In this study, the kinetic parameters of rice husk ash (RHA)/CaO/CeO(2) sorbent for SO(2) and NO sorptions were investigated in a laboratory-scale stainless steel fixed-bed reactor. Data experiments were obtained from our previous results and additional independent experiments were carried out at different conditions. The initial sorption rate constant (k(0)) and deactivation rate constant (k(d)) for SO(2)/NO sorptions were obtained from the nonlinear regression analysis of the experimental breakthrough data using deactivation kinetic model. Both the initial sorption rate constants and deactivation rate constants increased with increasing temperature, except at operating temperature of 170 °C. The activation energy and frequency factor for the SO(2) sorption were found to be 18.0 kJ/mol and 7.37 × 10(5)cm(3)/(g min), respectively. Whereas the activation energy and frequency factor for the NO sorption, were estimated to be 5.64 kJ/mol and 2.19 × 10(4)cm(3)/(g min), respectively. The deactivation kinetic model was found to give a very good agreement with the experimental data of the SO(2)/NO sorptions.
This study examines the impact of excision margin status after large loop excision of the transformation zone (LLETZ) under local anaesthetic for high-grade cervical intraepithelial neoplasia (HG-CIN) on the cytological and histological outcomes up to 5 years after treatment.
Hypnale hypnale (hump-nosed pit viper) is a medically important venomous snake in Sri Lanka and Southwestern India. Bite of this snake may result in hemostatic dysfunction, acute kidney injury and death. Clinical studies indicated that the locally available polyvalent antivenoms produced in India are not effective against hump-nosed pit viper envenoming. Hence, there is an urgent need to search for effective antivenom. In this paper, we examined the ability of Calloselasma rhodostoma (Malayan pit viper) monovalent antivenom and the Hemato polyvalent antivenom (both produced by Thai Red Cross Society, TRCS) to neutralize the lethality and toxic effects of H. hypnale venom, as C. rhodostoma is considered a sister taxon of H. hypnale. In vitro neutralization studies showed that the Hemato polyvalent antivenom effectively neutralized the lethality of H. hypnale venom (1.52mgvenom/mL antivenom) as well as the hemorrhagic, procoagulant and necrotic activities of the venom. The monovalent C. rhodostoma antivenom could also neutralize the lethality and toxic activities of the venom, but the potency was lower. The Hemato polyvalent antivenom also effectively protected mice from the lethal and local effects of H. hypnale venom in an in vivo rodent model of envenoming. Furthermore, the polyvalent antivenom could also effectively neutralize the venom of Daboia russelii (2.50mgvenom/mL antivenom), another common cause of snake bites in Sri Lanka and South India. These findings suggested that the Hemato polyvalent antivenom may be beneficial in the antivenom treatment of H. hypnale envenoming.
MeSH terms: Chronic Disease/economics*; Chronic Disease/therapy*; Delivery of Health Care*; Developing Countries; Humans; Population Dynamics; Models, Organizational; Developed Countries
Recent morphological and molecular studies led to the recognition of two extant species of clouded leopards; Neofelis nebulosa from mainland southeast Asia and Neofelis diardi from the Sunda Islands of Borneo and Sumatra, including the Batu Islands. In addition to these new species-level distinctions, preliminary molecular data suggested a genetic substructure that separates Bornean and Sumatran clouded leopards, indicating the possibility of two subspecies of N. diardi. This suggestion was based on an analysis of only three Sumatran and seven Bornean individuals. Accordingly, in this study we re-evaluated this proposed subspecies differentiation using additional molecular (mainly historical) samples of eight Bornean and 13 Sumatran clouded leopards; a craniometric analysis of 28 specimens; and examination of pelage morphology of 20 museum specimens and of photographs of 12 wild camera-trapped animals. Molecular (mtDNA and microsatellite loci), craniomandibular and dental analyses strongly support the differentiation of Bornean and Sumatran clouded leopards, but pelage characteristics fail to separate them completely, most probably owing to small sample sizes, but it may also reflect habitat similarities between the two islands and their recent divergence. However, some provisional discriminating pelage characters are presented that need further testing. According to our estimates both populations diverged from each other during the Middle to Late Pleistocene (between 400 and 120 kyr). We present a discussion on the evolutionary history of Neofelis diardi sspp. on the Sunda Shelf, a revised taxonomy for the Sunda clouded leopard, N. diardi, and formally describe the Bornean subspecies, Neofelis diardi borneensis, including the designation of a holotype (BM.3.4.9.2 from Baram, Sarawak) in accordance with the rules of the International Code of Zoological Nomenclature.
