Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Nawawi HM, Nor IM, Noor IM, Karim NA, Arshad F, Khan R, et al.
    J Cardiovasc Risk, 2002 Feb;9(1):17-23.
    PMID: 11984213
    Coronary heart disease (CHD) is the leading cause of death in Malaysia, despite its status as a developing country. The rural population is thought to be at low risk.
  2. Engels S, Fong LSRZ, Chen Q, Leng MJ, McGowan S, Idris M, et al.
    Environ Pollut, 2018 Apr;235:907-917.
    PMID: 29353806 DOI: 10.1016/j.envpol.2018.01.007
    Fossil fuel combustion leads to increased levels of air pollution, which negatively affects human health as well as the environment. Documented data for Southeast Asia (SEA) show a strong increase in fossil fuel consumption since 1980, but information on coal and oil combustion before 1980 is not widely available. Spheroidal carbonaceous particles (SCPs) and heavy metals, such as mercury (Hg), are emitted as by-products of fossil fuel combustion and may accumulate in sediments following atmospheric fallout. Here we use sediment SCP and Hg records from several freshwater lentic ecosystems in SEA (Malaysia, Philippines, Singapore) to reconstruct long-term, region-wide variations in levels of these two key atmospheric pollution indicators. The age-depth models of Philippine sediment cores do not reach back far enough to date first SCP presence, but single SCP occurrences are first observed between 1925 and 1950 for a Malaysian site. Increasing SCP flux is observed at our sites from 1960 onward, although individual sites show minor differences in trends. SCP fluxes show a general decline after 2000 at each of our study sites. While the records show broadly similar temporal trends across SEA, absolute SCP fluxes differ between sites, with a record from Malaysia showing SCP fluxes that are two orders of magnitude lower than records from the Philippines. Similar trends in records from China and Japan represent the emergence of atmospheric pollution as a broadly-based inter-region environmental problem during the 20th century. Hg fluxes were relatively stable from the second half of the 20th century onward. As catchment soils are also contaminated with atmospheric Hg, future soil erosion can be expected to lead to enhanced Hg flux into surface waters.
  3. Ara R, Arshad A, Amin SMN, Idris MH, Gaffar MA, Romano N
    J Environ Biol, 2016 07;37(4 Spec No):745-54.
    PMID: 28779734
    Our previous study demonstrated that among different habitat sites (mangrove, estuary, river, seagrass and Open Sea) in Johor Strait, Malaysia, seagrass showed highest family diversity and abundance of larval fish. However, it is unclear whether this was due to difference in habitat complexity or water quality parameters.? To test this, larval fish were collected by using a bongo net equipped with a flow meter by subsurface horizontal towing from different habitats in Johor Strait between October 2007 and September 2008.? Various physico-chemical parameters were measured and then examined for any relationship to fish larvae diversity and abundance. Among the 24 families identified from the sites, seven families (Blenniidae, Clupeidae, Mullidae, Nemipteridae, Syngnathidae, Terapontidae and Uranoscopeidae) were significantly correlated with the tested waters quality parameters.? Salinity showed a positive and negative significant correlation with Clupeidae (p < 0.01) and Uranoscopeidae (p < 0.05), respectively. Terapontidae was significantly correlated with dissolved oxygen (p < 0.01), while both Mullidae and Syngnathidae were significantly correlated with pH (p < 0.05). However, a canonical correspondence analysis test indicated weak overall correlation (36.4%) between larval assemblage and in the seagrass-mangrove ecosystem of Johor Strait, Malaysia. This likely indicates that habitat structure was more important in determining larval abundance (highest in the seagrass habitat) as compared to water quality at the tested sites. This study emphasizes the need to conserve seagrass beds as important nursery grounds for various fish larvae to ensure adequate recruitment and ultimately sustainable fisheries management. ?
  4. Azrina A, Khoo HE, Idris MA, Amin I, Razman MR
    Malays J Nutr, 2011 Aug;17(2):271-6.
    PMID: 22303580 MyJurnal
    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements.
  5. Saipullah KM, Saad WHM, Wong QL, Husni MSM, Idris MI, Razak MSJA
    Data Brief, 2023 Dec;51:109714.
    PMID: 37965619 DOI: 10.1016/j.dib.2023.109714
    This paper presents a dataset of bird's eye chilies in a single farm for semantic segmentation. The dataset is generated using two cameras that are aligned left and right forming a stereo-vision video capture. By analyzing the disparity between corresponding points in the left and right images, algorithms can calculate the relative distance of objects in the scene. This depth information is useful in various applications, including 3D reconstruction, object tracking, and autonomous navigation. The dataset consists of 1150 left and right compressed images extracted from ten sets of stereo videos taken at ten different locations within the chili farm from the same ages of the bird's eye chilies. Since the dataset is used for semantic segmentation, the ground truth images of manually semantic segmented images are also provided in the dataset. The dataset can be used for 2D and 3D semantic segmentation of the bird's eye view chili farm. Some of the object classes in this dataset are the sky, living things, plantation, flat, construction, nature, and misc.
