Browse publications by year: 2021

  1. Bangash KA, Kazmi SAA, Farooq W, Ayub S, Musarat MA, Alaloul WS, et al.
    Micromachines (Basel), 2021 May 05;12(5).
    PMID: 34062988 DOI: 10.3390/mi12050518
    The polymer solar cells also known as organic solar cells (OSCs) have drawn attention due to their cynosure in industrial manufacturing because of their promising properties such as low weight, highly flexible, and low-cost production. However, low η restricts the utilization of OSCs for potential applications such as low-cost energy harvesting devices. In this paper, OSCs structure based on a triple-junction tandem scheme is reported with three different absorber materials to enhance the absorption of photons which in turn improves the η, as well as its correlating performance parameters. The investigated structure gives the higher value of η = 14.33% with Jsc = 16.87 (mA/m2), Voc = 1.0 (V), and FF = 84.97% by utilizing a stack of three different absorber layers with different band energies. The proposed structure was tested under 1.5 (AM) with 1 sun (W/m2). The impact of the top, middle, and bottom subcells' thickness on η was analyzed with a terse to find the optimum thickness for three subcells to extract high η. The optimized structure was then tested with different electrode combinations, and the highest η was recorded with FTO/Ag. Moreover, the effect of upsurge temperature was also demonstrated on the investigated schematic, and it was observed that the upsurge temperature affects the photovoltaic (PV) parameters of the optimized cell and η decreases from 14.33% to 11.40% when the temperature of the device rises from 300 to 400 K.
    MeSH terms: Attention; Commerce; Electrodes; Industry; Polymers; Silver; Temperature; Photons; Physical Phenomena
  2. Pandey M, Choudhury H, D/O Segar Singh SK, Chetty Annan N, Bhattamisra SK, Gorain B, et al.
    Molecules, 2021 May 05;26(9).
    PMID: 34062995 DOI: 10.3390/molecules26092704
    A single ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that causes inflammation of the colonic mucosa at the distal colon and rectum. The mainstay therapy involves anti-inflammatory immunosuppression based on the disease location and severity. The disadvantages of using systemic corticosteroids for UC treatment is the amplified risk of malignancies and infections. Therefore, topical treatments are safer as they have fewer systemic side effects due to less systemic exposure. In this context, pH sensitive and enzymatically triggered hydrogel of pectin (PC) and polyacrylamide (PAM) has been developed to facilitate colon-targeted delivery of budesonide (BUD) for the treatment of UC. The hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), swelling ratio, and drug release. FT-IR spectroscopy confirmed the grafting as well loading of BUD in hydrogel. XRD showed the amorphous nature of hydrogel and increment in crystallinity after drug loading. On the other hand, SEM showed that the hydrogels exhibited a highly porous morphology, which is suitable for drug loading and also demonstrated a pH-responsive swelling behaviour, with decreased swelling in acidic media. The in-vitro release of BUD from the hydrogel exhibited a sustained release behaviour with non-ficken diffusion mechanism. The model that fitted best for BUD released was the Higuchi kinetic model. It was concluded that enzyme/pH dual-sensitive hydrogels are an effective colon-targeted delivery system for UC.
    MeSH terms: Acrylic Resins/chemistry*; Calorimetry, Differential Scanning; Delayed-Action Preparations; Hydrogen-Ion Concentration; Kinetics; Pectins/chemistry*; X-Ray Diffraction; Spectroscopy, Fourier Transform Infrared; Budesonide/pharmacology*; Hydrogels/chemical synthesis; Hydrogels/chemistry*; Drug Liberation*
  3. Samiul Islam M, Sobayel K, Al-Kahtani A, Islam MA, Muhammad G, Amin N, et al.
    Nanomaterials (Basel), 2021 May 05;11(5).