Solid-state fermentation (SSF) was employed to enhance the nutritive values of palm kernel cake (PKC) for poultry feeding. Aspergillus flavus was isolated from local PKC and utilized to increase the mannose content of PKC via the degradation of β-mannan in PKC; evaluation was done for batch SSF in Erlenmeyer flasks and in a novel laterally aerated moving bed (LAMB) bioreactor. The optimum condition for batch SSF in flasks was 110% initial moisture content, initial pH 6.0, 30 °C, 855 μm particle size, and 120 h of fermentation, yielding 90.91 mg mannose g⁻¹ dry PKC (5.9-fold increase). Batch SSF in the LAMB at the optimum condition yielded 79.61 mg mannose g⁻¹ dry PKC (5.5-fold increase) within just 96 h due to better heat and mass transfer when humidified air flowed radially across the PKC bed. In spite of a compromise of 12% reduction in mannose content when compared with the flasks, the LAMB facilitated good heat and mass transfer, and improved the mannose content of PKC in a shorter fermentation period. These attributes are useful for batch production of fermented PKC feed in an industrial scale.
Cell-based therapy using autologous cells has been suggested as a potential approach for periodontal tissue regeneration. Spheroid systems are a form of three-dimensional cell culture that promotes cell matrix interaction, which could recapitulate the aspect of cell homeostasis in vivo. The aim of this study is to assess the interaction of periodontal fibroblast spheroids with synthetic and collagen-based membranes that have been used in guided tissue regeneration.
A new cell line, Asian sea bass brain (ASBB), was derived from the brain tissue of Asian sea bass Lates calcarifer. This cell line was maintained in Leibovitz L-15 media supplemented with 10% fetal bovine serum (FBS). The ASBB cell line was subcultured more than 60 times over a period of 15 mo. The ASBB cell line consists predominantly of fibroblastic-like cells and was able to grow at temperatures between 20°C and 30°C with an optimum temperature of 25°C. The growth rate of these cells increased as the proportion of FBS increased from 2% to 20% at 25°C with optimum growth at the concentrations of 10% or 15% FBS. Polymerase chain reaction products were obtained from ASBB cells and tissues of sea bass with primer sets of microsatellite markers of sea bass. An isolate of piscine nodavirus from juveniles of marine fish species tested positive by IQ2000 kit for viral nervous necrosis detection and was examined for its infectivity to a fish cell line of ASBB. A marine fish betanodavirus was tested to determine the susceptibility of this new cell line in comparison with commercial highly permissive SSN-1 cells. The ASBB cell line was found to be susceptible to nodavirus (RGNNV genotype), and the infection was confirmed by comparison cytopathic effect (CPE) with commercial SSN-1 and reverse transcriptase-polymerase chain reaction. A nodavirus was further elucidated by electron microscopy, and the virus tested was shown to induce CPE on ASBB cells with significant high titer. This suggests that the ASBB cell line has good potential for the isolation of fish viruses.
Obesity, gastroesophageal reflux, and Barrett's esophagus have all been linked to esophageal adenocarcinoma. In addition, the decline in Helicobacter pylori (H. pylori) infection in affluent societies has also been suggested to be a major factor in the recent rise in the incidence of esophageal adenocarcinoma. If H. pylori infection has a protective role, populations with a naturally low prevalence of H. pylori infection such as the ethnic Malays of Northeastern Peninsular Malaysia should have high rates of esophageal adenocarcinoma.
