Displaying publications 1 - 20 of 76 in total

Abstract:
Sort:
  1. Ahmad P, Alam MK, Jakubovics NS, Schwendicke F, Asif JA
    J Dent Res, 2019 Dec;98(13):1425-1436.
    PMID: 31746684 DOI: 10.1177/0022034519880544
    Since its inception in 1919, the Journal of Dental Research has continually published high-quality articles that span the breadth of research topics relevant to dentistry, oral surgery, and medicine. As part of the journal's centennial celebration, we conducted an electronic search on Scopus to identify and analyze the top 100 most cited articles from 1919 to 2018. Since Scopus does not capture older citations, we conducted an additional analysis by Google Scholar to identify key articles published in the first 50 y of the journal. Based on Scopus, the articles were ranked in descending order per their citation counts. The citation counts of the 100 most cited articles varied from 262 to 1,503. The year in which the largest number of top 100 articles were published was 2004 (n = 6). Within the top 100, the majority of articles originated from the United States (n = 52). Research Reports-Biomaterials & Bioengineering was the most frequent category of cited articles (n = 35). There was no significant association between total citation count and time since publication (correlation coefficient = -0.051, P = 0.656). However, there was a significant negative association of citation density (correlation coefficient = -0.610, P < 0.01) with time since publication. Our analyses demonstrate the broad reach of the journal and the dynamics in citation patterns and research agenda over its 100-y history. There is considerable evidence of the high variance in research output, when measured via citations, across the globe. Moreover, it remains unclear how patients' priorities and dental health care needs are aligned with the perceived influence of single research pieces identified by our search. Our findings may help to inspire future research in tackling these inequalities and highlight the need for conceptualizing research priorities.
  2. Ahmad P, Vincent Abbott P, Khursheed Alam M, Ahmed Asif J
    Dent Traumatol, 2020 Apr;36(2):89-99.
    PMID: 31800153 DOI: 10.1111/edt.12534
    BACKGROUND/AIMS: The impact of a scientific article in its respective field is reflected by its citation count. The purpose of this review was to conduct a citation analysis in order to identify and analyze the top 50 most cited articles published in Dental Traumatology since its inception in order to highlight the contribution of the journal to the field of Dental Traumatology.

    METHODS: Elsevier's Scopus was used to search and analyze the 50 most frequently cited scientific papers. After the screening process, two reviewers arranged the articles in a descending order based on their citation counts. Each article was then cross-matched with Google Scholar. The articles were analyzed, and information including citation counts, citation density, publication year, authorship, contributing institutions and countries, article topic, study design, and keywords was extracted.

    RESULTS: The literature search identified 2421 articles. The citation counts of the 50 selected articles varied from 117 to 580 (Scopus) and 206 to 1130 (Google Scholar). The year in which most top 50 articles were published was 2002 (n = 5). Among 105 authors, the greatest contribution was made by JO Andreasen (n = 12). Most of the articles originated from the United States (n = 12) with the greatest contributions from the University Hospital (Rigshospitalet), Copenhagen, Denmark (n = 6). Original research article was the most frequent study design (n = 34). The majority of the top 50 articles were focused on traumatic dental injuries. Among 131 unique key words, root resorption (n = 6) was the most frequently used. A non-significant correlation occurred between citation count (correlation coefficient = 0.127, P = .378), citation density (correlation coefficient = 0.654, P = 2.493), and publication age.

    CONCLUSIONS: This study identified the top 50 most cited articles published in this journal in the specialty of Dental Traumatology. The publication year of an article was not significantly associated with citation count nor citation density.

  3. Al Mahmud J, Siraz MMM, Alam MS, Dewan MJ, Rashid MB, Khandaker MU, et al.
    Mar Pollut Bull, 2024 Apr 10;202:116349.