    PMID: 34063020 DOI: 10.3390/nano11051218
    Recent achievements, based on lead (Pb) halide perovskites, have prompted comprehensive research on low-cost photovoltaics, in order to avoid the major challenges that arise in this respect: Stability and toxicity. In this study, device modelling of lead (Pb)-free perovskite solar cells has been carried out considering methyl ammonium tin bromide (CH3NH3SnBr3) as perovskite absorber layer. The perovskite structure has been justified theoretically by Goldschmidt tolerance factor and the octahedral factor. Numerical modelling tools were used to investigate the effects of amphoteric defect and interface defect states on the photovoltaic parameters of CH3NH3SnBr3-based perovskite solar cell. The study identifies the density of defect tolerance in the absorber layer, and that both the interfaces are 1015 cm-3, and 1014 cm-3, respectively. Furthermore, the simulation evaluates the influences of metal work function, uniform donor density in the electron transport layer and the impact of series resistance on the photovoltaic parameters of proposed n-TiO2/i-CH3NH3SnBr3/p-NiO solar cell. Considering all the optimization parameters, CH3NH3SnBr3-based perovskite solar cell exhibits the highest efficiency of 21.66% with the Voc of 0.80 V, Jsc of 31.88 mA/cm2 and Fill Factor of 84.89%. These results divulge the development of environmentally friendly methyl ammonium tin bromide perovskite solar cell.
  4. Azlan AA, Hamzah MR, Tham JS, Ayub SH, Ahmad AL, Mohamad E
    PMID: 34063294 DOI: 10.3390/ijerph18094860
    Health literacy is progressively seen as an indicator to describe a nation's health status. To improve health literacy, countries need to address health inequalities by examining different social demographic factors across the population. This assessment is crucial to identify and evaluate the strengths and limitations of a country in addressing health issues. By addressing these health inequalities, a country would be better informed to take necessary steps to improve the nation's health literacy. This study examines health literacy levels in Malaysia and analyses socio-demographic factors that are associated with health literacy. A cross-sectional survey was carried out using the HLS-M-Q18 instrument, which was validated for the Malaysian population. Multi-stage random sampling strategy was used in this study, utilising several sampling techniques including quota sampling, cluster sampling, and simple random sampling to allow random data collection. A total of 855 respondents were sampled. Our results showed that there were significant associations between health literacy and age, health status, and health problems. Our findings also suggest that lower health literacy levels were associated with the younger generation. This study's findings have provided baseline data on Malaysians' health literacy and provide evidence showing potential areas of intervention.
    MeSH terms: Adult; Cross-Sectional Studies; Factor Analysis, Statistical; Health Surveys; Humans; Malaysia; Surveys and Questionnaires; Health Literacy*
  5. Soliman MM, Chowdhury MEH, Khandakar A, Islam MT, Qiblawey Y, Musharavati F, et al.
    Sensors (Basel), 2021 May 02;21(9).
    PMID: 34063296 DOI: 10.3390/s21093163
    Implantable antennas are mandatory to transfer data from implants to the external world wirelessly. Smart implants can be used to monitor and diagnose the medical conditions of the patient. The dispersion of the dielectric constant of the tissues and variability of organ structures of the human body absorb most of the antenna radiation. Consequently, implanting an antenna inside the human body is a very challenging task. The design of the antenna is required to fulfill several conditions, such as miniaturization of the antenna dimension, biocompatibility, the satisfaction of the Specific Absorption Rate (SAR), and efficient radiation characteristics. The asymmetric hostile human body environment makes implant antenna technology even more challenging. This paper aims to summarize the recent implantable antenna technologies for medical applications and highlight the major research challenges. Also, it highlights the required technology and the frequency band, and the factors that can affect the radio frequency propagation through human body tissue. It includes a demonstration of a parametric literature investigation of the implantable antennas developed. Furthermore, fabrication and implantation methods of the antenna inside the human body are summarized elaborately. This extensive summary of the medical implantable antenna technology will help in understanding the prospects and challenges of this technology.
    MeSH terms: Humans; Miniaturization; Radio Waves*; Prostheses and Implants*; Wireless Technology
  6. Soleimani Amiri M, Ramli R
    Sensors (Basel), 2021 May 03;21(9).
