Browse publications by year: 2020

  1. Arham AF, Amin L, Mustapa MAC, Mahadi Z, Arham AF, Yaacob M, et al.
    Data Brief, 2020 Oct;32:106262.
    PMID: 32944607 DOI: 10.1016/j.dib.2020.106262
    Perceived Benefits and Risks: A survey data set towards Wolbachia-infected Aedes Mosquitoes in the Klang Valley, Malaysia. Introduction: The paper presents data collected using measures of perceived benefits, perceived risks, trust in key players, attitude towards nature versus material, attitude towards technology, religiosity, and attitude towards the Wolbachia-infected Aedes mosquitoes (WiAM) technique. The validated questionnaires were used to randomly survey targeted stakeholders in the Klang Valley, Malaysia, who had been asked to voluntarily participate in face-to-face interviews. Completed questionnaires were received from 399 respondents (adults above 18 years old) and comprised two stakeholder groups: scientists (n = 202), and the public (n = 197). The detailed findings serve numerous opportunities to examine the social acceptance of Wolbachia-infected Aedes mosquitoes, to ensure the development of policy and action plans, and to encourage further study by other researchers interested in the measures and data presented.
    MeSH terms: Aedes; Animals; Attitude; Malaysia; Surveys and Questionnaires; Religion; Social Distance; Wolbachia; Trust
  2. Su Y, Ma T, Wang Z, Dong B, Tai C, Wang H, et al.
    ESC Heart Fail, 2020 Dec;7(6):4465-4471.
    PMID: 32945150 DOI: 10.1002/ehf2.12997
    AIMS: Elevated heart rate (HR) in heart failure (HF) is associated with worse outcomes, particularly in acute HF (AHF). HR reduction with ivabradine reduces cardiovascular events in HF patients with reduced ejection fraction. The present trial aimed to test the hypothesis that the early HR reduction using ivabradine improves clinical outcomes in patients with AHF.

    METHODS AND RESULTS: SHIFT-AHF is a prospective, multi-centre, double-blind, randomized, placebo-controlled trial to evaluate the efficacy and safety of ivabradine when adding to standard therapy in AHF patients (SHIFT-AHF). The trial will include 674 AHF patients with left ventricular ejection fraction 

  3. Bhaskaran M, Devegowda VG, Gupta VK, Shivachar A, Bhosale RR, Arunachalam M, et al.
    ACS Chem Neurosci, 2020 10 07;11(19):2962-2977.
    PMID: 32945654 DOI: 10.1021/acschemneuro.0c00555
    Glioblastoma multiforme (GBM), a standout among the most dangerous class of central nervous system (CNS) cancer, is most common and is an aggressive malignant brain tumor in adults. In spite of developments in modality therapy, it remains mostly incurable. Consequently, the need for novel systems, strategies, or therapeutic approaches for enhancing the assortment of active agents meant for GBM becomes an important criterion. Currently, cancer research focuses mainly on improving the treatment of GBM via diverse novel drug delivery systems. The treatment options at diagnosis are multimodal and include radiation therapy. Moreover, significant advances in understanding the molecular pathology of GBM and associated cell signaling pathways have opened opportunities for new therapies. Innovative treatment such as immunotherapy also gives hope for enhanced survival. The objective of this work was to collect and report the recent research findings to manage GBM. The present review includes existing novel drug delivery systems and therapies intended for managing GBM. Reported novel drug delivery systems and diverse therapies seem to be precise, secure, and relatively effective, which could lead to a new track for the obliteration of GBM.
    MeSH terms: Adult; Brain; Brain Neoplasms; Glioblastoma; Humans; Immunotherapy; Signal Transduction; Drug Delivery Systems; Central Nervous System Neoplasms; Pathology, Molecular
  4. Ng HF, Ngeow YF
    Pathog Dis, 2020 11 11;78(8).