    PMID: 38604081 DOI: 10.1016/j.marpolbul.2024.116349
    Coastal Mangroves are facing growing threats due to the harmful consequences of human activities. This first-ever detailed study of natural radioactivity in soil samples collected from seven tourist destinations within the Sundarbans, the world's largest mangrove forest, was conducted using HPGe gamma-ray spectrometry. Although the activity levels of 226Ra (11 ± 1-44 ± 4 Bq/kg) and 232Th (13 ± 1-68 ± 6 Bq/kg) generally align with global averages, the concentration of 40K (250 ± 20-630 ± 55 Bq/kg) was observed to surpass the worldwide average primarily due to factors like salinity intrusion, fertilizer application, agricultural runoff, which suggests the potential existence of potassium-rich mineral resources near the study sites. The assessment of the hazard parameters indicates that the majority of these parameters are within the recommended limits. The soil samples do not pose a significant radiological risk to the nearby population. The results of this study can establish important radiological baseline data before the Rooppur Nuclear Power Plant begins operating in Bangladesh.
  4. Molla AH, Fakhru'l-Razi A, Abd-Aziz S, Hanafi MM, Roychoudhury PK, Alam MZ
    Bioresour Technol, 2002 Dec;85(3):263-72.
    PMID: 12365494
    Twenty seven filamentous fungal strains representing five genera; Aspergillus, Penicillium, Trichoderma, Myriodontium and Pleurotus were isolated from four sources; domestic wastewater sludge cake (SC) from IWK (Indah Water Konsortium) wastewater treatment plant, palm oil mill effluent compost from Sri Ulu palm Oil Processing Mill, compost of plant debris, and fungal fruiting bodies from a rotten wood stump. Thirty-three strains/isolates were tested for their ability to convert domestic wastewater sludge into compost by assessing biomass production and growth rate on sludge enriched media. The strains/isolates Aspergillus niger, SS-T2008, WW-P1003 and RW-P1 512 produced the highest dry biomass at higher sludge supplemented culture media from their respective group (Aspergillus, Trichoderma, Penicillium and Basidiomycetes, respectively). This implied these strains are better adapted for growth at higher sludge rich substances, and subsequently may be efficient in bioconversion/biodegradation of sludge. The fungi isolated from ecological closely related sources were more amendable to adaptation in a sludge rich culture media.
  5. Alam MS, Siraz MMM, A M J, Das SC, Bradley DA, Khandaker MU, et al.
    PLoS One, 2023;18(5):e0286267.
    PMID: 37220107 DOI: 10.1371/journal.pone.0286267
    Radon (222Rn), an inert gas, is considered a silent killer due to its carcinogenic characteristics. Dhaka city is situated on the banks of the Buriganga River, which is regarded as the lifeline of Dhaka city because it serves as a significant source of the city's water supply for domestic and industrial purposes. Thirty water samples (10 tap water from Dhaka city and 20 surface samples from the Buriganga River) were collected and analyzed using a RAD H2O accessory for 222Rn concentration. The average 222Rn concentration in tap and river water was 1.54 ± 0.38 Bq/L and 0.68 ± 0.29 Bq/L, respectively. All the values were found below the maximum contamination limit (MCL) of 11.1 Bq/L set by the USEPA, the WHO-recommended safe limit of 100 Bq/L, and the UNSCEAR suggested range of 4-40 Bq/L. The mean values of the total annual effective doses due to inhalation and ingestion were calculated to be 9.77 μSv/y and 4.29 μSv/y for tap water and river water, respectively. Although all these values were well below the permissible limit of 100 μSv/y proposed by WHO, they cannot be neglected because of the hazardous nature of 222Rn, especially considering their entry to the human body via inhalation and ingestion pathways. The obtained data may serve as a reference for future 222Rn-related works.
  6. Farook TH, Jamayet NB, Abdullah JY, Rajion ZA, Alam MK
    J Stomatol Oral Maxillofac Surg, 2020 Jun;121(3):268-277.