    PMID: 34063574 DOI: 10.3390/s21093171
    It is necessary to control the movement of a complex multi-joint structure such as a robotic arm in order to reach a target position accurately in various applications. In this paper, a hybrid optimal Genetic-Swarm solution for the Inverse Kinematic (IK) solution of a robotic arm is presented. Each joint is controlled by Proportional-Integral-Derivative (PID) controller optimized with the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), called Genetic-Swarm Optimization (GSO). GSO solves the IK of each joint while the dynamic model is determined by the Lagrangian. The tuning of the PID is defined as an optimization problem and is solved by PSO for the simulated model in a virtual environment. A Graphical User Interface has been developed as a front-end application. Based on the combination of hybrid optimal GSO and PID control, it is ascertained that the system works efficiently. Finally, we compare the hybrid optimal GSO with conventional optimization methods by statistic analysis.
    MeSH terms: Algorithms; Biomechanical Phenomena; Data Interpretation, Statistical; Movement; Robotic Surgical Procedures
  7. Kamal DAM, Salamt N, Zaid SSM, Mokhtar MH
    Molecules, 2021 May 03;26(9).
    PMID: 34063635 DOI: 10.3390/molecules26092675
    Tea is one of the most widely consumed beverages worldwide after water, and green tea accounts for 20% of the total tea consumption. The health benefits of green tea are attributed to its natural antioxidants, namely, catechins, which are phenolic compounds with diverse beneficial effects on human health. The beneficial effects of green tea and its major bioactive component, (-)-epigallocatechin-3-gallate (EGCG), on health include high antioxidative, osteoprotective, neuroprotective, anti-cancer, anti-hyperlipidemia and anti-diabetic effects. However, the review of green tea's benefits on female reproductive disorders, including polycystic ovary syndrome (PCOS), endometriosis and dysmenorrhea, remains scarce. Thus, this review summarises current knowledge on the beneficial effects of green tea catechins on selected female reproductive disorders. Green tea or its derivative, EGCG, improves endometriosis mainly through anti-angiogenic, anti-fibrotic, anti-proliferative and proapoptotic mechanisms. Moreover, green tea enhances ovulation and reduces cyst formation in PCOS while improving generalised hyperalgesia, and reduces plasma corticosterone levels and uterine contractility in dysmenorrhea. However, information on clinical trials is inadequate for translating excellent findings on green tea benefits in animal endometriosis models. Thus, future clinical intervention studies are needed to provide clear evidence of the green tea benefits with regard to these diseases.
    MeSH terms: Animals; Antioxidants; Catechin; Corticosterone; Diabetes Mellitus; Dysmenorrhea; Endometriosis; Female; Humans; Hyperalgesia; Neoplasms; Ovulation; Phenols; Plasma; Polycystic Ovary Syndrome; Tea; Water
  8. Sirag A, Mohamed Nor N
    Healthcare (Basel), 2021 May 03;9(5).
    PMID: 34063652 DOI: 10.3390/healthcare9050536
    The current study investigated the association between out-of-pocket health expenditure and poverty using macroeconomic data from a sample of 145 countries from 2000 to 2017. In particular, it was examined whether the relationship between out-of-pocket health expenditure and poverty was contingent on a certain threshold level of out-of-pocket health spending. The dynamic panel threshold method, which allows for the endogeneity of the threshold regressor (out-of-pocket health expenditure), was used. Three indicators were adopted as poverty measures, namely the poverty headcount ratio, the poverty gap index, and the poverty gap squared index. At the same time, out-of-pocket health expenditure was measured as a percentage of total health expenditure. The results showed the validity of the estimated threshold models, indicating that only beyond the turning point, which was about 29 percent, that out-of-pocket health spending led to increased poverty. When heterogeneity was controlled for in the sample, using the World Bank income classification, the findings showed variations in the estimated threshold, with higher values for the low- and lower-middle-income groups, as compared to the high-income group. For the lower-income groups, below the threshold for out-of-pocket health expenditure, it had a positive or insignificant effect on poverty reduction, while it led to higher poverty above the threshold. Further, the sampled countries were divided into regions, according to the World Health Organization. Generally, improving health care systems through tolerable levels of out-of-pocket health expenditure is an inevitable step toward better health coverage and poverty reduction in many developing countries.
  9. Samuggam S, Chinni SV, Mutusamy P, Gopinath SCB, Anbu P, Venugopal V, et al.
    Molecules, 2021 May 03;26(9).
