methanol/acetic acid and mixed using NaBH4. EDC (0.3-M) was conjugated to TPAu nanoparticles at TPAU/EDC-0.25:1, and TPAU/EDC-0.5:1 treatment formulations ratios. Dentin specimens treated with 0.3-M EDC solution alone or left untreated were used as control. Nanoparticles formulations were characterized in term of particles morphology and size, Zeta potential, thermogravimetric analysis and small-angle X-ray scattering. Dentin substrates were characterized in term of TEM investigation, dentin proteases characterization, hydroxyproline liberation, elastic modulus measurement, Raman analysis and confocal microscopy viewing.

    RESULTS: TEM evaluation of tiopronin protected gold nanoparticles dispersion revealed nano-clusters formations in both groups. However, based on our TEM measurements, the particle-size was ranging from ˜20 to 50 nm with spherical core-shape which were almost similar for both TPAu/EDC ratios (0.5:1 and 0.25:1). Zeta potential measurements indicate negative nanoparticles surface charge. SAXS profiles for both formulations, suggest a typical profile for uni-lamellar nanoparticles. Superior dentin collagen cross-linking effect was found with the TPAu/EDC nanoparticles formulations compared to the control and EDC treated groups.

    SIGNIFICANCE: Cross-linking of dentin collagen using TPAu coupled with EDC through TPAu/EDC nanoparticles formulations is of potential significance in improving the biodegradation resistance, proteases inhibition, mechanical and structural stability of demineralized dentin substrates. In addition, the cross-linking effect is dependent on TPAu/EDC ratio, whereas higher cross-linking effect was found at TPAu/EDC ratio of 0.5:1.

