Browse publications by year: 2023

  1. Misnan R, Kamarazaman NA, Sockalingam K, Yadzir ZHM, Bakhtiar F, Abdullah N, et al.
    J Sci Food Agric, 2023 Sep;103(12):5819-5830.
    PMID: 37092326 DOI: 10.1002/jsfa.12659
    BACKGROUND: Snail allergy is rare but can be fatal. Pila polita, a freshwater snail, was considered as a popular exotic food, particularly in tropical countries, and consumed in processed forms. Thus, the purpose of this study was to identify the major and cross-reactive allergens of P. polita and to determine the impact of food processing on the allergen stability.

    RESULTS: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis fractionated raw snail extract to approximately 24 protein bands, between 9 and 245 kDa. The prominent band at 33 kDa was detected in all raw and processed snail extracts. Immunoblotting tests of the raw extract demonstrated 19 immunoglobulin E (IgE)-binding proteins, and four of them, at 30, 35, 42 and 49 kDa, were revealed as the major IgE-binding proteins of P. polita. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identified the 49 and 42 kDa major allergens as actin, whereas the 30 and 35 kDa major allergens were identified as tropomyosin. Immunoblotting revealed that the raw snail had more allergenic proteins than the processed snail. The degree of allergenicity in decreasing order was raw > brine pickled> boiled > roasted > fried > vinegar pickled. The presence of cross-reactivity between P. polita and the shellfish tested was exhibited with either no, complete, or partial inhibitions.

    CONCLUSION: Actin and tropomyosin were identified as the major and cross-reactive allergens of P. polita among local patients with snail allergy. Those major allergens are highly stable to high temperatures, acidic pH, and high salt, which might played a crucial role in snail allergy in Malaysia. © 2023 Society of Chemical Industry.