1. Obesity is a metabolic disease of pandemic proportions largely arising from positive energy balance, a consequence of sedentary lifestyle, conditioned by environmental and genetic factors. Several central and peripheral neurohumoral factors (the major ones being the anorectic adipokines leptin and adiponecin and the orexigenic gut hormone ghrelin) acting on the anorectic (pro-opiomelanocortin and cocaine- and amphetamine-regulated transcript) and orexigenic (neuropeptide Y and agouti gene-related protein) neurons regulate energy balance. These neurons, mainly in the arcuate nucleus of the hypothalamus, project to parts of the brain modulating functions such as wakefulness, autonomic function and learning. A tilt in the anorectic-orexigenic balance, perhaps determined genetically, leads to obesity. 2. Excess fat deposition requires space, created by adipocyte (hypertrophy and hyperplasia) and extracellular matrix (ECM) remodelling. This process is regulated by several factors, including several adipocyte-derived Matrix metalloproteinases and the adipokine cathepsin, which degrades fibronectin, a key ECM protein. Excess fat, also deposited in visceral organs, generates chronic low-grade inflammation that eventually triggers insulin resistance and the associated comorbidities of metabolic syndrome (hypertension, atherosclerosis, dyslipidaemia and diabetes mellitus). 3. The perivascular adipose tissue (PVAT) has conventionally been considered non-physiological structural tissue, but has recently been shown to serve a paracrine function, including the release of adipose-derived relaxant and contractile factors, akin to the role of the vascular endothelium. Thus, PVAT regulates vascular function in vivo and in vitro, contributing to the cardiovascular pathophysiology of the metabolic syndrome. Defining the mechanism of PVAT regulation of vascular reactivity requires more and better controlled investigations than currently seen in the literature.
Andrographis paniculata (AP), Centella asiatica (CA) and Orthosiphon stamineus (OS) are three popular herbs traditionally used worldwide. AP is known for the treatment of infections and diabetes and CA is good for wound healing and healthy skin while OS is usually consumed as tea to treat kidney and urinary disorders. Interaction of these herbs with human cytochrome P450 2C19 (CYP2C19), a major hepatic CYP isoform involved in metabolism of many clinical drugs has not been investigated to date.
Foot-and-mouth disease (FMD) is endemic in the countries of mainland Southeast Asia where it represents a major obstacle to the development of productive animal industries. The aim of this study was to use genetic data to determine the distribution of FMD virus (FMDV) lineages in the Southeast Asia region, and in particular identify possible sources of FMDV causing outbreaks in Malaysia. Complete VP1 sequences, obtained from 214 samples collected between 2000 and 2009, from FMD outbreaks in six Southeast Asian countries, were compared with sequences previously reported. Phylogenetic analysis of these sequences showed that there were two patterns of FMDV distribution in Malaysia. Firstly, for some lineages (O/SEA/Mya98 and serotype A), outbreaks occurred every year in the country and did not appear to persist, suggesting that these incursions were quickly eradicated. Furthermore, for these lineages FMD viruses in Malaysia were closely related to those from neighbouring countries, demonstrating the close epidemiological links between countries in the region. In contrast, for O/ME-SA/PanAsia lineage, viruses were introduced and remained to cause outbreaks in subsequent years. In particular, the recent incursion and maintenance of the PanAsia-2 sublineage into Malaysia appears to be unique and independent from other outbreaks in the region. This study is the first characterisation of FMDV in Malaysia and provides evidence for different epidemiological sources of virus introduction into the country.
Biodiesel (fatty acids alkyl esters) is a promising alternative fuel to replace petroleum-based diesel that is obtained from renewable sources such as vegetable oil, animal fat and waste cooking oil. Vegetable oils are more suitable source for biodiesel production compared to animal fats and waste cooking since they are renewable in nature. However, there is a concern that biodiesel production from vegetable oil would disturb the food market. Oil from Jatropha curcas is an acceptable choice for biodiesel production because it is non-edible and can be easily grown in a harsh environment. Moreover, alkyl esters of jatropha oil meet the standard of biodiesel in many countries. Thus, the present paper provides a review on the transesterification methods for biodiesel production using jatropha oil as feedstock.
The search for antimicrobial agents from plants has been a growing interest in the last few decades. However, results generated from many of these studies cannot be directly compared due to the absence of standardization in particular antimicrobial methods employed. The need for established methods with consistent results for the evaluation of antimicrobial activities from plant extracts has been proposed by many researchers. Nevertheless, there are still many studies reported in the literature describing different methodologies. The aim of this study was to find optimal methods to give consistent quantitative antimicrobial results for studying plant extracts. Three different agar-based assays (pour plate disc diffusion (PPDD), streak plate disc diffusion (SPDD) and well-in agar (WA)) and one broth-based (turbidometric (TB)) assay were used in this study. Extracts from two plant species (Duabanga grandiflora and Acalypha wilkesiana) were tested on two bacterial species, namely Escherichia coli and Staphylococcus aureus. Amongst the agar-based assays, PPDD produced the most reproducible results. TB was able to show the inhibitory effects of the test samples on the growth kinetic of the bacteria including plant extracts with low polarity. We propose that both agar- (i.e PPDD) and broth-based assays should be employed when assessing the antimicrobial activity of plant crude extracts.