    PMID: 32945880 DOI: 10.1093/femspd/ftaa055
    The subspecies classification of Mycobacteroides abscessus complex into M. abscessus, M. massiliense and M. bolletii requires the amplification and sequencing of multiple genes. The objective of this study was to evaluate the possibility of subspecies classification using a single PCR target. An in silico study was performed to classify 1613 strains deposited in a public database using 9 genes (partial gene sequences of hsp65, rpoB, sodA, argH, cya, glpK, gnd, and murC, and the full gene sequence of MAB_3542c). We found the housekeeping gene gnd to be able to classify the M. abscessus subspecies with high accuracy (99.94%). A single-gene PCR approach based on gnd would be a suitable replacement for the more expensive, labor-intensive and time-consuming multi-gene PCR analysis currently in use for the subspecies identification of M. abscessus.
    MeSH terms: Bacterial Proteins/genetics; DNA, Bacterial; Phosphogluconate Dehydrogenase/genetics*; Phylogeny; Bacterial Typing Techniques/methods*; Polymerase Chain Reaction; Sequence Analysis, DNA; Genes, Essential
  5. Raja Ram NK, Chan KK, Fareeda S, Sagap I
    Colorectal Dis, 2020 12;22(12):2334-2335.
    PMID: 32946673 DOI: 10.1111/codi.15370
  6. Konidala SK, Kotra V, Danduga RCSR, Kola PK
    Bioorg Chem, 2020 11;104:104207.
    PMID: 32947135 DOI: 10.1016/j.bioorg.2020.104207
    Four series of thirteen new coumarin-chalcone hybrids (DPCU 1-13, DPCT 1-13, DCCU 1-13 and DCCT 1-13) were designed and synthesized using Biginelli synthesis, Pechmann condensation, Acetylation, and Claisen-Schmidt reactions. Synthesized compounds were tested for insulin receptor in silico docking studies (PDB ID: 1IR3); DCCU 13 and DCCT 13 derivatives received the lowest docking score; Streptozocin (STZ) and Nicotinamide (NA) induced type II diabetes was tested for their anti-diabetic activity in rats. In vivo tests suggested that fasting blood glucose levels of animals treated with DCCU 13 (30 mg/kg body weight) and DCCT 13 (30 mg/kg body weight) were significantly and moderately suppressed, respectively, relative to fasting blood glucose levels of diabetic control animals. Similarly, therapy with DCCU 13 and DCCT 13 attenuated oxidative stress parameters such as lipid peroxidation (MDA), superoxide dismutase (SOD) and increased the glutathione (GSH) in the liver and pancreas in a dose-dependent manner. In comparison, therapy with DCCU 13 (30 mg/kg body weight) mitigated alterations in the histological architecture of the liver and pancreatic tissue. These results indicated that the hybrids DUUC 13 and DCCT 13 at 30 mg/kg had an anti-hyperglycemic and antioxidant impact on STZ + NA mediated type II diabetes in rats. Further detailed work could be required to determine the precise mode of action of the anti-diabetic behavior of hybrids.
    MeSH terms: Administration, Oral; Animals; Chalcone/administration & dosage; Chalcone/pharmacology*; Chalcone/chemistry; Coumarins/administration & dosage; Coumarins/pharmacology*; Coumarins/chemistry; Diabetes Mellitus, Experimental/chemically induced; Diabetes Mellitus, Experimental/drug therapy*; Diabetes Mellitus, Experimental/pathology; Dose-Response Relationship, Drug; Female; Humans; Hypoglycemic Agents/administration & dosage; Hypoglycemic Agents/pharmacology*; Hypoglycemic Agents/chemistry; Injections, Intraperitoneal; Male; Receptor, Insulin/antagonists & inhibitors*; Streptozocin/administration & dosage; Structure-Activity Relationship; Drug Design; Molecular Structure; Antigens, CD; Rats, Wistar; Rats; Molecular Docking Simulation*
  7. Faheem, Kumar BK, Sekhar KVGC, Kunjiappan S, Jamalis J, Balaña-Fouce R, et al.
    Bioorg Chem, 2020 Nov;104:104269.