    MeSH terms: Actins; Animals; Electrophoresis, Polyacrylamide Gel; Food Handling; Food Hypersensitivity*; Fresh Water; Humans; Immunoglobulin E; Snails; Tropomyosin/chemistry; Immunoblotting
  2. Du N, Fathollahi-Fard AM, Wong KY
    PMID: 37086322 DOI: 10.1007/s11356-023-26982-7
    The rapid growth of the industrial economy has affected the survival of wildlife, and the decline in wildlife resources will in turn have some negative impact on the industrial economy. For the sustainable development of the industrial economy, human beings began to reflect on traditional development thinking and strive to find a development strategy that harmonizes industrial economic development and resource protection, and wildlife protection gradually attracted people's attention. "Protecting wild animals, maintaining ecological balance, and promoting economic development" has become a hot topic in the new century. Wildlife resources are valuable natural resources and play an important role in the ecosystem, which is related to the well-being and future of human beings. In recent years, China has made great progress in wildlife protection, while protecting and expanding wildlife habitats, introducing relevant laws and regulations, and other measures which have been implemented recently. However, there are still shortcomings in the protection of wildlife in China. Over-utilization, habitat loss and degradation, environmental pollution, climate change, weak legal awareness, and indiscriminate hunting all pose serious threats to wildlife in China. In this regard, this paper summarizes the main problems and barriers to wildlife resource conservation and utilization in China. Based on the analytic hierarchy process (AHP), the main technology factors influencing wildlife resource conservation and utilization in China are identified. Finally, the future research development direction of wildlife conservation is discussed based on the critical factors. This can provide some guidance for developing wildlife resource conservation and utilization for a sustainable ecosystem in China.
  3. Jamaluddin J, Kamarudin N, Ismail MH, Ahmad SA
    J Environ Manage, 2023 Apr 20;340:117977.
    PMID: 37086558 DOI: 10.1016/j.jenvman.2023.117977
    Suitable extraction technique and the least cost while reducing the environmental impact is the primary concern in timber transportation planning in undulate topography. Two types of extraction machines with unique characteristics to be applied in timber harvest area in Malaysia is combined for timber harvesting with the aim each machine will extract timber suitable to their ability. A Bees Algorithm (BA) was proposed to find an optimum TTP for timber extraction, forest road, and landing locations with grid cell-sized 10 m × 10 m and attributed with fixed and variable costs. The result shows the log fisher (1351 timbers) as a preferable extraction technique with total cost of RM 86,551.73 than the crawler tractor (206 timbers); the timber extraction route is 2630 m for the log fisher and 9860 m for the crawler tractor with total cost of RM 10,453.03. The model finds a suitable timber extraction technique and estimates the extraction costs. Further studies are required to compare the BA with other optimization methods for better results.
  4. Seng Liew C, Ren Mong G, Wei Lim J, Raksasat R, Rawindran H, Hong Leong W, et al.
    Waste Manag, 2023 Apr 20;164:238-249.
    PMID: 37086606 DOI: 10.1016/j.wasman.2023.04.013
    More energy is needed nowadays due to global population growth. Concurrently, sewage sludge generation has also increased steadily stemming from the inevitable urbanization. As such, black soldier fly larvae (BSFL) can be potentially deployed to solve both issues. This paper investigates the environmental sustainability of biodiesel production derived from sludge-fed BSFL feedstock. A cradle-to-gate life cycle assessment (LCA) was performed through SimaPro software utilizing the ReCiPe 2016 Midpoint (H) and Endpoint (H) methods. The entire LCA covered 3 main stages, including the thermal pre-treatment of sludge, BSFL rearing and processing, and lastly lipid extraction and biodiesel production. LCA showed that the sludge pre-treatment stage had the highest environmental impact, while BSFL rearing and processing had the least due to the suitable geographical climate. Electricity usage during the pre-treatment stage was the main contributing component, followed by chemical usage during biodiesel production. After normalizing, it was observed that land occupation, marine ecotoxicity, freshwater ecotoxicity and freshwater eutrophication were more impactful than the commonly studied global warming potential (GWP). Lipid content and biodiesel conversion efficiency were determined as the sensitive factors which could influence the LCA outcome. In comparison with other types of biodiesel, BSFL biodiesel had a milder impact in terms of climate change, land occupation, terrestrial acidification, marine and freshwater eutrophication. Furthermore, this biological reduction of sludge through BSFL valorization avoided sludge landfilling, which reduced up to 100 times GWP. Therefore, sludge-fed BSFL biodiesel production is an environmentally-sound and highly potential solution that should be investigated comprehensively.
  5. Salari N, Morddarvanjoghi F, Abdolmaleki A, Rasoulpoor S, Khaleghi AA, Hezarkhani LA, et al.
    BMC Cardiovasc Disord, 2023 Apr 22;23(1):206.
    PMID: 37087452 DOI: 10.1186/s12872-023-03231-w
    BACKGROUND: Myocardial infarction (MI) is one of the life-threatening coronary-associated pathologies characterized by sudden cardiac death. The provision of complete insight into MI complications along with designing a preventive program against MI seems necessary.

    METHODS: Various databases (PubMed, Web of Science, ScienceDirect, Scopus, Embase, and Google scholar search engine) were hired for comprehensive searching. The keywords of "Prevalence", "Outbreak", "Burden", "Myocardial Infarction", "Myocardial Infarct", and "Heart Attack" were hired with no time/language restrictions. Collected data were imported into the information management software (EndNote v.8x). Also, citations of all relevant articles were screened manually. The search was updated on 2022.9.13 prior to the publication.

    RESULTS: Twenty-two eligible studies with a sample size of 2,982,6717 individuals ( 60 years), this value was detected at 9.5%.

    CONCLUSION: Due to the accelerated rate of MI prevalence in older ages, precise attention by patients regarding the complications of MI seems critical. Thus, determination of preventive planning along with the application of safe treatment methods is critical.