    PMID: 34063685 DOI: 10.3390/molecules26092681
    Multidrug resistant bacteria create a challenging situation for society to treat infections. Multidrug resistance (MDR) is the reason for biofilm bacteria to cause chronic infection. Plant-based nanoparticles could be an alternative solution as potential drug candidates against these MDR bacteria, as many plants are well known for their antimicrobial activity against pathogenic microorganisms. Spondias mombin is a traditional plant which has already been used for medicinal purposes as every part of this plant has been proven to have its own medicinal values. In this research, the S. mombin extract was used to synthesise AgNPs. The synthesized AgNPs were characterized and further tested for their antibacterial, reactive oxygen species and cytotoxicity properties. The characterization results showed the synthesized AgNPs to be between 8 to 50 nm with -11.52 of zeta potential value. The existence of the silver element in the AgNPs was confirmed with the peaks obtained in the EDX spectrometry. Significant antibacterial activity was observed against selected biofilm-forming pathogenic bacteria. The cytotoxicity study with A. salina revealed the LC50 of synthesized AgNPs was at 0.81 mg/mL. Based on the ROS quantification, it was suggested that the ROS production, due to the interaction of AgNP with different bacterial cells, causes structural changes of the cell. This proves that the synthesized AgNPs could be an effective drug against multidrug resistant bacteria.
    MeSH terms: Anti-Bacterial Agents; Bacteria; Pharmaceutical Preparations; Plant Extracts; Silver; Spectrum Analysis; Reactive Oxygen Species; Biofilms; Drug Resistance, Multiple, Bacterial; Anacardiaceae; Nanoparticles
  10. Noruddin NAA, Hamzah MF, Rosman Z, Salin NH, Shu-Chien AC, Muhammad TST
    Molecules, 2021 May 03;26(9).
    PMID: 34063700 DOI: 10.3390/molecules26092682
    Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone's induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.
    MeSH terms: Animals; Cell Differentiation; Cell Membrane/metabolism; Glucose/metabolism; Hypoglycemia/drug therapy; Insulin/chemistry; Ligands; Triterpenes/pharmacology; Triterpenes/chemistry*; Adipocytes/cytology; Hepatocytes/cytology; Momordica/chemistry*; Muscle Cells/cytology; 3T3-L1 Cells; PPAR gamma/metabolism*; Mice; Protein Domains
  11. Mohd Salleh Sahimi H, Azman N, Nik Jaafar NR, Mohd Daud TI, Baharudin A, Ismail AK, et al.
    PMID: 34063714 DOI: 10.3390/ijerph18094879
    Healthcare workers (HCW) are exposed to health-related anxiety in times of pandemic as they are considered to have a high risk of being infected whilst being the vital workforce to manage the outbreak. This study determined the factors that influence health anxiety and its extent in correlations with perceived risk, knowledge, attitude, and practice of HCW. A cross-sectional online survey was conducted on a total of 709 HCW from both public and private healthcare facilities who completed a set of questionnaires on sociodemographic data, knowledge, attitude, and practice of HCW on COVID-19, and health anxiety traits assessed using the short version Health Anxiety Inventory (HAI). Multiple linear regression (adjusted R2 = 0.06) revealed respondents with higher perceived risk for COVID-19 significantly predicted higher HAI scores (beta 1.281, p < 0.001, 95%, CI: 0.64, 1.92), and those with a higher cautious attitude towards COVID-19 significantly predicted higher HAI scores (beta 0.686, p < 0.001, 95%CI: 0.35, 1.02). Healthcare workers' perceived risk and cautious attitude towards COVID-19 might be potentially influenced by management of the sources and approaches to the dissemination of information of the pandemic. The implementation of certain measures that minimize the infection risk and its related anxiety is important to preserve both their physical and psychological wellbeing.
    MeSH terms: Anxiety/epidemiology; Cross-Sectional Studies; Health Personnel; Humans; Surveys and Questionnaires; Pandemics*
  12. Latip MQA, Tengku Azizan TRP, Ahmad H, Abu Hassim H, Noor MHM, Mikail M
    Animals (Basel), 2021 May 21;11(6).