    PMID: 31610244 DOI: 10.1016/j.jormas.2019.10.003
    A systematic review was conducted in early 2019 to evaluate the articles published that dealt with digital workflow, CAD, rapid prototyping and digital image processing in the rehabilitation by maxillofacial prosthetics. The objective of the review was to primarily identify the recorded cases of orofacial rehabilitation made by maxillofacial prosthetics using computer assisted 3D printing. Secondary objectives were to analyze the methods of data acquisition recorded with challenges and limitations documented with various software in the workflow. Articles were searched from Scopus, PubMed and Google Scholar based on the predetermined eligibility criteria. Thirty-nine selected papers from 1992 to 2019 were then read and categorized according to type of prosthesis described in the papers. For nasal prostheses, Common Methods of data acquisition mentioned were computed tomography, photogrammetry and laser scanners. After image processing, computer aided design (CAD) was used to design and merge the prosthesis to the peripheral healthy tissue. Designing and printing the mold was more preferred. Moisture and muscle movement affected the overall fit especially for prostheses directly designed and printed. For auricular prostheses, laser scanning was most preferred. For unilateral defects, CAD was used to mirror the healthy tissue over to the defect side. Authors emphasized on the need of digital library for prostheses selection, especially for bilateral defects. Printing the mold and conventionally creating the prosthesis was most preferred due to issues of proper fit and color matching. Orbital prostheses follow a similar workflow as auricular prosthesis. 3D photogrammetry and laser scans were more preferred and directly printing the prosthesis was favored in various instance. However, ocular prostheses fabrication was recorded to be a challenge due to difficulties in appropriate volume reconstruction and inability to mirror healthy globe. Only successful cases of digitally designed and printed iris were noted.
  7. Farook TH, Rashid F, Jamayet NB, Abdullah JY, Dudley J, Khursheed Alam M
    J Prosthet Dent, 2022 Oct;128(4):830-836.
    PMID: 33642077 DOI: 10.1016/j.prosdent.2020.12.041
    STATEMENT OF PROBLEM: The anatomic complexity of the ear challenges conventional maxillofacial prosthetic rehabilitation. The introduction of specialized scanning hardware integrated into computer-aided design and computer-aided manufacturing (CAD-CAM) workflows has mitigated these challenges. Currently, the scanning hardware required for digital data acquisition is expensive and not readily available for prosthodontists in developing regions.

    PURPOSE: The purpose of this virtual analysis study was to compare the accuracy and precision of 3-dimensional (3D) ear models generated by scanning gypsum casts with a smartphone camera and a desktop laser scanner.

    MATERIAL AND METHODS: Six ear casts were fabricated from green dental gypsum and scanned with a laser scanner. The resultant 3D models were exported as standard tessellation language (STL) files. A stereophotogrammetry system was fabricated by using a motorized turntable and an automated microcontroller photograph capturing interface. A total of 48 images were captured from 2 angles on the arc (20 degrees and 40 degrees from the base of the turntable) with an image overlap of 15 degrees, controlled by a stepper motor. Ear 1 was placed on the turntable and captured 5 times with smartphone 1 and tested for precision. Then, ears 1 to 6 were scanned once with a laser scanner and with smartphones 1 and 2. The images were converted into 3D casts and compared for accuracy against their laser scanned counterparts for surface area, volume, interpoint mismatches, and spatial overlap. Acceptability thresholds were set at <0.5 mm for interpoint mismatches and >0.70 for spatial overlap.

    RESULTS: The test for smartphone precision in comparison with that of the laser scanner showed a difference in surface area of 774.22 ±295.27 mm2 (6.9% less area) and in volume of 4228.60 ±2276.89 mm3 (13.4% more volume). Both acceptability thresholds were also met. The test for accuracy among smartphones 1, 2, and the laser scanner showed no statistically significant differences (P>.05) in all 4 parameters among the groups while also meeting both acceptability thresholds.

    CONCLUSIONS: Smartphone cameras used to capture 48 overlapping gypsum cast ear images in a controlled environment generated 3D models parametrically similar to those produced by standard laser scanners.

  8. May Z, Alam MK, Nayan NA, Rahman NAA, Mahmud MS
    PLoS One, 2021;16(12):e0261040.
