Displaying publications 1 - 20 of 61 in total

Abstract:
Sort:
  1. Camacho F, Moreno E, Garcia-Alles LF, Chinea Santiago G, Gilleron M, Vasquez A, et al.
    Front Immunol, 2020;11:566710.
    PMID: 33162982 DOI: 10.3389/fimmu.2020.566710
    Lipids, glycolipids and lipopeptides derived from Mycobacterium tuberculosis (Mtb) are presented to T cells by monomorphic molecules known as CD1. This is the case of the Mtb-specific sulfoglycolipid Ac2SGL, which is presented by CD1b molecules and is recognized by T cells found in tuberculosis (TB) patients and in individuals with latent infections. Our group, using filamentous phage display technology, obtained two specific ligands against the CD1b-Ac2SGL complex: (i) a single chain T cell receptor (scTCR) from a human T cell clone recognizing the CD1b-AcSGL complex; and (ii) a light chain domain antibody (dAbκ11). Both ligands showed lower reactivity to a synthetic analog of Ac2SGL (SGL12), having a shorter acyl chain as compared to the natural antigen. Here we put forward the hypothesis that the CD1b endogenous spacer lipid (EnSpacer) plays an important role in the recognition of the CD1b-Ac2SGL complex by specific T cells. To support this hypothesis we combined: (a) molecular binding assays for both the scTCR and the dAbκ11 antibody domain against a small panel of synthetic Ac2SGL analogs having different acyl chains, (b) molecular modeling of the CD1b-Ac2SGL/EnSpacer complex, and (c) modeling of the interactions of this complex with the scTCR. Our results contribute to understand the mechanisms of lipid presentation by CD1b molecules and their interactions with T-cell receptors and other specific ligands, which may help to develop specific tools targeting Mtb infected cells for therapeutic and diagnostic applications.
  2. Lachumy SJ, Oon CE, Deivanai S, Saravanan D, Vijayarathna S, Choong YS, et al.
    Asian Pac J Cancer Prev, 2013;14(10):5553-65.
    PMID: 24289545
    Plants play important roles in human life not only as suppliers of oxygen but also as a fundamental resource to sustain the human race on this earthly plane. Plants also play a major role in our nutrition by converting energy from the sun during photosynthesis. In addition, plants have been used extensively in traditional medicine since time immemorial. Information in the biomedical literature has indicated that many natural herbs have been investigated for their efficacy against lethal irradiation. Pharmacological studies by various groups of investigators have shown that natural herbs possess significant radioprotective activity. In view of the immense medicinal importance of natural product based radioprotective agents, this review aims at compiling all currently available information on radioprotective agents from medicinal plants and herbs, especially the evaluation methods and mechanisms of action. In this review we particularly emphasize on ethnomedicinal uses, botany, phytochemistry, mechanisms of action and toxicology. We also describe modern techniques for evaluating herbal samples as radioprotective agents. The usage of herbal remedies for combating lethal irradiation is a green anti- irradiation approach for the betterment of human beings without high cost, side effects and toxicity.
  3. Mohd Ali MR, Sum JS, Aminuddin Baki NN, Choong YS, Nor Amdan NA, Amran F, et al.
    Int J Biol Macromol, 2021 Jan 31;168:289-300.
    PMID: 33310091 DOI: 10.1016/j.ijbiomac.2020.12.062
    Leptospirosis is a potentially fatal zoonosis that is caused by spirochete Leptospira. The signs and symptoms of leptospirosis are usually varied, allowing it to be mistaken for other causes of acute febrile syndromes. Thus, early diagnosis and identification of a specific agent in clinical samples is crucial for effective treatment. This study was aimed to develop specific monoclonal antibodies against LipL21 antigen for future use in leptospirosis rapid and accurate immunoassay. A recombinant LipL21 (rLipL21) antigen was optimized for expression and evaluated for immunogenicity. Then, a naïve phage antibody library was utilized to identify single chain fragment variable (scFv) clones against the rLipL21 antigen. A total of 47 clones were analysed through monoclonal phage ELISA. However, after taking into consideration the background OD405 values, only 4 clones were sent for sequencing to determine human germline sequences. The sequence analysis showed that all 4 clones are identical. The in silico analysis of scFv-lip-1 complex indicated that the charged residues of scFv CDRs are responsible for the recognition with rLipL21 epitopes. The generated monoclonal antibody against rLipL21 will be evaluated as a detection reagent for the diagnosis of human leptospirosis in a future study.