    PMID: 32947136 DOI: 10.1016/j.bioorg.2020.104269
    COVID-19 caused by the novel SARS-CoV-2 has been declared a pandemic by the WHO is causing havoc across the entire world. As of May end, about 6 million people have been affected, and 367 166 have died from COVID-19. Recent studies suggest that the SARS-CoV-2 genome shares about 80% similarity with the SARS-CoV-1 while their protein RNA dependent RNA polymerase (RdRp) shares 96% sequence similarity. Remdesivir, an RdRp inhibitor, exhibited potent activity against SARS-CoV-2 in vitro. 3-Chymotrypsin like protease (also known as Mpro) and papain-like protease, have emerged as the potential therapeutic targets for drug discovery against coronaviruses owing to their crucial role in viral entry and host-cell invasion. Crystal structures of therapeutically important SARS-CoV-2 target proteins, namely, RdRp, Mpro, endoribonuclease Nsp15/NendoU and receptor binding domain of CoV-2 spike protein has been resolved, which have facilitated the structure-based design and discovery of new inhibitors. Furthermore, studies have indicated that the spike proteins of SARS-CoV-2 use the Angiotensin Converting Enzyme-2 (ACE-2) receptor for its attachment similar to SARS-CoV-1, which is followed by priming of spike protein by Transmembrane protease serine 2 (TMPRSS2) which can be targeted by a proven inhibitor of TMPRSS2, camostat. The current treatment strategy includes repurposing of existing drugs that were found to be effective against other RNA viruses like SARS, MERS, and Ebola. This review presents a critical analysis of druggable targets of SARS CoV-2, new drug discovery, development, and treatment opportunities for COVID-19.
    MeSH terms: Amino Acid Sequence; Animals; Antiviral Agents/therapeutic use*; Humans; Protease Inhibitors/therapeutic use*; Drug Discovery*; Drug Repositioning; Pandemics
  8. Wong YC, Mahyuddin N, Aminuddin AMR
    Waste Manag, 2020 Dec;118:402-415.
    PMID: 32947219 DOI: 10.1016/j.wasman.2020.08.036
    Recycling automotive waste has increasingly become an alternative solution towards producing sustainable materials given the rising issue of raw material shortages and waste management challenges at global level. The improper end-of-life vehicle (ELV) waste management poses detrimental impacts on the environment. This paper proposes a novel method to develop thermal insulation sandwich panels using ELV waste, motivated by the critical needs of creating high-performance thermal insulation for buildings. Six sandwich panels (P1-P6) of different weight and ratio of shredded ELV particles were manufactured. The sandwich panels structure was made of three layers: a core, and a glass face sheet bonded to each side. The core structure composed of Polycarbonate (PC) from headlamp lenses and polyurethane (PU) from seat, bonded using resin casting approach. Thermal conductivity of the samples was measured using guarded hot-plate apparatus. Results corroborated that thermal conductivity of ELV-based sandwich panels reduced remarkably compared to panel without ELVs, recorded at 15.51% reduction. Composition gives the best thermal performance was made of mixed ELV core materials of ratio 50%PC:50%PU, it has a thermal conductivity value of 0.1776 W/mK. The transparency data were obtained using Haze-gard plus haze meter. The best luminous transmittance value was exhibited by P2 (100% PC), 67.47%. The best clarity value and haze value were shown by P6 (25% PC: 75% PU), 55.13% and 52.6% respectively. ELV waste can be recycled to develop useful sustainable thermal insulation to improve thermal and optical transparency performance of buildings as a substitute for conventional materials which have a relevance for future façade concepts.
    MeSH terms: Automobiles; Polyurethanes; Thermal Conductivity; Recycling*
  9. Swami V, Todd J, Stieger S, Tylka TL
    Body Image, 2020 Dec;35:71-74.
    PMID: 32947248 DOI: 10.1016/j.bodyim.2020.08.006
    The construct of body acceptance by others (i.e., the degree to which an individual perceives acceptance for their appearance by others) is central to conceptual models of positive body image and adaptive eating styles. It is typically measured using the 10-item Body Acceptance by Others Scale (BAOS; Avalos & Tylka, 2006), but emerging research has suggested that a unidimensional model of BAOS scores may be unstable. Here, we examined the factor structure of BAOS scores in a sample of adults from the United Kingdom (N = 1148). Exploratory factor analyses indicated that BAOS scores reduced to two dimensions in women, of which only a primary 6-item factor was stable. In men, all 10 items loaded onto a primary factor. However, the results of confirmatory factor analyses indicated that both models of BAOS scores had poor fit. Although both the unidimensional 10-item and 6-item models had adequate internal consistency, our results are suggestive of factor structure instability. We conclude by suggesting ways in which future research could revise the BAOS to improve its factorial stability and validity.