    Matched MeSH terms: Scattering, Small Angle
  10. Velayutham TS, Ng BK, Gan WC, Abd Majid WH, Hashim R, Zahid NI, et al.
    J Chem Phys, 2014 Aug 28;141(8):085101.
    PMID: 25173043 DOI: 10.1063/1.4893873
    Glycolipid, found commonly in membranes, is also a liquid crystal material which can self-assemble without the presence of a solvent. Here, the dielectric and conductivity properties of three synthetic glycolipid thin films in different thermotropic liquid crystal phases were investigated over a frequency and temperature range of (10(-2)-10(6) Hz) and (303-463 K), respectively. The observed relaxation processes distinguish between the different phases (smectic A, columnar/hexagonal, and bicontinuous cubic Q) and the glycolipid molecular structures. Large dielectric responses were observed in the columnar and bicontinuous cubic phases of the longer branched alkyl chain glycolipids. Glycolipids with the shortest branched alkyl chain experience the most restricted self-assembly dynamic process over the broad temperature range studied compared to the longer ones. A high frequency dielectric absorption (Process I) was observed in all samples. This is related to the dynamics of the hydrogen bond network from the sugar group. An additional low-frequency mechanism (Process II) with a large dielectric strength was observed due to the internal dynamics of the self-assembly organization. Phase sensitive domain heterogeneity in the bicontinuous cubic phase was related to the diffusion of charge carriers. The microscopic features of charge hopping were modelled using the random walk scheme, and two charge carrier hopping lengths were estimated for two glycolipid systems. For Process I, the hopping length is comparable to the hydrogen bond and is related to the dynamics of the hydrogen bond network. Additionally, that for Process II is comparable to the bilayer spacing, hence confirming that this low-frequency mechanism is associated with the internal dynamics within the phase.
    Matched MeSH terms: Scattering, Small Angle
  11. Suhaimi NS, Md Din MF, Ishak MT, Abdul Rahman AR, Mohd Ariffin M, Hashim N', et al.
    Sci Rep, 2020 Dec 02;10(1):20984.
    PMID: 33268816 DOI: 10.1038/s41598-020-77810-8
    In this paper, the electrical, dielectric, Raman and small angle X-ray scattering (SAXS) structure behavior of disposed transformer oil in the presence of multi-walled carbon nanotube (MWCNT) were systematically tested to verify their versatility for preparing better alternative transformer oil in future. MWCNT nanofluids are prepared using a two-step method with concentrations ranging from 0.00 to 0.02 g/L. The test results reveal that 0.005 g/L concentration possesses the most optimum performance based on the electrical (AC breakdown and lightning impulse) and dielectric (permittivity, dissipation factor and resistivity) behavior. According to the trend of AC breakdown strength and lightning impulse pattern, there were 212.58% and 40.01% enhancement indicated for 0.005 g/L concentration compared to the disposed transformer oil. The presence of MWCNT also yielding to the decrement of dissipation factor, increased on permittivity and resistivity behavior of disposed transformer oil which reflected to the performance of electrical properties. Furthermore, it is found that these features correlated to the structural properties as systematically verify by Raman and SAXS analysis study.
    Matched MeSH terms: Scattering, Small Angle
  12. Muhammad Rawi Mohamed Zin, Mahendrasingam, Arumugam, Konkel, Chris, Narayanan, Theyencheri
    MyJurnal
    Changes in molecular structure configuration during strain induced crystallisation of an amorphous Poly(Lactic Acid) (PLA 4032D) polymer was monitored in-situ by simultaneously recording the wide angle x-ray scattering (WAXS) and small angle x-ray scattering (SAXS) patterns together with polymer deformation images and force data. The amorphous chain orientation from the beginning of deformation until the onset of crystallisation was studied from the WAXS patterns. The true mechanical behaviour described by the true stress-true strain curve related to an amorphous chain orientation exhibited a linear behaviour. Approaching critical amorphous orientation, the true stress-true strain curve deviated from linear into non-linear behaviour. After the onset of crystallization, when the deformed polymer became a semicrystalline state, the true mechanical behaviour exhibited true strain hardening which greatly affected by the formation of the morphology. The gradual true strain hardening was associated with the formation of micro-fibrillar structure containing thin crystallite morphology whilst sharp increased in true strain hardening was associated with the formation of stacked lamellar morphology in the form of macro-lattice structure. The study was accomplished by the application of high brilliance synchrotron radiation at beamline ID2 of ESRF, Grenoble in France and the usage of the high contrast resolution of WAXS and SAXS charge-couple device (CCD) camera as well as 40 milliseconds temporal resolution of data acquisition system.
    Matched MeSH terms: Scattering, Small Angle
  13. Tabet, Tamer A., Fauziah Abdul Aziz, Shahidan Radiman
    MyJurnal
