AIM OF THIS REVIEW: The present study is a critical assessment of the state-of-the-art concerning the traditional uses, the phytochemistry and the pharmacology of species belonging to the genus Hedyosmum to suggest further research strategies and to facilitate the exploitation of the therapeutic potential of Hedyosmum species for the treatment of human disorders.
MATERIALS AND METHODS: The present review consists of a systematic overview of scientific literature concerning the genus Hedyosmum published between 1965 and 2018. Moreover, an older text, dated from 1843, concerning the traditional uses of H. bonplandianum Kunth has also been considered. Several databases (Francis & Taylor, Google Scholar, PubMed, SciELO, SciFinder, Springer, Wiley, and The Plant List Database) have been used to perform this work.
RESULTS: Sixteen species of the genus Hedyosmum have been mentioned as traditional remedies, and a large number of ethnomedicinal uses, including for the treatment of pain, depression, migraine, stomach-ache and ovary diseases, have been reported. Five species have been used as flavouring agents, tea substitutes or foods. Sesterterpenes, sesquiterpene lactones, monoterpenes, hydroxycinnamic acid derivatives, flavonoids, and neolignans have been reported as the most important compounds in these species. Studies concerning their biological activities have shown that members of the Hedyosmum genus possesses promising biological properties, such as analgesic, antinociceptive, antidepressant, anxiolytic, sedative, and hypnotic effects. Preliminary studies concerning the antibacterial, antioxidant, antiplasmodial, and antifungal activities of these plants as well as their cytotoxic activities against different tumour cell lines have been reported. Some active compounds from the Hedyosmum genus have been used as starting points for the innovative and bioinspired development of synthetic molecules. A critical assessment of these papers has been performed, and some conceptual and methodological problems have been identified regarding the materials and methods and the experimental design used in these studies, including a lack of ethnopharmacological research.
CONCLUSIONS: The present review partially confirms the basis for some of the traditional uses of Hedyosmum species (mainly H. brasiliense) through preclinical studies that demonstrated their antinociceptive and neuroprotective effects. Due to promising preliminary results, further studies should be conducted on 13-hydroxy-8,9-dehydroshizukanolide and podoandin. Moreover, several essential oils (EOs) from this genus have been preliminarily investigated, and the cytotoxic and antibacterial activities of H. brasiliense and H. sprucei EOs certainly deserve further investigation. From the promising findings of the present analysis, we can affirm that this genus deserves further research from ethnopharmacological and toxicological perspectives.
METHODS: This is a retrospective analysis of reported MERS-CoV cases between December 2016 and January 2019, as retrieved from the World Health Organization. The aim of this study is to examine the epidemiology of reported cases and quantify the percentage of health care workers (HCWs) among reported cases.
RESULTS: There were 403 reported cases with a majority being men (n = 300; 74.4%). These cases were reported from Lebanon, Malaysia, Oman, Qatar, Saudi Arabia, and United Arab Emirates. HCWs represented 26% and comorbidities were reported among 71% of non-HCWs and 1.9% among HCWs (P < .0001). Camel exposure and camel milk ingestion were reported in 64% each, and the majority (97.8%) of those with camel exposures had camel milk ingestion. There were 58% primary cases and 42% were secondary cases. The case fatality rate was 16% among HCWs compared with 34% among other patients (P = .001). The mean age ± SD was 47.65 ± 16.28 for HCWs versus 54.23 ± 17.34 for non-HCWs (P = .001).
CONCLUSIONS: MERS-CoV infection continues to have a high case fatality rate and a large proportion of patients were HCWs. Further understanding of the disease transmission and prevention mainly in health care settings are needed.
OBJECTIVE: To investigate the effects of electrical stimulation of the tragus on autonomic outputs in the rat and probe the underlying neural pathways.
METHODS: Central neuronal projections from nerves innervating the external auricle were investigated by injections of the transganglionic tracer cholera toxin B chain (CTB) into the right tragus of Wistar rats. Physiological recordings of heart rate, perfusion pressure, respiratory rate and sympathetic nerve activity were made in an anaesthetic free Working Heart Brainstem Preparation (WHBP) of the rat and changes in response to electrical stimulation of the tragus analysed.
RESULTS: Neuronal tracing from the tragus revealed that the densest CTB labelling was within laminae III-IV of the dorsal horn of the upper cervical spinal cord, ipsilateral to the injection sites. In the medulla oblongata, CTB labelled afferents were observed in the paratrigeminal nucleus, spinal trigeminal tract and cuneate nucleus. Surprisingly, only sparse labelling was observed in the vagal afferent termination site, the nucleus tractus solitarius. Recordings made from rats at night time revealed more robust sympathetic activity in comparison to day time rats, thus subsequent experiments were conducted in rats at night time. Electrical stimulation was delivered across the tragus for 5 min. Direct recording from the sympathetic chain revealed a central sympathoinhibition by up to 36% following tragus stimulation. Sympathoinhibition remained following sectioning of the cervical vagus nerve ipsilateral to the stimulation site, but was attenuated by sectioning of the upper cervical afferent nerve roots.
CONCLUSIONS: Inhibition of the sympathetic nervous system activity upon electrical stimulation of the tragus in the rat is mediated at least in part through sensory afferent projections to the upper cervical spinal cord. This challenges the notion that tragal stimulation is mediated by the auricular branch of the vagus nerve and suggests that alternative mechanisms may be involved.
METHODS: Sprague Dawley rats, 180-250 g in weight were divided into four groups. Groups 1, 2, 3 and 4 were intravitreally administered with vehicle and NMDA at the doses 80, 160 and 320 nmol respectively. Seven days after injection, rats were euthanized, and their eyes were taken for optic nerve toluidine blue and retinal hematoxylin and eosin stainings. The TUNEL assay was done for detecting apoptotic cells.
RESULTS: All groups treated with NMDA showed significantly reduced ganglion cell layer (GCL) thickness within inner retina, as compared to control group. Group NMDA 160 nmol showed a significantly greater GCL thickness than the group NMDA 320 nmol. Administration of NMDA also resulted in a dose-dependent decrease in the number of nuclei both per 100 µm GCL length and per 100 µm2 of GCL. Intravitreal NMDA injection caused dose-dependent damage to the optic nerve. The degeneration of nerve fibres with increased clearing of cytoplasm was observed more prominently as the NMDA dose increased. In accordance with the results of retinal morphometry analysis and optic nerve grading, TUNEL staining demonstrated NMDA-induced excitotoxic retinal injury in a dose-dependent manner.
CONCLUSION: Our results demonstrate dose-dependent effects of NMDA on retinal and optic nerve morphology in rats that may be attributed to differences in the severity of excitotoxicity and oxidative stress. Our results also suggest that care should be taken while making dose selections experimentally so that the choice might best uphold study objectives.