    PMID: 34914761 DOI: 10.1371/journal.pone.0261040
    Corrosion in carbon-steel pipelines leads to failure, which is a major cause of breakdown maintenance in the oil and gas industries. The acoustic emission (AE) signal is a reliable method for corrosion detection and classification in the modern Structural Health Monitoring (SHM) system. The efficiency of this system in detection and classification mainly depends on the suitable AE features. Therefore, many feature extraction and classification methods have been developed for corrosion detection and severity assessment. However, the extraction of appropriate AE features and classification of various levels of corrosion utilizing these extracted features are still challenging issues. To overcome these issues, this article proposes a hybrid machine learning approach that combines Wavelet Packet Transform (WPT) integrated with Fast Fourier Transform (FFT) for multiresolution feature extraction and Linear Support Vector Classifier (L-SVC) for predicting corrosion severity levels. A Laboratory-based Linear Polarization Resistance (LPR) test was performed on carbon-steel samples for AE data acquisition over a different time span. AE signals were collected at a high sampling rate with a sound well AE sensor using AEWin software. Simulation results show a linear relationship between the proposed approach-based extracted AE features and the corrosion process. For multi-class problems, three corrosion severity stages have been made based on the corrosion rate over time and AE activity. The ANOVA test results indicate the significance within and between the feature-groups where F-values (F-value>1) rejects the null hypothesis and P-values (P-value<0.05) are less than the significance level. The utilized L-SVC classifier achieves higher prediction accuracy of 99.0% than the accuracy of other benchmarked classifiers. Findings of our proposed machine learning approach confirm that it can be effectively utilized for corrosion detection and severity assessment in SHM applications.
  9. Qutob M, Rafatullah M, Muhammad SA, Siddiqui MR, Alam M
    Sci Total Environ, 2024 May 20;926:171843.
    PMID: 38521259 DOI: 10.1016/j.scitotenv.2024.171843
    The catalysts derived from natural iron minerals in the advanced oxidation process offer several advantages. However, their utilization in soil remediation is restricted due to the presence of soil impurities, which can inhibit the catalytic activity of these minerals. The soils in tropical regions exhibit lower organic matter content, limited cation exchange capacity, and are non-saline, this enhances the efficiency of utilizing natural iron minerals from tropical soil as a catalyst. In this regard, the catalytic potential of naturally iron-bearing tropical soil was investigated to eliminate phenanthrene (PHE), pyrene (PYR), and benzo[α]pyrene (B[α]P) using an oxygenated reactor supported with persulfate (PS). The system showed an efficient performance, and the removal efficiencies under the optimum conditions were 81 %, 73 %, and 86 % for PHE, PYR, and B[α]P, respectively. This indicated that the catalytic activity of iron was working efficiently. However, there were changes in the soil characteristics after the remediation process such as a significant reduction in iron and aluminum contents. The scavenging experiments demonstrated that HO• had a minor role in the oxidation process, SO4•- and O2•- emerged as the primary reactive species responsible for the effective degradation of the PAHs. Moreover, the by-products were monitored after soil remediation to evaluate their toxicity and to propose degradation pathways. The Mutagenicity test showed that two by-products from each PHE and B[α]P had positive results, while only one by-product of PYR showed positive. The toxicity tests of oral rat LD50 and developmental toxicity tests revealed that certain PAHs by-products could be more toxic from the parent pollutant itself. This study represents a notable progression in soil remediation by providing a step forward in the application of the advanced oxidation process (AOP) without requiring additional catalysts to activate oxidants and degrade pollutant PAHs from the soil.
  10. Mukhametov A, Newhouse EI, Aziz NA, Saito JA, Alam M
    J Mol Graph Model, 2014 Jul;52:103-13.
    PMID: 25023665 DOI: 10.1016/j.jmgm.2014.06.008
    The allosteric pocket of the Dengue virus (DENV2) NS2B/NS3 protease, which is proximal to its catalytic triad, represents a promising drug target (Othman et al., 2008). We have explored this binding site through large-scale virtual screening and molecular dynamics simulations followed by calculations of binding free energy. We propose two mechanisms for enzyme inhibition. A ligand may either destabilize electronic density or create steric effects relating to the catalytic triad residues NS3-HIS51, NS3-ASP75, and NS3-SER135. A ligand may also disrupt movement of the C-terminal of NS2B required for inter-conversion between the "open" and "closed" conformations. We found that chalcone and adenosine derivatives had the top potential for drug discovery hits, acting through both inhibitory mechanisms. Studying the molecular mechanisms of these compounds might be helpful in further investigations of the allosteric pocket and its potential for drug discovery.
  11. May Z, Alam MK, Husain K, Hasan MK
    PLoS One, 2020;15(8):e0238073.