    MeSH terms: Humans
  6. Zheng T, Mencuccini M, Abdul-Hamid H
    Physiol Plant, 2023;175(3):e13915.
    PMID: 37087558 DOI: 10.1111/ppl.13915
    Although a substantial body of evidence suggests that large and old trees have reduced metabolic levels, the search for the causes behind this observation has proved elusive. The strong coupling between age and size, commonly encountered in the field, precludes the isolation of the potential causes. We used standard propagation techniques (grafting and air-layering) to decouple the effects of size from those of age in affecting leaf structure, biochemistry and physiology of two broadleaved trees, Acer pseudoplatanus (a diffuse-porous species) and Fraxinus excelsior (a ring-porous species). The first year after establishment of the propagated plants, some of the measurements suggested the presence of age-related declines in metabolism, while other measurements either did not show any difference or suggested variability across treatments not associated with either age or size. During the second year after establishment, only one of the measured properties (specific leaf area) continued to show some evidence of an age-mediated decline (although much reduced compared to the field), whereas, for some properties (particularly for F. excelsior), even the opposite trend of age-related increases was apparent. We concluded that (1) our plants suffered from grafting shock during year 1 and they gradually recovered during year 2; (2) the results over 2 years do not support the statement that age directly mediates ageing in either species but instead suggest that size directly mediates ageing processes; and (3) neither shoots nor roots of A. pseudoplatanus showed any evidence of senescence.
    MeSH terms: Trees/physiology
  7. Tharwani ZH, Bilal W, Khan HA, Kumar P, Butt MS, Hamdana AH, et al.
    Inquiry, 2023;60:469580231167024.
    PMID: 37085986 DOI: 10.1177/00469580231167024
    Over the years, several developing countries have been suffering from high infant and child mortality rates, however, according to the recent statistics, Pakistan falls high on the list. Our narrative review of copious research on this topic highlights that several factors, such as complications associated with premature births, high prevalence of birth defects, lack of vaccination, unsafe deliveries, poor breastfeeding practices, complications during delivery, sudden infant death syndrome (SIDS), poor socioeconomic conditions, and a struggling healthcare system, have influenced these rates. Bearing in mind the urgency of addressing the increased infant and child mortality rate in Pakistan, multiple steps must be taken in order to prevent unnecessary deaths. An effective initiative could be spreading awareness and education among women, as a lack of education among women has been indirectly linked to increased child mortality in Pakistan across many researches conducted on the issue. Furthermore, the government should invest in healthcare by hiring more physicians and providing better supplies and improving infrastructure, especially in underdeveloped areas, to decrease child mortality due to lack of clean water and poor hygiene. Lastly, telemedicine should be made common in order to provide easy access to women who cannot visit the hospital.
    MeSH terms: Child; Delivery of Health Care; Female; Humans; Infant; Infant Mortality*; Mortality; Pakistan/epidemiology; Pregnancy; Child Mortality*
  8. Gostin LO, Chirwa DM, Clark H, Habibi R, Kümmel B, Mahmood J, et al.
    BMJ Glob Health, 2023 Apr;8(4).
    PMID: 37085271 DOI: 10.1136/bmjgh-2023-012344