    PMID: 34063794 DOI: 10.3390/ani11061481
    The involvement of veterinary medicine in wildlife research has played an important role in understanding the health status of various wildlife species. Health status is a very important aspect of species conservation. However, it requires a widely employed knowledge of veterinary clinical pathology, as a diagnostic tool in diagnosing the various disease conditions of wildlife species. Notwithstanding, a gap exists in the literature about the clinical pathology of the false gharial, due to the lack of normal reference values for hematological and serum biochemical analysis. The present study investigated the normal blood profile of 10 healthy false gharials, from two different zoos, and wildlife conservation centers located in three different states of Peninsular Malaysia. Blood samples were collected from the lateral caudal vein and divided into a vacutainer without anticoagulant for biochemical analysis, and a lithium heparin vacutainer (containing sodium heparin) for hematological studies. The results of the study indicated that the false gharial has a smaller erythrocyte dimension compared to other crocodilian species. At the same time the study revealed that the false gharial in a natural captive pond showed more leukocytes than false gharial kept in zoos, hence, habitat and environmental factors significantly affect hematological values. The biochemistry values also showed differences between the false gharial in different environmental conditions. Total protein, albumin (Alb), globulin (Glob), and Alb: Glob ratio were higher in false gharials kept in wildlife conservation centers than in false gharials kept in zoos. The values obtained in this study provide baseline data of hematological and serum biochemical values of the false gharial for future research and routine clinical diagnosis.
    MeSH terms: Albumins; Alligators and Crocodiles; Animals; Animals, Wild; Anticoagulants; Erythrocytes; Globulins; Health Status; Heparin; Leukocytes; Lithium; Malaysia; Pathology, Clinical; Pathology, Veterinary; Reference Values; Ecosystem; Ponds
  13. Azmi N, Othman N
    Membranes (Basel), 2021 May 21;11(6).
    PMID: 34063994 DOI: 10.3390/membranes11060376
    Amoebiasis is caused by Entamoeba histolytica and ranked second for parasitic diseases causing death after malaria. E. histolytica membrane and cytosolic proteins play important roles in the pathogenesis. Our previous study had shown several cytosolic proteins were found in the membrane fraction. Therefore, this study aimed to quantify the differential abundance of membrane and cytosolic proteins in membrane versus cytosolic fractions and analyze their predicted functions and interaction. Previous LC-ESI-MS/MS data were analyzed by PERSEUS software for the differentially abundant proteins, then they were classified into their functional annotations and the protein networks were summarized using PantherDB and STRiNG, respectively. The results showed 24 (44.4%) out of the 54 proteins that increased in abundance were membrane proteins and 30 were cytosolic proteins. Meanwhile, 45 cytosolic proteins were found to decrease in abundance. Functional analysis showed differential abundance proteins involved in the molecular function, biological process, and cellular component with 18.88%, 33.04% and, 48.07%, respectively. The STRiNG server predicted that the decreased abundance proteins had more protein-protein network interactions compared to increased abundance proteins. Overall, this study has confirmed the presence of the differentially abundant membrane and cytosolic proteins and provided the predictive functions and interactions between them.
    MeSH terms: Amebiasis; Biological Phenomena; Chromatography, Liquid; Dysentery, Amebic; Entamoeba histolytica; Malaria; Membrane Proteins; Software; Tandem Mass Spectrometry
  14. Liaw Y, Liu Y, Teo C, Cápal P, Wada N, Fukui K, et al.
    Int J Mol Sci, 2021 May 21;22(11).
    PMID: 34063996 DOI: 10.3390/ijms22115426
    Methylation systems have been conserved during the divergence of plants and animals, although they are regulated by different pathways and enzymes. However, studies on the interactions of the epigenomes among evolutionarily distant organisms are lacking. To address this, we studied the epigenetic modification and gene expression of plant chromosome fragments (~30 Mb) in a human-Arabidopsis hybrid cell line. The whole-genome bisulfite sequencing results demonstrated that recombinant Arabidopsis DNA could retain its plant CG methylation levels even without functional plant methyltransferases, indicating that plant DNA methylation states can be maintained even in a different genomic background. The differential methylation analysis showed that the Arabidopsis DNA was undermethylated in the centromeric region and repetitive elements. Several Arabidopsis genes were still expressed, whereas the expression patterns were not related to the gene function. We concluded that the plant DNA did not maintain the original plant epigenomic landscapes and was under the control of the human genome. This study showed how two diverging genomes can coexist and provided insights into epigenetic modifications and their impact on the regulation of gene expressions between plant and animal genomes.