    PMID: 32845901 DOI: 10.1371/journal.pone.0238073
    Transmission opportunity (TXOP) is a key factor to enable efficient channel bandwidth utilization over wireless campus networks (WCN) for interactive multimedia (IMM) applications. It facilitates in resource allocation for the similar categories of multiple packets transmission until the allocated time is expired. The static TXOP limits are defined for various categories of IMM traffics in the IEEE802.11e standard. Due to the variation of traffic load in WCN, the static TXOP limits are not sufficient enough to guarantee the quality of service (QoS) for IMM traffic flows. In order to address this issue, several existing works allocate the TXOP limits dynamically to ensure QoS for IMM traffics based on the current associated queue size and pre-setting threshold values. However, existing works do not take into account all the medium access control (MAC) overheads while estimating the current queue size which in turn is required for dynamic TXOP limits allocation. Hence, not considering MAC overhead appropriately results in inaccurate queue size estimation, thereby leading to inappropriate allocation of dynamic TXOP limits. In this article, an enhanced dynamic TXOP (EDTXOP) scheme is proposed that takes into account all the MAC overheads while estimating current queue size, thereby allocating appropriate dynamic TXOP limits within the pre-setting threshold values. In addition, the article presents an analytical estimation of the EDTXOP scheme to compute the dynamic TXOP limits for the current high priority traffic queues. Simulation results were carried out by varying traffic load in terms of packet size and packet arrival rate. The results show that the proposed EDTXOP scheme achieves the overall performance gains in the range of 4.41%-8.16%, 8.72%-11.15%, 14.43%-32% and 26.21%-50.85% for throughput, PDR, average ETE delay and average jitter, respectively when compared to the existing work. Hence, offering a better TXOP limit allocation solution than the rest.
  12. Ong SY, Ng FL, Badai SS, Yuryev A, Alam M
    J Integr Bioinform, 2010;7(1).
    PMID: 20861532 DOI: 10.2390/biecoll-jib-2010-145
    Signal transduction through protein-protein interactions and protein modifications are the main mechanisms controlling many biological processes. Here we described the implementation of MedScan information extraction technology and Pathway Studio software (Ariadne Genomics Inc.) to create a Salmonella specific molecular interaction database. Using the database, we have constructed several signal transduction pathways in Salmonella enterica serovar Typhi which causes Typhoid Fever, a major health threat especially in developing countries. S. Typhi has several pathogenicity islands that control rapid switching between different phenotypes including adhesion and colonization, invasion, intracellular survival, proliferation, and biofilm formation in response to environmental changes. Understanding of the detailed mechanism for S. Typhi survival in host cells is necessary for development of efficient detection and treatment of this pathogen. The constructed pathways were validated using publically available gene expression microarray data for Salmonella.
  13. Sarkar T, Alam MM, Parvin N, Fardous Z, Chowdhury AZ, Hossain S, et al.
    Toxicol Rep, 2016;3:346-350.
    PMID: 28959555 DOI: 10.1016/j.toxrep.2016.03.003
    This study is aimed to assess the heavy metals contamination and health risk in Shrimp (Macrobrachium rosenbergii and Penaeus monodon) collected from Khulna-Satkhira region in Bangladesh. The results showed that the Pb concentrations (0.52-1.16 mg/kg) in all shrimp samples of farms were higher than the recommended limit. The Cd levels (0.05-0.13 mg/kg) in all samples and Cr levels in all farms except tissue content at Satkhira farm were higher than the permissible limits. The individual concentration of Pb, Cd, and Cr between shrimp tissue and shell in all rivers and farms were not statistically significant (P > 0.05). Target hazard quotient (THQ) and hazard index (HI) were estimated to assess the non-carcinogenic health risks. Shrimp samples from all locations under the current study were found to be safe for consumption, the possibility of health risk associated with non-carcinogenic effect is very low for continuous consumption for 30 years.
  14. Siraz MMM, Al Mahmud J, Alam MS, Rashid MB, Hossain Z, Osman H, et al.
    Environ Monit Assess, 2024 Jan 23;196(2):192.