    MeSH terms: Adolescent; Adult; Aged; Aged, 80 and over; Body Image/psychology*; Factor Analysis, Statistical; Female; Great Britain; Humans; Male; Middle Aged; Psychometrics; Reproducibility of Results; Young Adult
  10. Khoo SC, Peng WX, Yang Y, Ge SB, Soon CF, Ma NL, et al.
    J Hazard Mater, 2020 12 05;400:123296.
    PMID: 32947701 DOI: 10.1016/j.jhazmat.2020.123296
    Synthetic adhesives in the plywood industry are usually volatile compounds such as formaldehyde-based chemical which are costly and hazardous to health and the environment. This phenomenon promotes an interest in developing bio-boards without synthetic adhesives. This study proposed a novel application of natural mycelium produced during mushroom cultivation as natural bio-adhesive material that convert spent mushroom substrate (SMS) into high-performance bio-board material. Different types of spent mushroom substrates were compressed with specific designed mould with optimal temperature at 160 °C and 10 mPa for 20 min. The bio-board made from Ganoderma lucidum SMS had the highest internal bonding strength up to 2.51 mPa. This is far above the 0.4-0.8 range of China and US national standards. In addition, the material had high water and fire resistance, high bonding and densified structures despite free of any adhesive chemicals. These properties and the low cost one step procedure show the potential as a zero-waste economy chain for sustainable agricultural practice for waste and remediation.
    MeSH terms: Agaricales*; Agriculture; China; Formaldehyde; Mycelium
  11. Phoon BL, Ong CC, Mohamed Saheed MS, Show PL, Chang JS, Ling TC, et al.
    J Hazard Mater, 2020 12 05;400:122961.
    PMID: 32947727 DOI: 10.1016/j.jhazmat.2020.122961
    Antibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely. Besides, municipal and livestock wastewater also contain unmetabolized antibiotics released by human and animal, respectively. The antibiotic found in wastewater leads to antibiotic resistance challenges, also emergence of superbugs. Currently, numerous technological approaches have been developed to remove antibiotics from the wastewater. Therefore, it was imperative to critically review the weakness and strength of these current advanced technological approaches in use. Besides, the conventional methods for removal of antibiotics such as Klavaroti et al., Homem and Santos also discussed. Although, membrane treatment is discovered as the ultimate choice of approach, to completely remove the antibiotics, while the filtered antibiotics are still retained on the membrane. This study found, hybrid processes to be the best solution antibiotics removal from wastewater. Nevertheless, real-time monitoring system is also recommended to ascertain that, wastewater is cleared of antibiotics.
    MeSH terms: Animals; Anti-Bacterial Agents; Humans; Quality of Life; Waste Disposal, Fluid; Waste Water*
  12. Foong SY, Ma NL, Lam SS, Peng W, Low F, Lee BHK, et al.
    J Hazard Mater, 2020 Dec 05;400:123006.
    PMID: 32947729 DOI: 10.1016/j.jhazmat.2020.123006
    Pollution with pesticides is a widespread global problem and biomonitoring of the environment and human populations is necessary to assess potential harmful biological effects. One of the pesticides that are showing up in vegetables and fruit is chlorpyrifos (CPS). CPS is a nerve-poisoning organophosphorus insecticide, which is in up to 1/3 of all conventionally produced citrus fruits. Our review shows that CPS is a hazardous material that poses risks to human health and also pollutes the environment. There is numerous risk assessment of CPS reported, however, the assessment is easily affected by factors such as climate change, exposure period and CPS concentration. Therefore, rigorous update of the hazardous level of CPS is needed to determine the threshold level safe for humans and animals. There is a need for remediation using for example photoreactive nanoparticle methods and microbial degeneration possessing high degradation efficiency (73-97%). In addition, stringent biomonitoring of food, environment and human exposure should occur to avoid exposure to chemicals via citrus fruits and vegetables. This is necessary to assess health risks and socioeconomic impacts which also require collaboration between private and public sectors to facilitate the growth, sale and manufacturing of biopesticides.