    The World Health Organisation (WHO) was inaugurated in 1948 to bring the world together to ensure the highest attainable standard of health for all. Establishing health governance under the United Nations (UN), WHO was seen as the preeminent leader in public health, promoting a healthier world following the destruction of World War II and ensuring global solidarity to prevent disease and promote health. Its constitutional function would be 'to act as the directing and coordinating authority on international health work'. Yet today, as the world commemorates WHO's 75th anniversary, it faces a historic global health crisis, with governments presenting challenges to its institutional legitimacy and authority amid the ongoing COVID-19 pandemic. WHO governance in the coming years will define the future of the Organisation and, crucially, the health and well-being of billions of people across the globe. At this pivotal moment, WHO must learn critical lessons from its past and make fundamental reforms to become the Organisation it was meant to be. We propose reforms in WHO financing, governance, norms, human rights and equity that will lay a foundation for the next generation of global governance for health.
    MeSH terms: Anniversaries and Special Events*; Health Promotion; Humans; World Health Organization; Pandemics
  9. Kumar R, Basu A, Bishayee B, Chatterjee RP, Behera M, Ang WL, et al.
    Environ Res, 2023 Jul 15;229:115881.
    PMID: 37084947 DOI: 10.1016/j.envres.2023.115881
    Tanning and other leather processing methods utilize a large amount of freshwater, dyes, chemicals, and salts and produce toxic waste, raising questions regarding their environmental sensitivity and eco-friendly nature. Total suspended solids, total dissolved solids, chemical oxygen demand, and ions such as chromium, sulfate, and chloride turn tannery wastewater exceedingly toxic for any living species. Therefore, it is imperative to treat tannery effluent, and existing plants must be examined and upgraded to keep up with recent technological developments. Different conventional techniques to treat tannery wastewater have been reported based on their pollutant removal efficiencies, advantages, and disadvantages. Research on photo-assisted catalyst-enhanced deterioration has inferred that both homogeneous and heterogeneous catalysis can be established as green initiatives, the latter being more efficient at degrading organic pollutants. However, the scientific community experiences significant problems developing a feasible treatment technique owing to the long degradation times and low removal efficiency. Hence, there is a chance for an improved solution to the problem of treating tannery wastewater through the development of a hybrid technology that uses flocculation as the primary treatment, a unique integrated photo-catalyst in a precision-designed reactor as the secondary method, and finally, membrane-based tertiary treatment to recover the spent catalyst and reclaimable water. This review gives an understanding of the progressive advancement of a cutting-edge membrane-based system for the management of tanning industrial waste effluents towards the reclamation of clean water. Adaptable routes toward sludge disposal and the reviews on techno-economic assessments have been shown in detail, strengthening the scale-up confidence for implementing such innovative hybrid systems.
    MeSH terms: Environmental Pollutants*; Industrial Waste/analysis; Tanning; Waste Disposal, Fluid/methods; Water; Waste Water
  10. Pool LR, Petito LC, Yang X, Krefman AE, Perak AM, Davis MM, et al.
    Ann Epidemiol, 2023 Jul;83:40-46.e4.
    PMID: 37084989 DOI: 10.1016/j.annepidem.2023.04.007
    PURPOSE: Many children have non-ideal cardiovascular health (CVH), but little is known about the course of CVH in early childhood. We identified CVH trajectories in children and assess the generalizability of these trajectories in an external sample.