    Small-angle X-ray scattering (SAXS) was used to investigate the nanostructure of the microfibrils of cell wall in Acacia Mangium wood. Parameters, such as the fibre length (L), surface area of the single fibre (S), the correspondence distance from the center of the fibre to the center of its neighbor and the shape of the fibre were determined as a function to the distance from pith towards the bark. The results indicate that the fibre length ranged from 53.44 nm to 13.72 nm from pith to bark. Surface area of the single fibre varied from 0.65 nm 2 to 4.36 nm 2 , the highest being found at the end of bark region. The mean value of the correspondence distance is 13.95 nm. Surface structure analysis from scattering graph showed a rod shape of fibre in the pith region of Acacia Mangium wood. The use of SAXS technique and scanning electron microscope (SEM) micrographs gives the most reliable dimensions values.
    Matched MeSH terms: Scattering, Small Angle
  14. Wong JC, Xiang L, Ngoi KH, Chia CH, Jin KS, Ree M
    Polymers (Basel), 2020 Feb 19;12(2).
    PMID: 32093008 DOI: 10.3390/polym12020477
    A series of polystyrene nanoparticles (PS-1, PS-2, PS-3, and PS-4) in aqueous solutions were investigated in terms of morphological structure, size, and size distribution. Synchrotron small-angle X-ray scattering analysis (SAXS) was carried out, providing morphology details, size and size distribution on the particles. PS-1, PS-2, and PS-3 were confirmed to behave two-phase (core and shell) spherical shapes, whereas PS-4 exhibited a single-phase spherical shape. They all revealed very narrow unimodal size distributions. The structural parameter details including radial density profile were determined. In addition, the presence of surfactant molecules and their assemblies were detected for all particle solutions, which could originate from their surfactant-assisted emulsion polymerizations. In addition, dynamic light scattering (DLS) analysis was performed, finding only meaningful hydrodynamic size and intensity-weighted mean size information on the individual PS solutions because of the particles' spherical nature. In contrast, the size distributions were extracted unrealistically too broad, and the volume- and number-weighted mean sizes were too small, therefore inappropriate to describe the particle systems. Furthermore, the DLS analysis could not detect completely the surfactant and their assemblies present in the particle solutions. Overall, the quantitative SAXS analysis confirmed that the individual PS particle systems were successfully prepared with spherical shape in a very narrow unimodal size distribution.
    Matched MeSH terms: Scattering, Small Angle
  15. Mohd Nor Ihsan NS, Abdul Sani SF, Looi LM, Cheah PL, Chiew SF, Pathmanathan D, et al.
    Prog Biophys Mol Biol, 2023 Sep;182:59-74.
    PMID: 37307955 DOI: 10.1016/j.pbiomolbio.2023.06.002
    Amyloidosis is a deleterious condition caused by abnormal amyloid fibril build-up in living tissues. To date, 42 proteins that are linked to amyloid fibrils have been discovered. Amyloid fibril structure variation can affect the severity, progression rate, or clinical symptoms of amyloidosis. Since amyloid fibril build-up is the primary pathological basis for various neurodegenerative illnesses, characterization of these deadly proteins, particularly utilising optical techniques have been a focus. Spectroscopy techniques provide significant non-invasive platforms for the investigation of the structure and conformation of amyloid fibrils, offering a wide spectrum of analyses ranging from nanometric to micrometric size scales. Even though this area of study has been intensively explored, there still remain aspects of amyloid fibrillization that are not fully known, a matter hindering progress in treating and curing amyloidosis. This review aims to provide recent updates and comprehensive information on optical techniques for metabolic and proteomic characterization of β-pleated amyloid fibrils found in human tissue with thorough literature analysis of publications. Raman spectroscopy and SAXS are well established experimental methods for study of structural properties of biomaterials. With suitable models, they offer extended information for valid proteomic analysis under physiologically relevant conditions. This review points to evidence that despite limitations, these techniques are able to provide for the necessary output and proteomics indication in order to extrapolate the aetiology of amyloid fibrils for reliable diagnostic purposes. Our metabolic database may also contribute to elucidating the nature and function of the amyloid proteome in development and clearance of amyloid diseases.
    Matched MeSH terms: Scattering, Small Angle
  16. Goh CF, Boyd BJ, Craig DQM, Lane ME
    Expert Opin Drug Deliv, 2020 09;17(9):1321-1334.
    PMID: 32634033 DOI: 10.1080/17425247.2020.1792440
    BACKGROUND: Drug crystallization following application of transdermal and topical formulations may potentially compromise the delivery of drugs to the skin. This phenomenon was found to be limited to the superficial layers of the stratum corneum (~7 µm) in our recent reports and tape stripping of the skin samples was necessary. It remains a significant challenge to profile drug crystallization in situ without damaging the skin samples.