    MeSH terms: Animals; Food Contamination/analysis; Humans; Prevalence
  13. Hasanzadeh R, Abbasi Souraki B, Pendashteh A, Khayati G, Ahmadun FR
    J Hazard Mater, 2020 12 05;400:123197.
    PMID: 32947738 DOI: 10.1016/j.jhazmat.2020.123197
    Salinity expressed as total dissolved solids (TDS), is the most challenging parameter in bioremediation of produced water which may inhibit the microbial activities and cause sedimentation problems. The present study explores the feasibility of using walnut shell as an inexpensive and accessible adsorbent-carrier for the immobilization of isolated halophilic microorganisms for treatment of synthetic oilfield produced water. The moving bed biofilm reactor (MBBR) was examined with influent chemical oxygen demand (COD) concentrations from 900 to 3600 mg L-1, TDS concentrations from 35,000-200,000 mg L-1, and cycle times from 24 to 72 h. Comparison of the MBBR with the conventional sequencing batch reactor (SBR) indicated that both systems operated at lower influent COD and TDS concentrations satisfactorily; but at higher TDSs (above 150,000 mg L-1) the MBBR was more resistant to the shocks of toxicity (salinity) and organic load relative to the SBR. Also, the effluent turbidity was lower and the free sludge settling property was more favorable in the MBBR with average sludge volume index (SVI) of 38.8 mL g-1 compared to the SBR with SVI of 98.09 mL g-1. Microbial identification confirmed the presence of eight dominant halophilic species which were hydrocarbon degraders and/or denitrifiers.
    MeSH terms: Waste Disposal, Fluid; Water; Biofilms; Bioreactors*; Juglans*; Biological Oxygen Demand Analysis; Oil and Gas Fields
  14. B Aziz S, Brza MA, Brevik I, Hafiz MH, Asnawi ASFM, Yusof YM, et al.
    Polymers (Basel), 2020 Sep 16;12(9).
    PMID: 32947829 DOI: 10.3390/polym12092103
    This research paper investigates the electrochemical performance of chitosan (CS): dextran (DX) polymer-blend electrolytes (PBEs), which have been developed successfully with the incorporation of ammonium hexafluorophosphate (NH4PF6). X-ray diffraction (XRD) analysis indicates that the plasticized electrolyte system with the highest value of direct current (DC) ionic conductivity is the most amorphous system. The glycerol addition increased the amorphous phase and improved the ionic dissociation, which contributed to the enhancement of the fabricated device's performance. Transference number analysis (TNM) has shown that the charge transport process is mainly by ions rather than electrons, as tion = 0.957. The CS:DX:NH4PF6 system was found to decompose as the voltage goes beyond 1.5 V. Linear sweep voltammetry (LSV) revealed that the potential window for the most plasticized system is 1.5 V. The fabricated electrochemical double-layer capacitor (EDLC) was analyzed with cyclic voltammetry (CV) and charge-discharge analysis. The results from CV verify that the EDLC in this work holds the characteristics of a capacitor. The imperative parameters of the fabricated EDLC such as specific capacitance and internal resistance were found to be 102.9 F/g and 30 Ω, respectively. The energy stored and power delivered by the EDLC were 11.6 Wh/kg and 2741.2 W/kg, respectively.
    MeSH terms: Dextrans; Electric Conductivity; Electrolytes; Electrons; Glycerol; Humans; Ions; Patient Discharge; Phosphoric Acids; Plasticizers; Polymers; X-Ray Diffraction; Electric Capacitance; Chitosan
  15. Cheong XK, Wong Z, Nor NM, Lee BR
    BMC Gastroenterol, 2020 Sep 18;20(1):305.
    PMID: 32948126 DOI: 10.1186/s12876-020-01452-3
    BACKGROUND: Hepatitis B infection is a significant worldwide health issue, predispose to the development of liver cirrhosis and hepatocellular carcinoma. Entecavir is a potent oral antiviral agent of high genetic barrier for the treatment of chronic hepatitis B infection. Cutaneous adverse reaction associated with entecavir has rarely been reported in literature. As our knowledge, this case was the first case reported on entecavir induced lichenoid drug eruption.