    METHODS: We used data spanning 2010-2018 from children aged 2-12 years within the Chicago Area Patient-Centered Outcomes Research Network-an electronic health record network. Four clinical systems comprised the derivation sample and a fifth the validation sample. Body mass index, blood pressure, cholesterol, and blood glucose were categorized as ideal, intermediate, and poor using clinical measurements, laboratory readings, and International Classification of Diseases diagnosis codes and summed for an overall CVH score. Group-based trajectory modeling was used to create CVH score trajectories which were assessed for classification accuracy in the validation sample.

    RESULTS: Using data from 122,363 children (47% female, 47% non-Hispanic White) three trajectories were identified: 59.5% maintained high levels of clinical CVH, 23.4% had high levels of CVH that declined, and 17.1% had intermediate levels of CVH that further declined with age. A similar classification emerged when the trajectories were fitted in the validation sample.

    CONCLUSIONS: Stratification of CVH was present by age 2, implicating the need for early life and preconception prevention strategies.

    MeSH terms: Blood Pressure; Chicago; Child; Child, Preschool; Female; Health Status; Humans; Male; Risk Factors; Electronic Health Records
  11. Ahmad B, Friar EP, Vohra MS, Khan N, Serpell CJ, Garrett MD, et al.
    Chem Biol Interact, 2023 Jul 01;379:110503.
    PMID: 37084996 DOI: 10.1016/j.cbi.2023.110503
    Hydroxylated polymethoxyflavones (HPMFs) have been shown to possess various anti-disease effects, including against obesity. This study investigates the anti-obesity effects of HPMFs in further detail, aiming to gain understanding of their mechanism of action in this context. The current study demonstrates that two HPMFs; 3'-hydroxy-5,7,4',5'-tetramethoxyflavone (3'OH-TetMF) and 4'-hydroxy-5,7,3',5'-tetramethoxyflavone (4'OH-TetMF) possess anti-obesity effects. They both significantly reduced pancreatic lipase activity in a competitive manner as demonstrated by molecular docking and kinetic studies. In cell studies, it was revealed that both of the HPMFs suppress differentiation of 3T3-L1 mouse embryonic fibroblast cells during the early stages of adipogenesis. They also reduced expression of key adipogenic and lipogenic marker genes, namely peroxisome proliferator-activated receptor-gamma (PPARγ), CCAAT/enhancer-binding protein α and β (C/EBP α and β), adipocyte binding protein 2 (aP2), fatty acid synthase (FASN), and sterol regulatory element-binding protein 1 (SREBF 1). They also enhanced the expression of cell cycle genes, i.e., cyclin D1 (CCND1) and C-Myc, and reduced cyclin A2 expression. When further investigated, it was also observed that these HPMFs accelerate lipid breakdown (lipolysis) and enhance lipolytic genes expression. Moreover, they also reduced the secretion of proteins (adipokines), including pro-inflammatory cytokines, from mature adipocytes. Taken together, this study concludes that these HPMFs have anti-obesity effects, which are worthy of further investigation.
    MeSH terms: Animals; Cell Differentiation; Fibroblasts/metabolism; Kinetics; Lipase/metabolism; Lipase/pharmacology; Lipolysis*; Obesity/metabolism; CCAAT-Enhancer-Binding Protein-alpha/genetics; CCAAT-Enhancer-Binding Protein-alpha/metabolism; 3T3-L1 Cells; PPAR gamma/genetics; PPAR gamma/metabolism; Adipogenesis*; Mice; Molecular Docking Simulation
  12. Ab'lah N, Yusuf CYL, Rojsitthisak P, Wong TW
    Int J Biol Macromol, 2023 Jun 30;241:124506.
    PMID: 37085071 DOI: 10.1016/j.ijbiomac.2023.124506
    Starch is a polysaccharide with varying amylose-to-amylopectin ratios as a function of its biological sources. It is characterized by low shear stress resistance, poor aqueous/organic solubility and gastrointestinal digestibility which limit its ease of processing and functionality display as an oral drug delivery vehicle. Modulation of starch composition through genetic engineering primarily alters amylose-to-amylopectin ratio. Greater molecular properties changes require chemical and enzymatic modifications of starch. Acetylation reduces water solubility and enzymatic digestibility of starch. Carboxymethylation turns starch acid-insoluble and aggregative at low pHs. The summative effects are sustaining drug release