    METHODS: This work reports the application of an X-ray microbeam via synchrotron SAXS/WAXS analysis to monitor drug crystallization in the skin, especially in the deeper skin layers. Confocal Raman spectroscopy (CRS) was employed to examine drug distribution in the skin to complement the detection of drug crystallization using SAXS/WAXS analysis.

    RESULTS: Following application of saturated drug solutions (ibuprofen, diclofenac acid, and salts), CRS depth profiles confirmed that the drugs generally were delivered to a depth of ~15 - 20 µm in the skin. This was compared with the WAXS profiles that measured drug crystal diffraction at a depth of up to ~25 µm of the skin.

    CONCLUSION: This study demonstrates the potential of synchrotron SAXS/WAXS analysis for profiling of drug crystallization in situ in the deeper skin layers without pre-treatment for the skin samples. [Figure: see text].

    Matched MeSH terms: Scattering, Small Angle
  17. Ardyani T, Mohamed A, Abu Bakar S, Sagisaka M, Umetsu Y, Hafiz Mamat M, et al.
    Carbohydr Polym, 2020 Jan 15;228:115376.
    PMID: 31635739 DOI: 10.1016/j.carbpol.2019.115376
    The effect of incorporating common dodecyl anionic and cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), dodecylethyldimethylammonium bromide (DDAB), and sodium dodecylsulfate (SDS) in nanocomposites of reduced graphene oxide and nanocellulose are described. The stabilization and electrical properties of the nanocomoposites of reduced graphene oxide (RGO) and nanofibrillated kenaf cellulose (NFC) were characterized using four-point probe electrical conductivity measurements. Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy were used to investigate dispersion morphology and the quality of RGO inside the NFC matrices. Small-angle neutron scattering (SANS) was used to study the aggregation behavior of the aqueous surfactant systems and RGO dispersions. The cationic surfactant DTAB proved to be the best choice for stabilization of RGO in NFC, giving enhanced electrical conductivity five orders of magnitude higher than the neat NFC. The results highlight the effects of hydrophilic surfactant moieties on the structure, stability and properties of RGO/NFC composites.
    Matched MeSH terms: Scattering, Small Angle
  18. Ardyani T, Mohamed A, Bakar SA, Sagisaka M, Umetsu Y, Mamat MH, et al.
    J Colloid Interface Sci, 2019 Jun 01;545:184-194.
    PMID: 30878784 DOI: 10.1016/j.jcis.2019.03.012
    HYPOTHESIS: The compatibility of surfactants and graphene surfaces can be improved by increasing the number of aromatic groups in the surfactants. Including aniline in the structure may improve the compatibility between surfactant and graphene further still. Surfactants can be modified by incorporating aromatic groups in the hydrophobic chains or hydrophilic headgroups. Therefore, it is of interest to investigate the effects of employing anilinium based surfactants to disperse graphene nanoplatelets (GNPs) in natural rubber latex (NRL) for the fabrication of electrically conductive nanocomposites.

    EXPERIMENTS: New graphene-philic surfactants carrying aromatic moieties in the hydrophilic headgroups and hydrophobic tails were synthesized by swapping the traditional sodium counterion with anilinium. 1H NMR spectroscopy was used to characterize the surfactants. These custom-made surfactants were used to assist the dispersion of GNPs in natural rubber latex matrices for the preparation of conductive nanocomposites. The properties of nanocomposites with the new anilinium surfactants were compared with commercial sodium surfactant sodium dodecylsulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), and the previously synthesized aromatic tri-chain sodium surfactant TC3Ph3 (sodium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate). Structural properties of the nanocomposites were studied using Raman spectroscopy, field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). Electrical conductivity measurements and Zeta potential measurements were used to assess the relationships between total number of aromatic groups in the surfactant molecular structure and nanocomposite properties. The self-assembly structure of surfactants in aqueous systems and GNP dispersions was assessed using small-angle neutron scattering (SANS).

    FINDINGS: Among these different surfactants, the anilinium version of TC3Ph3 namely TC3Ph3-AN (anilinium 1,5-dioxo-1,5-bis(3-phenylpropoxy)-3-((3phenylpropoxy)carbonyl) pentane-2-sulfonate) was shown to be highly efficient for dispersing GNPs in the NRL matrices, increasing electrical conductivity eleven orders of magnitude higher than the neat rubber latex. Comparisons between the sodium and anilinium surfactants show significant differences in the final properties of the nanocomposites. In general, the strategy of increasing the number of surfactant-borne aromatic groups by incorporating anilinium ions in surfactant headgroups appears to be effective.