    PMID: 38263472 DOI: 10.1007/s10661-024-12328-4
    Miners, factory workers, traders, end-users, and foodstuff consumers all run the risk of encountering health hazards derived from the presence of elevated levels of radiation in fertilizers, as these groups often come into direct or indirect contact with fertilizers as well as raw materials throughout various linked processes such as mineral extractions, fertilizer production, agricultural practices. A total of 30 samples of various kinds of fertilizer produced in different factories in Dhaka megacity were analyzed to quantify the concentrations of primordial radionuclides using HPGe detector. Among the analyzed samples, average (range) concentration of 40K was found to be 9920 ± 1091 (8700 ± 957-11,500 ± 1265), 9100 ± 1001 (8600 ± 946-9600 ± 1056), 2565 ± 282 (2540 ± 279-2590 ± 285), and 3560 ± 392 (2620 ± 288-4500 ± 495) Bq/kg in the samples of Muriate of Potash Fertilizer, Sulphate of Potash Fertilizer, Humic Acid Fertilizer, and NPKS Fertilizer, respectively. Elevated concentration of 226Ra was found in Triple Super Phosphate Fertilizer with a mean (range) of 335 ± 37 (290 ± 32-380 ± 42) Bq/kg. The higher activity of 40K can be linked to the greater levels of elemental potassium in phosphate fertilizer. Elevated concentrations of radionuclides may also result from variations in chemical processes as well as the local geology of the mining areas where the raw materials were extracted for fertilizer production. Numerous fertilizer brands surpass prescribed limits for various hazardous parameters, presenting significant health risks to factory workers, farmers, and consumers of agricultural products. This study provides baseline information on the radioactivity of fertilizers, which could be used to develop mitigation methods, establish national fertilizer usage limits, justify regulatory frameworks, and raise public awareness of fertilizer overuse. The findings of the study could potentially help to explore the impact of fertilizer on the food chain.
  15. Khan N, Yaqoob I, Hashem IA, Inayat Z, Ali WK, Alam M, et al.
    ScientificWorldJournal, 2014;2014:712826.
    PMID: 25136682 DOI: 10.1155/2014/712826
    Big Data has gained much attention from the academia and the IT industry. In the digital and computing world, information is generated and collected at a rate that rapidly exceeds the boundary range. Currently, over 2 billion people worldwide are connected to the Internet, and over 5 billion individuals own mobile phones. By 2020, 50 billion devices are expected to be connected to the Internet. At this point, predicted data production will be 44 times greater than that in 2009. As information is transferred and shared at light speed on optic fiber and wireless networks, the volume of data and the speed of market growth increase. However, the fast growth rate of such large data generates numerous challenges, such as the rapid growth of data, transfer speed, diverse data, and security. Nonetheless, Big Data is still in its infancy stage, and the domain has not been reviewed in general. Hence, this study comprehensively surveys and classifies the various attributes of Big Data, including its nature, definitions, rapid growth rate, volume, management, analysis, and security. This study also proposes a data life cycle that uses the technologies and terminologies of Big Data. Future research directions in this field are determined based on opportunities and several open issues in Big Data domination. These research directions facilitate the exploration of the domain and the development of optimal techniques to address Big Data.
  16. Alam MZ, Muyibi SA, Jamal P
    PMID: 17849310
    Biological treatment of sewage treatment plant (STP) sludge by potential pure bacterial culture (Bacillus sp.) with optimum process conditions for effective biodegradation and bioseparation was carried out in the laboratory. The effective and efficient bioconversion was evaluated with the treatment of pure bacterial culture and existing microbes (uninnoculated) in sludge. The optimum process conditions i.e., temperature, 40 degrees C; pH, 6; inoculum, 5% (v/v); aeration, 1 vvm; agitation speed, 50 rpm obtained from the previous studies with chemical oxygen demand COD at 30 mgL(-1) were applied for the biological treatment of sludge. The results indicated that pure bacterial culture (Bacillus sp.) showed higher degradation and separation of treated sludge compared to treatment with the existing mixed microbes in a stirred tank bioreactor. The treated STP sludge by potential pure bacterial culture and existing microbes gave 30% and 11%; 91.2% and 59.1; 88.5% and 52.3%; 98.4% and 51.3%; 96.1% and 75.2%; 99.4% and 72.8% reduction of total suspended solids (TSS, biosolids), COD, soluble protein, turbidity, total dissolved solids (TDS) and specific resistance to filtration (SRF), respectively within 7 days of treatment. The pH was observed at 6.5 and 4 during the treatment of sludge by pure culture and existing microbes, respectively.