in the upper gut. Acid-insoluble carboxymethylated starch can be aminated to provide an ionic character essential for hydrogel formation which further reduces its drug release. Ionic starch can coacervate with oppositely charged starch, non-starch polyelectrolyte or drug into insoluble, controlled-release complexes. Enzymatically debranched and resistant starch has a small molecular size which confers chain aggregation into a helical hydrogel network that traps the drug molecules, protecting them from biodegradation. The modified starch has been used to modulate the intestinal/colon-specific or controlled systemic delivery of oral small molecule drugs and macromolecular therapeutics. This review highlights synthesis aspects of starch and starch derivatives, and their outcomes and challenges of applications in oral drug delivery.
    MeSH terms: Amylose/chemistry; Solubility; Drug Delivery Systems
  13. Wijekoon MMJO, Mahmood K, Ariffin F, Mohammadi Nafchi A, Zulkurnain M
    Int J Biol Macromol, 2023 Jun 30;241:124539.
    PMID: 37085081 DOI: 10.1016/j.ijbiomac.2023.124539
    Fat-soluble vitamins (FSVs) offer a range of beneficial properties as important nutrients in human nutrition. However, the high susceptibility to environmental conditions such as high temperature, light, and oxygen leads to the degradation of these compounds. This review highlights the different formulations underlying the encapsulation of FSVs in biopolymer (polysaccharide and protein) and lipid-based micro or nanocarriers for potential applications in food and pharmaceutical industries. In particular, the function of these carrier systems in terms of encapsulation efficiency, stability, bioavailability, and bio-accessibility is critically discussed. Recently, tremendous attention has been paid to encapsulating FSVs in commercial applications. According to the chemical nature of the active compound, the vigilant selection of delivery formulation, method of encapsulation, and final application (type of food) are the key important factors to be considered in the encapsulation of FSVs to ensure a high loading capacity, stability, bioavailability, and bio-accessibility. Future studies are recommended on the effect of different vitamin types and micro and nano encapsulate sizes on bioaccessibility and biocompatibility through in vitro/in vivo studies. Moreover, the toxicity and safety evaluation of encapsulated FSVs in human health should be evaluated before commercial application in food and pharmaceuticals.
    MeSH terms: Humans; Lipids/chemistry; Polysaccharides/chemistry; Proteins/chemistry; Vitamins*
  14. Wang G, Fu R, Zhang L, Xue L, Al-Mahdi AY, Xie X, et al.
    PLoS Negl Trop Dis, 2023 Apr 21;17(4):e0011243.
    PMID: 37083859 DOI: 10.1371/journal.pntd.0011243
    Scrub typhus, caused by mite-borne Orientia tsutsugamushi (O. tsutsugamushi), is a major febrile disease in the Asia-Pacific region. The DNA load of O. tsutsugamushi in the blood was previously found to be significantly higher in patients with fatal disease than those with non-fatal disease and correlated with the duration of illness, presence of eschar, and hepatic enzyme levels. In this prospective observation study, we analyzed the association of bacterial DNA load with clinical features, disease severity, and genotype using real-time PCR targeting the 56 kDa TSA gene of O. tsutsugamushi in the blood samples of 117 surviving patients with scrub typhus who had not received appropriate antibiotic treatment. The median O. tsutsugamushi DNA load was 3.11×103 copies/mL (range, 44 to 3.3×106 copies/mL). The severity of patients was categorized as mild, moderate, and severe based on the number of dysfunctional organs, and no significant difference in O. tsutsugamushi DNA load was found among these groups. Patients infected with the Karp group showed a significantly higher O. tsutsugamushi DNA load than those in the Gilliam (P 
  15. Rodzlan Hasani WS, Muhamad NA, Hanis TM, Maamor NH, Wee CX, Omar MA, et al.
    PLoS One, 2023;18(4):e0283879.
    PMID: 37083866 DOI: 10.1371/journal.pone.0283879
    INTRODUCTION: Premature mortality refers to deaths that occur before the expected age of death in a given population. Years of life lost (YLL) is a standard parameter that is frequently used to quantify some component of an "avoidable" mortality burden.