    CASE PRESENTATION: 55 year old gentlemen presented with generalised pruritic erythematous rash on trunk and extremities. Six weeks prior to his consultation, antiviral agent entecavir was commenced for his chronic hepatitis B infection. Skin biopsy revealed acanthosis and focal lymphocytes with moderate perivascular lymphocyte infiltration. Skin condition recovered completely after caesation of offending drug and short course of oral corticosteroids.

    CONCLUSION: This case highlight the awareness of clinicians on the spectrum of cutaneous drug reaction related to entecavir therapy.

    MeSH terms: Antiviral Agents/adverse effects; Guanine/adverse effects; Guanine/analogs & derivatives; Hepatitis B virus; Humans; Middle Aged; Treatment Outcome
  16. Abubakar U, Zulkarnain AI, Samri F, Hisham SR, Alias A, Ishak M, et al.
    BMC Complement Med Ther, 2020 Sep 18;20(1):285.
    PMID: 32948163 DOI: 10.1186/s12906-020-03082-4
    BACKGROUND: Dysmenorrhea is a common problem that affects female students' quality of life and academic activities. Complementary and alternative therapies (CATs) are used for the treatment of dysmenorrhea. This study investigated the practices and perceptions of female undergraduate students with dysmenorrhea towards CATs.

    METHODS: This was a cross-sectional study conducted among undergraduate pharmacy students in a public university in Malaysia using a validated and pre-tested self-administered questionnaire. The study was conducted in November and December 2019. The data was analysed using descriptive and inferential statistical tests.

    RESULTS: Of the 318 female undergraduate students invited, 219 completed the questionnaire (response rate: 68.9%) with 52% aged between 21 and 23 years. The prevalence of dysmenorrhea was 72.1%, and the prevalence of ever-use and current use of CATs was 70.3 and 54.4%, respectively. Bed rest (71.5%), hot compress/heating pad (47.5%) and massage (43.0%) were the most common CATs used by the respondents. The most common reasons for using CAT were to reduce the need for analgesics (61.4%), efficacy (37.3%) and recommendation by others (32.9%). About 23 and 9% of the respondents believed that CATs were equally "effective" and "more effective" than analgesics, respectively. Reducing the need for analgesics (AOR: 4.066, 95% CI: 2.136-7.739) and those who agreed that CATs are effective (AOR: 2.701, 95% CI: 1.337-5.457) were independently associated with the current use CATs for the treatment of menstrual pain.

    CONCLUSION: The prevalence of ever-use and current use of CATs is high among female undergraduate pharmacy students. Bed rest and heat applications are the most common CATs used. Reducing the need for analgesics and efficacy are the factors associated with the current use of CATs. Students should be educated about the safe and effective use of CATs to reduce adverse effects and improve their quality of life.

    MeSH terms: Adolescent; Adult; Complementary Therapies/statistics & numerical data*; Cross-Sectional Studies; Dysmenorrhea/therapy*; Female; Humans; Malaysia; Quality of Life; Surveys and Questionnaires; Students, Pharmacy*; Universities; Young Adult
  17. Liang Z, Shi J, Wang C, Li J, Liang D, Yong EL, et al.
    Appl Environ Microbiol, 2020 11 10;86(23).