    MeSH terms: Cell Line; Humans; Hybrid Cells/physiology*; Methyltransferases/genetics; Repetitive Sequences, Nucleic Acid/genetics; Arabidopsis/genetics*; DNA, Plant/genetics; Genome, Plant/genetics; DNA Methylation/genetics; Chromosomes, Plant/genetics*; Epigenesis, Genetic/genetics*; Epigenomics/methods
  15. Jing H, Liu Z, Kuan SH, Chieng S, Ho CL
    Molecules, 2021 May 21;26(11).
    PMID: 34064160 DOI: 10.3390/molecules26113084
    Recently, microbial-based iron reduction has been considered as a viable alternative to typical chemical-based treatments. The iron reduction is an important process in kaolin refining, where iron-bearing impurities in kaolin clay affects the whiteness, refractory properties, and its commercial value. In recent years, Gram-negative bacteria has been in the center stage of iron reduction research, whereas little is known about the potential use of Gram-positive bacteria to refine kaolin clay. In this study, we investigated the ferric reducing capabilities of five microbes by manipulating the microbial growth conditions. Out of the five, we discovered that Bacillus cereus and Staphylococcus aureus outperformed the other microbes under nitrogen-rich media. Through the biochemical changes and the microbial behavior, we mapped the hypothetical pathway leading to the iron reduction cellular properties, and found that the iron reduction properties of these Gram-positive bacteria rely heavily on the media composition. The media composition results in increased basification of the media that is a prerequisite for the cellular reduction of ferric ions. Further, these changes impact the formation of biofilm, suggesting that the cellular interaction for the iron(III)oxide reduction is not solely reliant on the formation of biofilms. This article reveals the potential development of Gram-positive microbes in facilitating the microbial-based removal of metal contaminants from clays or ores. Further studies to elucidate the corresponding pathways would be crucial for the further development of the field.
    MeSH terms: Culture Media; Gram-Positive Bacteria/metabolism*; Iron/metabolism*; Kaolin/metabolism*; Oxidation-Reduction; Biofilms
  16. Normala J, Okomoda VT, Mohd AA, Nur AA, Abol-Munafi AB, Md Sheriff S
    Vet Sci, 2021 May 04;8(5).
    PMID: 34064306 DOI: 10.3390/vetsci8050075
    This study was designed to examine the use of RAPD markers in discriminating triploid and diploid African catfish Clarias gariepinus (Burchell, 1822). Following a routine technique, triploidy was induced by cold shock and confirm by erythrocyte measurement in C. gariepinus. Thereafter, 80 RAPD markers were screened; out of which, three showed the highest percentage of polymorphism (i.e., OPB 16 = 71.43%; OPC 14 = 61.9%; OPD 12 = 75%). The results obtained showed genotype differences between triploid and diploid without overlapping. However, the development of a Sequence Characterized Amplified Region (SCAR) marker was not achievable because progenies of triploid and diploid C. gariepinus could not be differentiated based on a specific fragment. Consequently, the genetic distance showed high similarities for both treatments and the UPGMA-generated dendrogram could not separate the treatments into two distinct clusters. It was concluded that RAPD makers cannot be used to separate the ploidy status of fishes.
  17. Mphahlele MJ, Agbo EN, Choong YS
    Molecules, 2021 May 04;26(9).
    PMID: 34064448 DOI: 10.3390/molecules26092692
    The 2-amino-5-(3/4-fluorostyryl)acetophenones were prepared and reacted with benzaldehyde derivatives to afford the corresponding 5-styryl-2-aminochalcone hybrids. The trans geometry of the styryl and α,β-unsaturated carbonyl arms, and the presence of NH…O intramolecular hydrogen bond were validated using 1H-NMR and X-ray data. The 2-amino-5-styrylacetophenones and their 5-styryl-2-aminochalcone derivatives were screened in vitro for their capability to inhibit α-glucosidase and/or α-amylase activities. Their antioxidant properties were evaluated in vitro through the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) free radical scavenging assays. Kinetic studies of the most active derivatives from each series against α-glucosidase and/or α-amylase activities have been performed supported by molecular docking studies to determine plausible protein-ligand interactions on a molecular level. The key aspects of the pharmacokinetics of these compounds, i.e., absorption, distribution, metabolism, and excretion have also been simulated at theoretical level. The most active compounds from each series, namely, 2a and 3e, were evaluated for cytotoxicity against the normal monkey kidney cells (Vero cells) and the adenocarcinomic human epithelial (A549) cell line to establish their safety profile at least in vitro.