    OBJECTIVE: To identify the studies on premature cardiovascular disease (CVD) mortality and synthesise their findings on YLL based on the regional area, main CVD types, sex, and study time.

    METHOD: We conducted a systematic review of published CVD mortality studies that reported YLL as an indicator for premature mortality measurement. A literature search for eligible studies was conducted in five electronic databases: PubMed, Scopus, Web of Science (WoS), and the Cochrane Central Register of Controlled Trials (CENTRAL). The Newcastle-Ottawa Scale was used to assess the quality of the included studies. The synthesis of YLL was grouped into years of potential life lost (YPLL) and standard expected years of life lost (SEYLL) using descriptive analysis. These subgroups were further divided into WHO (World Health Organization) regions, study time, CVD type, and sex to reduce the effect of heterogeneity between studies.

    RESULTS: Forty studies met the inclusion criteria for this review. Of these, 17 studies reported premature CVD mortality using YPLL, and the remaining 23 studies calculated SEYLL. The selected studies represent all WHO regions except for the Eastern Mediterranean. The overall median YPLL and SEYLL rates per 100,000 population were 594.2 and 1357.0, respectively. The YPLL rate and SEYLL rate demonstrated low levels in high-income countries, including Switzerland, Belgium, Spain, Slovenia, the USA, and South Korea, and a high rate in middle-income countries (including Brazil, India, South Africa, and Serbia). Over the past three decades (1990-2022), there has been a slight increase in the YPLL rate and the SEYLL rate for overall CVD and ischemic heart disease but a slight decrease in the SEYLL rate for cerebrovascular disease. The SEYLL rate for overall CVD demonstrated a notable increase in the Western Pacific region, while the European region has experienced a decline and the American region has nearly reached a plateau. In regard to sex, the male showed a higher median YPLL rate and median SEYLL rate than the female, where the rate in males substantially increased after three decades.

    CONCLUSION: Estimates from both the YPLL and SEYLL indicators indicate that premature CVD mortality continues to be a major burden for middle-income countries. The pattern of the YLL rate does not appear to have lessened over the past three decades, particularly for men. It is vitally necessary to develop and execute strategies and activities to lessen this mortality gap.

    SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42021288415.

    MeSH terms: Cardiovascular Diseases*; Female; Humans; Life Expectancy; Male; Mortality; World Health Organization; Myocardial Ischemia*; Mortality, Premature
  16. Hosseini S, Pourmirzaee R, Armaghani DJ, Sabri Sabri MM
    Sci Rep, 2023 Apr 21;13(1):6591.
    PMID: 37085660 DOI: 10.1038/s41598-023-33796-7
    Ground vibration due to blasting is identified as a challenging issue in mining and civil activities. Peak particle velocity (PPV) is one of the blasting undesirable consequences, which is resulted during emission of vibration in blasted bench. This study focuses on the PPV prediction in the surface mines. In this regard, two ensemble systems, i.e., the ensemble of artificial neural networks and the ensemble of extreme gradient boosting (EXGBoosts) were developed for PPV prediction in one of the largest lead-zinc open-pit mines in the Middle East. For ensemble modeling, several ANN and XGBoost base models were separately designed with different architectures. Then, the validation indices such as coefficient determination (R2), root mean square error (RMSE), mean absolute error (MAE), the variance accounted for (VAF), and Accuracy were used to evaluate the performance of the base models. The five top base models with high accuracy were selected to construct an ensemble model for each of the methods, i.e., ANNs and XGBoosts. To combine the outputs of the top base models and achieve a single result stacked generalization technique, was employed. Findings showed ensemble models increase the accuracy of PPV predicting in comparison with the best individual models. The EXGBoosts was superior method for predicting of the PPV, which obtained values of R2, RMSE, MAE, VAF, and Accuracy corresponding to the EXGBoosts were (0.990, 0.391, 0.257, 99.013(%), 98.216), and (0.968, 0.295, 0.427, 96.674(%), 96.059), for training and testing datasets, respectively. However, the sensitivity analysis indicated that the spacing (r = 0.917) and number of blast-holes (r = 0.839) had the highest and lowest impact on the PPV intensity, respectively.
  17. Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, et al.
    Cell Mol Biol Lett, 2023 Apr 21;28(1):33.
    PMID: 37085753 DOI: 10.1186/s11658-023-00438-9
    Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
    MeSH terms: Humans; Gene Expression Regulation, Neoplastic; Cell Line, Tumor; Cell Proliferation; STAT3 Transcription Factor/metabolism; Carcinogenesis
  18. Rayanakorn A, Katip W, Ademi Z, Chan KG
    BMC Public Health, 2023 Apr 21;23(1):737.
    PMID: 37085811 DOI: 10.1186/s12889-023-15623-w
    BACKGROUND: Streptococcus suis (S.suis) is a neglected zoonotic disease that imposes a significant economic burden on healthcare and society. To our knowledge, studies estimating the cost of illness associated with S.suis treatment are limited, and no study focuses on treatment costs and potential key drivers in Thailand. This study aimed to estimate the direct medical costs associated with S.suis treatment in Thailand and identify key drivers affecting high treatment costs from the provider's perspective.