    Matched MeSH terms: Scattering, Small Angle
  19. Sagisaka M, Ono S, James C, Yoshizawa A, Mohamed A, Guittard F, et al.
    Colloids Surf B Biointerfaces, 2018 Aug 01;168:201-210.
    PMID: 29276082 DOI: 10.1016/j.colsurfb.2017.12.012
    Previous work (M. Sagisaka, et al. Langmuir 31 (2015) 7479-7487), showed the most effective fluorocarbon (FC) and hydrocarbon (HC) chain lengths in the hybrid surfactants FCm-HCn (sodium 1-oxo-1-[4-(perfluoroalkyl)phenyl]alkane-2-sulfonates, where m = FC length and n = HC length) were m and n = 6 and 4 for water solubilization, whereas m 6 and n 6, or m 6 and n 5, were optimal chain lengths for reversed micelle elongation in supercritical CO2. To clarify why this difference of only a few methylene chain units is so effective at tuning the solubilizing power and reversed micelle morphology, nanostructures of water-in-CO2 (W/CO2) microemulsions were investigated by high-pressure small-angle neutron scattering (SANS) measurements at different water-to-surfactant molar ratios (W0) and surfactant concentrations. By modelling SANS profiles with cylindrical and ellipsoidal form factors, the FC6-HCn/W/CO2 microemulsions were found to increase in size with increasing W0 and surfactant concentration. Ellipsoidal cross-sectional radii of the FC6-HC4/W/CO2 microemulsion droplets increased linearly with W0, and finally reached ∼39 Å and ∼78 Å at W0 = 85 (close to the upper limit of solubilizing power). These systems appear to be the largest W/CO2 microemulsion droplets ever reported. The aqueous domains of FC6-HC6 rod-like reversed micelles increased in size by 3.5 times on increasing surfactant concentration from 35 mM to 50 mM: at 35 mM, FC6-HC5 formed rod-like reversed micelles 5.3 times larger than FC6-HC6. Interestingly, these results suggest that hybrid HC-chains partition into the microemulsion aqueous cores with the sulfonate headgroups, or at the W/CO2 interfaces, and so play important roles for tuning the W/CO2 interfacial curvature. The super-efficient W/CO2-type solubilizer FC6-HC4, and the rod-like reversed micelle forming surfactant FC6-HC5, represent the most successful cases of low fluorine content additives. These surfactants facilitate VOC-free, effective and energy-saving CO2 solvent systems for applications such as extraction, dyeing, dry cleaning, metal-plating, enhanced oil recovery and organic/inorganic or nanomaterial synthesis.
    Matched MeSH terms: Scattering, Small Angle
  20. Keck CM
    Int J Pharm, 2010 May 5;390(1):3-12.
    PMID: 19733647 DOI: 10.1016/j.ijpharm.2009.08.042
    The influence of optical parameters, additional techniques (e.g. PIDS technology) and the importance of light microscopy were investigated by comparing laser diffraction data obtained via the conventional method and an optimized analysis method. Also the influence of a possible dissolution of nanocrystals during a measurement on the size result obtained was assessed in this study. The results reveal that dissolution occurs if unsaturated medium or microparticle saturated medium is used for the measurements. The dissolution is erratic and the results are not reproducible. Dissolution can be overcome by saturating the measuring medium prior to the measurement. If nanocrystals are analysed the dispersion medium should be saturated with the nanocrystals, because the solubility is higher than for coarse micro-sized drug material. The importance of using the optimized analysis method was proven by analysing 40 different nanosuspensions via the conventional versus the optimized sizing method. There was no large difference in the results obtained for the 40 nanosuspensions using the conventional method. This would have led to the conclusion, that all the 40 formulations investigated are physically stable. However, the analysis via the optimized method revealed that from 40 formulations investigated only four were physically stable. In conclusion an optimized analysis saves time and money and avoids misleading developments, because discrimination between "stable" and "unstable" can be done reliably at a very early stage of the development.
    Matched MeSH terms: Scattering, Small Angle
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links