  4. Law CT, Camacho F, Garcia-Alles LF, Gilleron M, Sarmiento ME, Norazmi MN, et al.
    Tuberculosis (Edinb), 2019 01;114:9-16.
    PMID: 30711162 DOI: 10.1016/j.tube.2018.11.002
    Tuberculosis (TB) is the main cause of mortality among all infectious diseases. The presentation of lipids by CD1b molecules and the interactions of the CD1b-lipid complexes with the immune receptors are important for the understanding of the immune response to Mycobacterium tuberculosis (Mtb), and to develop TB control methods. A specific domain antibody (dAbk11) recognizing the complex of CD1b with Mtb sulphoglycolipid (Ac2SGL) had been previously developed. In order to study the interactions of dAbk11 with Ac2SGL:CD1b, the conformation of Ac2SGL within CD1b was first modelled. The orientation of dAbκ11 with Ac2SGL:CD1b was then predicted by a docking experiment and the complex was sampled using molecular dynamics simulation. Data showed that dAbκ11 Tyr32 OH plays a decisive role in interacting with Ac2SGL alkyl tail HO17. The binding free energy calculation showed that Ac2SGL establish strong hydrophobic interactions with dAbκ11. The model also predicted a higher affinity for the natural sulfoglycolipid (Ac2SGL) than the synthetic analogue (SGL12), which was supported by the ELISA data. These results shed light on the likely mechanism of interactions between Ac2SGL:CD1b and dAbκ11, thus making possible to envision the strategies for dAbκ11 optimization for possible future applications.
  5. Choi SB, Choong YS, Saito A, Wahab HA, Najimudin N, Watanabe N, et al.
    Mol Inform, 2014 Dec;33(11-12):742-8.
    PMID: 27485420 DOI: 10.1002/minf.201400080
    Present HIV antiviral therapy only targets structural proteins of HIV, but evidence shows that the targeting of accessory proteins will expand our options in combating HIV. HIV-1 Vpr, a multifunctional accessory protein involved in viral infection, replication and pathogenesis, is a potential target. Previously, we have shown that phenyl coumarin compounds can inhibit the growth arrest activity of Vpr in host cells and predicted that the inhibitors' binding site is a hydrophobic pocket on Vpr. To investigate our prediction of the inhibitors' binding site, we docked the coumarin inhibitors into the predicted hydrophobic binding pocket on a built model of Vpr and observed a linear trend between their calculated binding energies and prior experimentally determined potencies. Subsequently, to analyze the inhibitor-protein binding interactions in detail, we built homology models of Vpr mutants and performed docking studies on these models too. The results revealed that structural changes on the binding pocket that were caused by the mutations affected inhibitor binding. Overall, this study showed that the binding energies of the docked molecules are good indicators of the activity of the inhibitors. Thus, the model can be used in virtual screening to identify other Vpr inhibitors and for designing more potent inhibitors.
  6. Abdul Kadir FFN, Che Nordin MA, S M N Mydin RB, Choong YS, Che Omar MT
    J Biomol Struct Dyn, 2023 Oct 14.
    PMID: 37837430 DOI: 10.1080/07391102.2023.2269254
    Elevated interleukin 8 (IL-8) expression has been linked to unfavorable outcomes in a range of inflammatory conditions, such as rheumatoid arthritis, psoriasis, and cancer. The human monoclonal antibody (HuMab) 10F8 and the hybridoma 35B11-B bind to an epitope on human IL-8, respectively. 10F8 inhibited interaction between IL-8 and neutrophils in eczema and pustulosis palmoplantaris patients while 35B11-B decreased size lesion in rat model. The binding interaction of monoclonal antibodies and IL-8, especially how complementarity-determining region (CDR) loops could bind the N-terminal of IL-8, has not been fully deliberated at molecular-level. Here, we used a combination of molecular docking, heated and long coarse-grained molecular dynamics simulations to identify key residues of established interaction. Based on heated MD simulation, docked pose of complexes generated by ClusPro showed good binding stability throughout of 70 ns simulation. Based on long molecular dynamic simulations, key residues for the binding were identified throughout of 1000 ns simulation. TYR-53, ASP-99, and ARG-100 of heavy chain CDR together with TYR-33 of light chain CDR are among the highest contributing energy residues within the binding interaction. Meanwhile, LYS11 and TYR13 of IL-8 are important for the determination of overall binding energy. Furthermore, the result of decomposition residues analysis is in good agreement with the interaction analysis data. Current study provides a list of important interacting residues and further scrutiny on these residues is essential for future development and design of a new and stable recombinant antibody against IL-8.Communicated by Ramaswamy H. Sarma.