    MeSH terms: alpha-Amylases/antagonists & inhibitors; alpha-Glucosidases/metabolism; Animals; Antioxidants/pharmacology*; Carbohydrates/chemistry*; Cercopithecus aethiops; Computer Simulation*; Enzyme Inhibitors/pharmacology*; Humans; Kinetics; Molecular Conformation; Receptors, Drug/chemistry*; Thermodynamics; Vero Cells; Cell Death/drug effects; Chalcones/chemical synthesis*; Chalcones/pharmacokinetics; Chalcones/pharmacology*; Chalcones/chemistry; Molecular Docking Simulation; Glycoside Hydrolase Inhibitors/pharmacology; Glycoside Hydrolase Inhibitors/chemistry; A549 Cells
  18. Jamaluddin NAH, Periyasamy P, Lau CL, Ponnampalavanar S, Lai PSM, Ramli R, et al.
    Antibiotics (Basel), 2021 May 04;10(5).
    PMID: 34064457 DOI: 10.3390/antibiotics10050531
    Antimicrobial resistance remains a significant public health issue, and to a greater extent, caused by the misuse of antimicrobials. Monitoring and benchmarking antimicrobial use is critical for the antimicrobial stewardship team to enhance prudent use of antimicrobial and curb antimicrobial resistance in healthcare settings. Employing a comprehensive and established tool, this study investigated the trends and compliance of antimicrobial prescribing in a tertiary care teaching hospital in Malaysia to identify potential target areas for quality improvement. A point prevalence survey method following the National Antimicrobial Prescribing Survey (NAPS) was used to collect detailed data on antimicrobial prescribing and assessed a set of quality indicators associated with antimicrobial use. The paper-based survey was conducted across 37 adult wards, which included all adult in-patients on the day of the survey to form the study population. Of 478 patients surveyed, 234 (49%) patients received at least one antimicrobial agent, with 357 antimicrobial prescriptions. The highest prevalence of antimicrobial use was within the ICU (80%). Agents used were mainly amoxicillin/β-lactamase inhibitor (14.8%), piperacillin/β-lactamase inhibitor (10.6%) and third-generation cephalosporin (ceftriaxone, 9.5%). Intravenous administration was ordered in 62.7% of prescriptions. Many antimicrobials were prescribed empirically (65.5%) and commonly prescribed for pneumonia (19.6%). The indications for antimicrobials were documented in the patients' notes for 80% of the prescriptions; however, the rate of review/stop date recorded must be improved (33.3%). One-half of surgical antimicrobial prophylaxis was administered for more than 24 h. From 280 assessable prescriptions, 141 (50.4%) were compliant with guidelines. Treating specialties, administration route, class of antimicrobial, and the number of prescriptions per patient were contributing factors associated with compliance. On multivariate analysis, administering non-oral routes of antimicrobial administration, and single antimicrobial prescription prescribed per patient was independently associated with non-compliance. NAPS can produce robust baseline information and identifying targets for improvement in antimicrobial prescribing in reference to current AMS initiatives within the tertiary care teaching hospital. The findings underscore the necessity to expand the AMS efforts towards reinforcing compliance, documentation, improving surgical prophylaxis prescribing practices, and updating local antibiotic guidelines.
  19. Khan MA, Nayan N, Shadiullah, Ahmad MK, Fhong SC, Tahir M, et al.
    Molecules, 2021 May 04;26(9).