    METHODS: A retrospective analysis of the 14-year data from 2005-2018 of confirmed S.suis patients admitted at Chiang Mai University Hospital (CMUH) was conducted. Descriptive statistics were used to summarize the data of patients' characteristics, healthcare utilization and costs. The multiple imputation with predictive mean matching strategy was employed to deal with missing Glasgow Coma Scale (GCS) data. Generalized linear models (GLMs) were used to forecast costs model and identify determinants of costs associated with S.suis treatment. The modified Park test was adopted to determine the appropriate family. All costs were inflated applying the consumer price index for medical care and presented to the year 2019.

    RESULTS: Among 130 S.suis patients, the average total direct medical cost was 12,4675 Thai baht (THB) (US$ 4,016), of which the majority of expenses were from the "others" category (room charges, staff services and medical devices). Infective endocarditis (IE), GCS, length of stay, and bicarbonate level were significant predictors associated with high total treatment costs. Overall, marginal increases in IE and length of stay were significantly associated with increases in the total costs (standard error) by 132,443 THB (39,638 THB) and 5,490 THB (1,715 THB), respectively. In contrast, increases in GCS and bicarbonate levels were associated with decreases in the total costs (standard error) by 13,118 THB (5,026 THB) and 7,497 THB (3,430 THB), respectively.

    CONCLUSIONS: IE, GCS, length of stay, and bicarbonate level were significant cost drivers associated with direct medical costs. Patients' clinical status during admission significantly impacts the outcomes and total treatment costs. Early diagnosis and timely treatment were paramount to alleviate long-term complications and high healthcare expenditures.

    MeSH terms: Bicarbonates; Hospitals, University; Humans; Retrospective Studies; Thailand/epidemiology; Streptococcus suis*; Health Care Costs
  19. Balakrishnan P, Girija ASS, Kannan I, Vignesh R, Shankar EM, Sucharitha ST
    Indian J Med Microbiol, 2023;43:49-50.
    PMID: 36280566 DOI: 10.1016/j.ijmmb.2022.10.004
    MeSH terms: Humans; Surveys and Questionnaires
  20. Chew ST, Eshak Z, Al-Haddad A
    Microsc Res Tech, 2023 Jul;86(7):754-761.
    PMID: 37078493 DOI: 10.1002/jemt.24323
    To assess the interfacial adaptation and penetration depth of three different bioceramic-based sealers (CeraSeal, EndoSeal MTA, Nishika Canal Sealer BG) compared to an epoxy resin-based sealer (AH Plus) in oval root canals. Fourty extracted single-rooted mandibular premolar with oval canal were prepared and randomly allocated according to the obturation into; CeraSeal, EndoSeal MTA, Nishika Canal Sealer BG and AH Plus. The roots were sectioned at 3, 6 and 9 mm from the apex. The sealer adaptation and the penetration depth were evaluated under confocal laser scanning microscope. One-way ANOVA and Repeated measure ANOVA were used to statistically analyze the data. Nishika Canal Sealer BG showed significantly higher sealer adaptation than EndoSeal MTA (P 
    MeSH terms: Bicuspid/anatomy & histology; Dental Pulp Cavity; Epoxy Resins; Humans; Root Canal Filling Materials*; Tooth Root/anatomy & histology; Microscopy, Confocal
External Links