  7. Jothy SL, Torey A, Darah I, Choong YS, Saravanan D, Chen Y, et al.
    Molecules, 2012 Aug 29;17(9):10292-305.
    PMID: 22932211 DOI: 10.3390/molecules170910292
    The genus Cassia, comprising about 600 species widely distributed worldwide is well known for its diverse biological and pharmacological properties. Cassia spectabilis (sin Senna spectabilis) (DC) Irwin et Barn (Fabaceae) is widely grown as an ornamental plant in tropical and subtropical areas. C. spectabilis has been commonly used in traditional medicine for many years. Information in the biomedical literature has indicated the presence of a variety of medicinally-important chemical constituents in C. spectabilis. Pharmacological studies by various groups of investigators have shown that C. spectabilis possesses significant biological activity, such as antibacterial, antibiofilm, antifungal and antioxidant properties. Beside this, toxicity studies of this plant have revealed no toxic effect on mice. In view of the immense medicinal importance of C. spectabilis, this review aimed at compiling all currently available information on C. spectabilis’s botany, phytochemistry, pharmacology, and mechanism of actions, toxicology and its ethnomedicinal uses.
  8. Agbo EN, Makhafola TJ, Choong YS, Mphahlele MJ, Ramasami P
    Molecules, 2015 Dec 25;21(1):E28.
    PMID: 26712730 DOI: 10.3390/molecules21010028
    Suzuki-Miyaura cross-coupling of 6-bromo-2-styrylquinazolin-4(3H)-ones with arylboronic acids afforded a series of novel 6-aryl-2-styrylquinazolin-4(3H)-ones. These compounds were evaluated for potential anticancer properties against the human renal (TK-10), melanoma (UACC-62) and breast cancer (MCF-7) cell lines. Their antimicrobial properties were also evaluated against six Gram-positive and four Gram-negative bacteria, as well as two strains of fungi. Molecular docking studies (in silico) were conducted on compounds 5a, b, d and 6a, b, d-f to recognize the hypothetical binding motif of the title compounds within the active site of the dihydrofolate reductase and thymidylate synthase enzymes.
  9. Lim BN, Tye GJ, Choong YS, Ong EB, Ismail A, Lim TS
    Biotechnol Lett, 2014 Dec;36(12):2381-92.
    PMID: 25214212 DOI: 10.1007/s10529-014-1635-x
    Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.
  10. Leong SW, Lim TS, Tye GJ, Ismail A, Aziah I, Choong YS
    J Biol Phys, 2014 Sep;40(4):387-400.
    PMID: 25011632 DOI: 10.1007/s10867-014-9357-9
    In this work we assessed the suitability of two different lipid membranes for the simulation of a TolC protein from Salmonella enterica serovar Typhi. The TolC protein family is found in many pathogenic Gram-negative bacteria including Vibrio cholera and Pseudomonas aeruginosa and acts as an outer membrane channel for expulsion of drug and toxin from the cell. In S. typhi, the causative agent for typhoid fever, the TolC outer membrane protein is an antigen for the pathogen. The lipid environment is an important modulator of membrane protein structure and function. We evaluated the conformation of the TolC protein in the presence of DMPE and POPE bilayers using molecular dynamics simulation. The S. typhi TolC protein exhibited similar conformational dynamics to TolC and its homologues. Conformational flexibility of the protein is seen in the C-terminal, extracellular loops, and α-helical region. Despite differences in the two lipids, significant similarities in the motion of the protein in POPE and DMPE were observed, including the rotational motion of the C-terminal residues and the partially open extracellular loops. However, analysis of the trajectories demonstrated effects of hydrophobic matching of the TolC protein in the membrane, particularly in the lengthening of the lipids and subtle movements of the protein's β-barrel towards the lower leaflet in DMPE. The study exhibited the use of molecular dynamics simulation in revealing the differential effect of membrane proteins and lipids on each other. In this study, POPE is potentially a more suitable model for future simulation of the S. typhi TolC protein.