    PMID: 32948522 DOI: 10.1128/AEM.01920-20
    Pretreatment of waste-activated sludge (WAS) is an effective way to destabilize sludge floc structure and release organic matter for improving sludge digestion efficiency. Nonetheless, information on the impact of WAS pretreatment on digestion sludge microbiomes, as well as mechanistic insights into how sludge pretreatment improves digestion performance, remains elusive. In this study, a genome-centric metagenomic approach was employed to investigate the digestion sludge microbiome in four sludge digesters with different types of feeding sludge: WAS pretreated with 0.25 mol/liter alkaline/acid (APAD), WAS pretreated with 0.8 mol/liter alkaline/acid (HS-APAD), thermally pretreated WAS (thermal-AD), and fresh WAS (control-AD). We retrieved 254 metagenome-assembled genomes (MAGs) to identify the key functional populations involved in the methanogenic digestion process. These MAGs span 28 phyla, including 69 yet-to-be-cultivated lineages, and 30 novel lineages were characterized with metabolic potential associated with hydrolysis and fermentation. Interestingly, functional populations involving carbohydrate digestion were enriched in APAD and HS-APAD, while lineages related to protein and lipid fermentation were enriched in thermal-AD, corroborating the idea that different substrates are released from alkaline/acid and thermal pretreatments. Among the major functional populations (i.e., fermenters, syntrophic acetogens, and methanogens), significant correlations between genome sizes and abundance of the fermenters were observed, particularly in APAD and HS-APAD, which had improved digestion performance.IMPORTANCE Wastewater treatment generates large amounts of waste-activated sludge (WAS), which consists mainly of recalcitrant microbial cells and particulate organic matter. Though WAS pretreatment is an effective way to release sludge organic matter for subsequent digestion, detailed information on the impact of the sludge pretreatment on the digestion sludge microbiome remains scarce. Our study provides unprecedented genome-centric metagenomic insights into how WAS pretreatments change the digestion sludge microbiomes, as well as their metabolic networks. Moreover, digestion sludge microbiomes could be a unique source for exploring microbial dark matter. These results may inform future optimization of methanogenic sludge digestion and resource recovery.
    MeSH terms: Archaea/genetics*; Archaea/isolation & purification; Bacteria/genetics*; Bacteria/isolation & purification; Hot Temperature; Hydrogen-Ion Concentration; Sewage/microbiology*; Sewage/chemistry*; Waste Disposal, Fluid/methods*; Metagenome*; Microbiota*
  18. Soudagar MEM, Banapurmath NR, Afzal A, Hossain N, Abbas MM, Haniffa MACM, et al.
    Sci Rep, 2020 09 18;10(1):15326.
    PMID: 32948806 DOI: 10.1038/s41598-020-72150-z
    This study deals with an experimental investigation to assess the characteristics of a modified common rail direct injection (CRDI) engine utilizing diesel, Mahua biodiesel, and their blends with synthesized zinc oxide (ZnO) nano additives. The physicochemical properties of diesel, diesel + 30 ppm ZnO nanoparticles (D10030), 20% Mahua biodiesel (MOME20), and Mahua biodiesel (20%) + 30 ppm ZnO nanoparticles (MOME2030) were measured in accordance to the American Society for Testing and Materials standards. The effects of modification of fuel injectors (FI) holes (7-hole FI) and toroidal reentrant combustion chamber (TRCC) piston bowl design on the performance of CRDI using different fuel blends were assessed. For injection timings (IT) and injection opening pressure (IOP) average increase in brake thermal efficiency for fuel blend D10030 and MOME2030 was 9.65% and 16.4%, and 8.83% and 5.06%, respectively. Also, for IT and IOP, the average reductions in brake specific fuel consumption, smoke, carbon monoxide, hydrocarbon and nitrogen oxide emissions for D10030 and MOME2030 were 10.9% and 7.7%, 18.2% and 8.6%, 12.6% and 11.5%, 8.74% and 13.1%, and 5.75% and 7.79%, respectively and 15.5% and 5.06%, 20.33% and 6.20%, 11.12% and 24.8%, 18.32% and 6.29%, and 1.79% and 6.89%, respectively for 7-hole fuel injector and TRCC. The cylinder pressure and heat release rate for D10030 and MOME2030 were enhanced by 6.8% and 17.1%, and 7.35% and 12.28%. The 7-hole fuel injector with the nano fuel blends at an injection timing and pressure of 10° btdc and 900 bar demonstrated the overall improvement of the engine characteristics due to the better air quality for fuel mixing. Similarly, the TRCC cylinder bowl geometry illustrated advanced ignition due to an improved swirl and turbulence. Also, the engine test results demonstrated that 30 ppm of ZnO nanoparticles in Mahua biodiesel (MOME2030) and diesel (D10030) with diethyl ether resulted overall enhancement of CRDI engine characteristics.
External Links