    PMID: 34064537 DOI: 10.3390/molecules26092700
    In this work, advanced nanoscale surface characterization of CuO Nanoflowers synthesized by controlled hydrothermal approach for significant enhancement of catalytic properties has been investigated. The CuO nanoflower samples were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selected-area electron diffraction (SAED), high-angular annular dark field scanning transmission electron microscopy (HAADF-STEM) with elemental mapping, energy dispersive spectroscopy (STEM-EDS) and UV-Vis spectroscopy techniques. The nanoscale analysis of the surface study of monodispersed individual CuO nanoflower confirmed the fine crystalline shaped morphology composed of ultrathin leaves, monoclinic structure and purified phase. The result of HR-TEM shows that the length of one ultrathin leaf of copper oxide nanoflower is about ~650-700 nm, base is about ~300.77 ± 30 nm and the average thickness of the tip of individual ultrathin leaf of copper oxide nanoflower is about ~10 ± 2 nm. Enhanced absorption of visible light ~850 nm and larger value of band gap energy (1.68 eV) have further supported that the as-grown material (CuO nanoflowers) is an active and well-designed surface morphology at the nanoscale level. Furthermore, significant enhancement of catalytic properties of copper oxide nanoflowers in the presence of H2O2 for the degradation of methylene blue (MB) with efficiency ~96.7% after 170 min was obtained. The results showed that the superb catalytic performance of well-fabricated CuO nanoflowers can open a new way for substantial applications of dye removal from wastewater and environment fields.
    MeSH terms: Catalysis; Copper; Electrons; Hydrogen Peroxide; Light; Methylene Blue; Microscopy, Electron, Scanning; Powders; Spectrum Analysis, Raman; X-Rays; Microscopy, Electron, Scanning Transmission; Plant Leaves; Powder Diffraction; Photoelectron Spectroscopy; Waste Water
  20. Siti HN, Jalil J, Asmadi AY, Kamisah Y
    Int J Mol Sci, 2021 May 11;22(10).
    PMID: 34064664 DOI: 10.3390/ijms22105063
    Rutin is a flavonoid with antioxidant property. It has been shown to exert cardioprotection against cardiomyocyte hypertrophy. However, studies regarding its antihypertrophic property are still lacking, whether it demonstrates similar antihypertrophic effect to its metabolite, quercetin. Hence, this study aimed to investigate the effects of both flavonoids on oxidative stress and mitogen-activated protein kinase (MAPK) pathway in H9c2 cardiomyocytes that were exposed to angiotensin II (Ang II) to induce hypertrophy. Cardiomyocytes were exposed to Ang II (600 nM) with or without quercetin (331 μM) or rutin (50 μM) for 24 h. A group given vehicle served as the control. The concentration of the flavonoids was chosen based on the reported effective concentration to reduce cell hypertrophy or cardiac injury in H9c2 cells. Exposure to Ang II increased cell surface area, intracellular superoxide anion level, NADPH oxidase and inducible nitric oxide synthase activities, and reduced cellular superoxide dismutase activity and nitrite level, which were similarly reversed by both rutin and quercetin. Rutin had no significant effects on phosphorylated proteins of extracellular signal-related kinases (ERK1/2) and p38 but downregulated phosphorylated c-Jun N-terminal kinases (JNK1/2), which were induced by Ang II. Quercetin, on the other hand, had significantly downregulated the phosphorylated proteins of ERK1/2, p38, and JNK1/2. The quercetin inhibitory effect on JNK1/2 was stronger than the rutin. In conclusion, both flavonoids afford similar protective effects against Ang II-induced cardiomyocyte hypertrophy, but they differently modulate MAPK pathway.
    MeSH terms: Angiotensin II/toxicity*; Animals; Antioxidants/pharmacology; Cells, Cultured; Hypertrophy/chemically induced; Hypertrophy/drug therapy; Hypertrophy/metabolism*; Hypertrophy/pathology; Nitric Oxide/metabolism; Phosphorylation; Quercetin/pharmacology*; Rutin/pharmacology*; Vasoconstrictor Agents/toxicity; Gene Expression Regulation, Enzymologic/drug effects*; Reactive Oxygen Species/metabolism; NADPH Oxidase/metabolism; Mitogen-Activated Protein Kinases/genetics; Mitogen-Activated Protein Kinases/metabolism*; Myoblasts, Cardiac/cytology; Myoblasts, Cardiac/drug effects; Myoblasts, Cardiac/metabolism*; Rats
External Links