  11. Lee SY, Hairul Bahara NH, Choong YS, Lim TS, Tye GJ
    J Colloid Interface Sci, 2014 Nov 01;433:183-188.
    PMID: 25129336 DOI: 10.1016/j.jcis.2014.07.033
    DNA-templated silver nanoclusters (AgNC) are a class of subnanometer sized fluorophores with good photostability and brightness. It has been applied as a diagnostic tool mainly for deoxyribonucleic acid (DNA) detection. Integration of DNA oligomers to generate AgNCs is interesting as varying DNA sequences can result in different fluorescence spectra. This allows a simple fluorescence shifting effect to occur upon DNA hybridization with the hybridization efficiency being a pronominal factor for successful shifting. The ability to shift the fluorescence spectra as a result of hybridization overcomes the issue of background intensities in most fluorescent based assays. Here we describe an optimized method for the detection of single-stranded and double-stranded synthetic forkhead box P3 (FOXP3) target by hybridization with the DNA fluorescence shift sensor. The system forms a three-way junction by successful hybridization of AgNC, G-rich strand (G-rich) to the target DNA, which generated a shift in fluorescence spectra with a marked increase in fluorescence intensity. The DNA fluorescence shift sensor presents a rapid and specific alternative to conventional DNA detection.
  12. Omar N, Loh Q, Tye GJ, Choong YS, Noordin R, Glökler J, et al.
    Sensors (Basel), 2013;14(1):346-55.
    PMID: 24379042 DOI: 10.3390/s140100346
    G-Quadruplex (G-4) structures are formed when G-rich DNA sequences fold into intra- or intermolecular four-stranded structures in the presence of metal ions. G-4-hemin complexes are often effective peroxidase-mimicking DNAzymes that are applied in many detection systems. This work reports the application of a G-rich daunomycin-specific aptamer for the development of an antibody-antigen detection assay. We investigated the ability of the daunomycin aptamer to efficiently catalyze the hemin-dependent peroxidase activity independent of daunomycin. A reporter probe consisting of biotinylated antigen and daunomycin aptamer coupled to streptavidin gold nanoparticles was successfully used to generate a colorimetric readout. In conclusion, the daunomycin aptamer can function as a robust alternative DNAzyme for the development of colorimetric assays.
  13. Hairul Bahara NH, Tye GJ, Choong YS, Ong EB, Ismail A, Lim TS
    Biologicals, 2013 Jul;41(4):209-16.
    PMID: 23647952 DOI: 10.1016/j.biologicals.2013.04.001
    With major developments in molecular biology, numerous display technologies have been successfully introduced for recombinant antibody production. Even so, phage display still remains the gold standard for recombinant antibody production. Its success is mainly attributed to the robust nature of phage particles allowing for automation and adaptation to modifications. The generation of monospecific binders provides a vital tool for diagnostics at a lower cost and higher efficiency. The flexibility to modify recombinant antibodies allows great applicability to various platforms for use. This review presents phage display technology, application and modifications of recombinant antibodies for diagnostics.
  14. Lim BN, Choong YS, Ismail A, Glökler J, Konthur Z, Lim TS
    Biotechniques, 2012 Dec;53(6):357-64.
    PMID: 23227986 DOI: 10.2144/000113964
    Directed evolution of nucleotide libraries using recombination or mutagenesis is an important technique for customizing catalytic or biophysical traits of proteins. Conventional directed evolution methods, however, suffer from cumbersome digestion and ligation steps. Here, we describe a simple method to increase nucleotide diversity using single-stranded DNA (ssDNA) as a starting template. An initial PCR amplification using phosphorylated primers with overlapping regions followed by treatment with lambda exonuclease generates ssDNA templates that can then be annealed via the overlap regions. Double-stranded DNA (dsDNA) is then generated through extension with Klenow fragment. To demonstrate the applicability of this methodology for directed evolution of nucleotide libraries, we generated both gene shuffled and regional mutagenesis synthetic antibody libraries with titers of 2×108 and 6×107, respectively. We conclude that our method is an efficient and convenient approach to generate diversity in nucleic acid based libraries, especially recombinant antibody libraries.