Many local plants are used in Malaysian traditional medicine to treat respiratory diseases including symptoms of tuberculosis. The aim of the study was to screen 78 plant extracts from 70 Malaysian plant species used in traditional medicine to treat respiratory diseases including symptoms of tuberculosis for activity against Mycobacterium tuberculosis H37Rv using a colorimetric microplate-based assay.
A co-culture consisting of Hydrogenophaga sp. PBC and Ralstonia sp. PBA, isolated from textile wastewater treatment plant could tolerate up to 100 mM 4-aminobenzenesulfonate (4-ABS) and utilize it as sole carbon, nitrogen and sulfur source under aerobic condition. The biodegradation of 4-ABS resulted in the release of nitrogen and sulfur in the form of ammonium and sulfate respectively. Ninety-eight percent removal of chemical oxygen demand attributed to 20 mM of 4-ABS in cell-free supernatant could be achieved after 118 h. Effective biodegradation of 4-ABS occurred at pH ranging from 6 to 8. During batch culture with 4-ABS as sole carbon and nitrogen source, the ratio of strain PBA to PBC was dynamic and a critical concentration of strain PBA has to be reached in order to enable effective biodegradation of 4-ABS. Haldane inhibition model was used to fit the degradation rate at different initial concentrations and the parameters μ(max), K(s) and K(i) were determined to be 0.13 h⁻¹, 1.3 mM and 42 mM respectively. HPLC analyses revealed traced accumulation of 4-sulfocatechol and at least four unidentified metabolites during biodegradation. This is the first study to report on the characterization of 4-ABS-degrading bacterial consortium that was isolated from textile wastewater treatment plant.
Central corneal thickness (CCT) is a risk factor of glaucoma, the most common cause of irreversible blindness worldwide. The identification of genetic determinants affecting CCT in the normal population will provide insights into the mechanisms underlying the association between CCT and glaucoma, as well as the pathogenesis of glaucoma itself. We conducted two genome-wide association studies for CCT in 5080 individuals drawn from two ethnic populations in Singapore (2538 Indian and 2542 Malays) and identified novel genetic loci significantly associated with CCT (COL8A2 rs96067, p(meta) = 5.40 × 10⁻¹³, interval of RXRA-COL5A1 rs1536478, p(meta) = 3.05 × 10⁻⁹). We confirmed the involvement of a previously reported gene for CCT and brittle cornea syndrome (ZNF469) [rs9938149 (p(meta) = 1.63 × 10⁻¹⁶) and rs12447690 (p(meta) = 1.92 × 10⁻¹⁴)]. Evidence of association exceeding the formal threshold for genome-wide significance was observed at rs7044529, an SNP located within COL5A1 when data from this study (n = 5080, P = 0.0012) were considered together with all published data (reflecting an additional 7349 individuals, p(Fisher) = 1.5 × 10⁻⁹). These findings implicate the involvement of collagen genes influencing CCT and thus, possibly the pathogenesis of glaucoma.
MeSH terms: Adult; Aged; Aged, 80 and over; Collagen/genetics*; Cornea/pathology*; Female; Glaucoma/ethnology; Glaucoma/genetics*; Humans; Malaysia; Male; Middle Aged; Risk Factors; Singapore; Cohort Studies; Polymorphism, Single Nucleotide; Collagen Type VIII/genetics; Quantitative Trait Loci; Asian Continental Ancestry Group/genetics*; Genome-Wide Association Study*
This study aimed to determine the effectiveness of propofol as an alternative agent for procedural sedation and analgesia (PSA) in the emergency department (ED) and to make a comparison between two different sedative (propofol vs midazolam) drugs used in combination with fentanyl.
The morphology of the tongue of the adult barking deer, Muntiacus muntjak, was examined by light and scanning electron microscopy. The result showed that the tongue of the barking deer was elongated with a rounded apex. Four types of lingual papillae were observed: filiform, fungiform, vallate and large conical papillae. The filiform papillae represented the most numerous types of lingual papillae. The fungiform papillae were distributed among the filiform papillae on the rostral and the body portions of the tongue. Ten to thirteen vallate papillae were distributed on both sides of the lingual prominence among the large conical papillae. Histologically, both the fungiform and vallate papillae contain taste buds in the epithelial layer. The distribution and types of lingual papillae found in the barking deer are similar to those in the other species that belong to the family Cervidae.