  17. Jamal P, Alam MZ, Suhani F
    Med J Malaysia, 2008 Jul;63 Suppl A:107-8.
    PMID: 19025008
    Large quantities of agro-based liquid wastes are produced every year and their disposal is often a problem for industries. In light of that, in this study prudent effort was done to screen the agro-industrial wastes - pineapple waste (PAW) and palm oil mill effluent (POME) for valuable biophenols product. Three different solvents; ethanol, acetone and distilled water were screened in order to enhance the process. All experiments were performed using fixed process conditions of solid to solvent ratio, temperatures, time and agitation speed. Effectiveness of extraction process to produce biophenol was based on high amount with more activity. POME was selected as potential source with biophenol content of 125.42 mg/L GAE.
  18. Alam MZ
    Med J Malaysia, 2004 May;59 Suppl B:216-7.
    PMID: 15468895
    Studies on the removal of phenol from aqueous solutions by adsorption on sewage treatment plant biosolids (BS) as low-cost adsorbent were carried out with an aim to obtain information on treating phenol-containing wastewater from different industries. A series of experiments were undertaken in a batch adsorption technique to access the effect of the process variables i.e. initial phenol concentration, contact time, initial pH and adsorbent dose. The results showed that the adsorption capacity of BS in aqueous solution increased with the decrease in initial concentration and pH, and increase in contact time and dose of adsorbent. The experimental results were fitted by Langmuir and Freundlich isotherms to describe the biosorption processes.
  19. Basri R, Issrani R, Hua Gan S, Prabhu N, Khursheed Alam M
    Saudi Pharm J, 2021 Mar;29(3):264-268.
    PMID: 33981175 DOI: 10.1016/j.jsps.2021.02.002
    Stroke is a key cerebrovascular disease that is related to high morbidity and mortality in the globe. The Kingdom of Saudi Arabia (KSA) is not an exception where stroke is fast developing into a serious challenge due to the high mortality rate. Additionally, stroke presents a tremendous economic burden and has a devastating effect on the quality of lives of individuals. The number of stroke cases are increasing yearly, thus posing a major challenge to the health care system. Therefore, it is crucial to implement primary and secondary prevention strategies in the KSA. Nevertheless, as compared with developed countries, information on the prevalence, socio-demographic properties and prevention of stroke remains scarce that could be attributed to the shortage of research conducted in this specified region. The review is written to address the various aspects of stroke in the KSA, based on current literatures search using PubMed, Scopus, Web of Science and Google Scholar databases, to identify studies published since inception to Dec 2020.
  20. Tan SA, Goya L, Ramanathan S, Sulaiman SF, Alam M, Navaratnam V
    Food Res Int, 2014 Oct;64:387-395.
    PMID: 30011665 DOI: 10.1016/j.foodres.2014.06.040
    Extract from papaya leaves, a waste material from fruit farms in Malaysia was previously reported to possess remarkable antioxidative activities. In this study, papaya leaf extract was separated into fractions of different polarities [petroleum ether (PE), ethyl acetate (EA), n-butanol (NB) and water (W) fractions]. The aim of this research was to determine the most active fraction in terms of its chemopreventive effects towards oxidative stress and the chemical constituents involved. The cytoprotective nature of the papaya fractions was observed against t-BOOH-induced oxidative stress on HepG2 liver cell line. ROS assay indicated that only PE and EA effectively reduced the increment of radical due to the pro-oxidant, t-BOOH. Nevertheless, PE was a stronger ROS scavenger by demonstrating ROS reducing activity in a dose-dependent manner to the basal level. This fraction was also found to inhibit cell death caused by t-BOOH toxicity, attenuating lactate dehydrogenase enzyme leakage by more than 90% (p<0.05). In addition, gene expression of phase II antioxidant enzymes (hmox-1 and nqo-1) and their transcription factor (nrf-2) were shown to be upregulated upon PE treatment during a time-course study. A GC-MS fingerprint of the active fraction was subsequently obtained with standardization using the marker compound; α-tocopherol, a well known antioxidant. However, this pure compound was not as effective as its corresponding PE concentrations in ROS reduction. Hence, PE of papaya leaf extract was a strong antioxidant and cytoprotectant with tremendous potential to be harnessed into the next therapeutic remedy against oxidative stress of the liver.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links