  15. Chin CF, Ler LW, Choong YS, Ong EB, Ismail A, Tye GJ, et al.
    J Microbiol Methods, 2016 Jan;120:6-14.
    PMID: 26581498 DOI: 10.1016/j.mimet.2015.11.007
    Antibody phage display panning involves the enrichment of antibodies against specific targets by affinity. In recent years, several new methods for panning have been introduced to accommodate the growing application of antibody phage display. The present work is concerned with the application of streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips (D.A.R.T's®) for antibody phage display. The system was initially designed to isolate antigens by affinity selection for mass spectrometry analysis. The streptavidin MSIA™ D.A.R.T's® system allows for easy attachment of biotinylated target antigens on the solid surface for presentation to the phage library. As proof-of-concept, a domain antibody library was passed through the tips attached with the Hemolysin E antigen. After binding and washing, the bound phages were eluted via standard acid dissociation and the phages were rescued for subsequent panning rounds. Polyclonal enrichment was observed for three rounds of panning with five monoclonal domain antibodies identified. The proposed method allows for a convenient, rapid and semi-automated alternative to conventional antibody panning strategies.
  16. Tye GJ, Lew MH, Choong YS, Lim TS, Sarmiento ME, Acosta A, et al.
    J Immunol Res, 2015;2015:916780.
    PMID: 26146643 DOI: 10.1155/2015/916780
    Development of vaccines for infectious diseases has come a long way with recent advancements in adjuvant developments and discovery of new antigens that are capable of eliciting strong immunological responses for sterile eradication of disease. Tuberculosis (TB) that kills nearly 2 million of the population every year is also one of the highlights of the recent developments. The availability or not of diagnostic methods for infection has implications for the control of the disease by the health systems but is not related to the immune surveillance, a phenomenon derived from the interaction between the bacteria and their host. Here, we will review the immunology of TB and current vaccine candidates for TB. Current strategies of developing new vaccines against TB will also be reviewed in order to further discuss new insights into immunotherapeutic approaches involving adjuvant and antigens combinations that might be of potential for the control of TB.
  17. Loh Q, Leong SW, Tye GJ, Choong YS, Lim TS
    Anal Biochem, 2015 May 15;477:56-61.
    PMID: 25769419 DOI: 10.1016/j.ab.2015.02.026
    The low presentation efficiency of Fab (fragment antigen binding) fragments during phage display is largely due to the complexity of disulphide bond formation. This can result in the presentation of Fab fragments devoid of a light chain during phage display. Here we propose the use of a coplasmid system encoding several molecular chaperones (DsbA, DsbC, FkpA, and SurA) to improve Fab packaging. A comparison was done using the Fab fragment from IgG and IgD. We found that the use of the coplasmid during phage packaging was able to improve the presentation efficiency of the Fab fragment on phage surfaces. A modified version of panning using the coplasmid system was evaluated and was successful at enriching Fab binders. Therefore, the coplasmid system would be an attractive alternative for improved Fab presentation for phage display.
  18. Ibeji CU, Salleh NAM, Sum JS, Ch'ng ACW, Lim TS, Choong YS
    Sci Rep, 2020 11 03;10(1):18925.
    PMID: 33144641 DOI: 10.1038/s41598-020-75799-8
    Pulmonary tuberculosis, caused by Mycobacterium tuberculosis, is one of the most persistent diseases leading to death in humans. As one of the key targets during the latent/dormant stage of M. tuberculosis, isocitrate lyase (ICL) has been a subject of interest for new tuberculosis therapeutics. In this work, the cleavage of the isocitrate by M. tuberculosis ICL was studied using quantum mechanics/molecular mechanics method at M06-2X/6-31+G(d,p): AMBER level of theory. The electronic embedding approach was applied to provide a better depiction of electrostatic interactions between MM and QM regions. Two possible pathways (pathway I that involves Asp108 and pathway II that involves Glu182) that could lead to the metabolism of isocitrate was studied in this study. The results suggested that the core residues involved in isocitrate catalytic cleavage mechanism are Asp108, Cys191 and Arg228. A water molecule bonded to Mg2+ acts as the catalytic base for the deprotonation of isocitrate C(2)-OH group, while Cys191 acts as the catalytic acid. Our observation suggests that the shuttle proton from isocitrate hydroxyl group C(2) atom is favourably transferred to Asp108 instead of Glu182 with a lower activation energy of 6.2 kcal/mol. Natural bond analysis also demonstrated that pathway I involving the transfer of proton to Asp108 has a higher intermolecular interaction and charge transfer that were associated with higher stabilization energy. The QM/MM transition state stepwise catalytic mechanism of ICL agrees with the in vitro enzymatic assay whereby Asp108Ala and Cys191Ser ICL mutants lost their isocitrate cleavage activities.
  19. Agbo EN, Gildenhuys S, Choong YS, Mphahlele MJ, More GK
    Bioorg Chem, 2020 08;101:103997.
    PMID: 32554280 DOI: 10.1016/j.bioorg.2020.103997
    A series of furocoumarin-stilbene hybrids has been synthesized and evaluated in vitro for inhibitory effect against acetylcholinesterase (AChE), butyrylcholinestarase (BChE), β-secretase, cyclooxygenase-2 (COX-2), and lipoxygenase-5 (LOX-5) activities including free radical-scavenging properties. Among these hybrids, 8-(3,5-dimethoxyphenyl)-4-(3,5-dimethoxystyryl)furochromen-2-one 4h exhibited significant anticholinesterase activity and inhibitory effect against β-secretase, COX-2 and LOX-5 activities. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and an in vitro cell-based antioxidant activity assay involving lipopolysaccharide induced reactive oxygen species production revealed that 4h has capability of scavenging free radicals. Molecular docking into AChE, BChE, β-secretase, COX-2 and LOX-5 active sites has also been performed.
  20. Al-Thiabat MG, Saqallah FG, Gazzali AM, Mohtar N, Yap BK, Choong YS, et al.
    Molecules, 2021 Feb 18;26(4).
    PMID: 33670773 DOI: 10.3390/molecules26041079
    Folate receptor alpha (FRα) is known as a biological marker for many cancers due to its overexpression in cancerous epithelial tissue. The folic acid (FA) binding affinity to the FRα active site provides a basis for designing more specific targets for FRα. Heterocyclic rings have been shown to interact with many receptors and are important to the metabolism and biological processes within the body. Nineteen FA analogs with substitution with various heterocyclic rings were designed to have higher affinity toward FRα. Molecular docking was used to study the binding affinity of designed analogs compared to FA, methotrexate (MTX), and pemetrexed (PTX). Out of 19 FA analogs, analogs with a tetrazole ring (FOL03) and benzothiophene ring (FOL08) showed the most negative binding energy and were able to interact with ASP81 and SER174 through hydrogen bonds and hydrophobic interactions with amino acids of the active site. Hence, 100 ns molecular dynamics (MD) simulations were carried out for FOL03, FOL08 compared to FA, MTX, and PTX. The root mean square deviation (RMSD) and root mean square fluctuation (RMSF) of FOL03 and FOL08 showed an apparent convergence similar to that of FA, and both of them entered the binding pocket (active site) from the pteridine part, while the glutamic part was stuck at the FRα pocket entrance during the MD simulations. Molecular mechanics Poisson-Boltzmann surface accessible (MM-PBSA) and H-bond analysis revealed that FOL03 and FOL08 created more negative free binding and electrostatic energy compared to FA and PTX, and both formed stronger H-bond interactions with ASP81 than FA with excellent H-bond profiles that led them to become bound tightly in the pocket. In addition, pocket volume calculations showed that the volumes of active site for FOL03 and FOL08 inside the FRα pocket were smaller than the FA-FRα system, indicating strong interactions between the protein active site residues with these new FA analogs compared to FA during the MD simulations.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links