  6. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Int J Phytoremediation, 2013;15(8):814-26.
    PMID: 23819277
    Phytoremediation is an environment-friendly and cost-effective method to clean the environment of heavy metal contamination. A prolonged phytotoxicity test was conducted in a single exposure. Scirpus grossus plants were grown in sand to which the diluted Pb (NO3)2 was added, with the variation of concentration were 0, 100, 200, 400, 600, and 800 mg/L. It was found that Scirpus grossus plants can tolerate Pb at concentrations of up to 400 mg/L. The withering was observed on day-7 for Pb concentrations of 400 mg/L and above. 100% of the plants withered with a Pb concentration of 600 mg/L on day 65. The Pb concentration in water medium decreased while in plant tissues increased. Adsorption of Pb solution ranged between 2 to 6% for concentrations of 100 to 800 mg/L. The Bioaccumulation Coefficient and Translocation Factor of Scirpus grossus were found greater than 1, indicating that this species is a hyperaccumulator plant.
  7. Tangahu BV, Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Int J Phytoremediation, 2013;15(7):663-76.
    PMID: 23819266
    Phytoremediation is a technology to clean the environment from heavy metals contamination. The objectives of this study are to threat Pb contaminated wastewater by using phytoremediation technology and to determine if the plant can be mention as hyperaccumulator. Fifty plants of Scirpus grossus were grown in sand medium and 600 L spiked water in various Pb concentration (10, 30 and 50 mg/L) was exposed. The experiment was conducted with single exposure method, sampling time on day-1, day-14, day-28, day-42, day-70, and day-98. The analysis of Pb concentration in water, sand medium and inside the plant tissue was conducted by ICP-OES. Water samples were filtered and Pb concentration were directly analyzed, Pb in sand samples were extracted by EDTA method before analyzed, and Pb in plant tissues were extracted by wet digestion method and analyzed. The results showed that on day-28, Pb concentration in water decreased 100%, 99.9%, 99.7%, and the highest Pb uptake by plant were 1343, 4909, 3236 mg/kg for the treatment of 10, 30, and 50 mg/L respectively. The highest BC and TF were 485,261 on day-42 and 2.5295 on day-70 of treatment 30 mg/L, it can be mentioned that Scirpus grossus is a hyperaccumulator.
  8. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M
    Chemosphere, 2022 Mar;291(Pt 3):132952.
    PMID: 34798103 DOI: 10.1016/j.chemosphere.2021.132952
    Lead (Pb) is one of the toxic heavy metals that pollute the environment as a result of industrial activities. This study aims to optimize Pb removal from water by using horizontal free surface flow constructed wetland (HFSFCW) planted with Scirpus grossus. Optimization was conducted using response surface methodology (RSM) under Box-Behnken design with the operational parameters of initial Pb concentration, retention time, and aeration. Optimization results showed that 37 mg/L of initial Pb concentration, 32 days of retention time, and no aeration were the optimum conditions for Pb removal by using the systems. Validation test was run under two different conditions, namely, non-bioaugmented and bioaugmented with rhizobacteria (Bacillus cereus, B. pumilus, B. subtilis, Brevibacillus choshinensis, and Rhodococcus rhodochrous). Results of the validation test showed that Pb removal in water achieved 99.99% efficiency with 0.2% error from the RSM prediction, while the adsorption of Pb by plants reached 5160.18 mg/kg with 10.6% error from the RSM prediction. The bioaugmentation of the five rhizobacterial species showed a slight improvement in Pb removal from water and Pb adsorption by plants. However, no significant improvement was achieved (p 
  9. Hameed AM, Asiyanbi-H T, Idris M, Fadzillah N, Mirghani MES
    Trop Life Sci Res, 2018 Jul;29(2):213-227.
    PMID: 30112151 MyJurnal DOI: 10.21315/tlsr2018.29.2.15
    Gelatin is a very popular pharmaceutical and food ingredient and the most studied ingredient in Halal researches. Interest in source gelatin authentication is based on religious and cultural beliefs, food fraud prevention and health issues. Seven gelatin authentication methods that have been developed include: nucleic acid based, immunochemical, electrophoretic analysis, spectroscopic, mass-spectrometric, chromatographic-chemometric and chemisorption methods. These methods are time consuming, and require capital intensive equipment with huge running cost. Reliability of gelatin authentication methods is challenged mostly by transformation of gelatin during processing and close similarities among gelatin structures. This review concisely presents findings and challenges in this research area and suggests needs for more researches on development of rapid authentication method and process-transformed gelatins.
  10. Krishnankutty N, Idris M, Hamzah FM, Manan Y
    Environ Sci Pollut Res Int, 2019 Aug;26(24):25046-25056.
    PMID: 31250391 DOI: 10.1007/s11356-019-05680-3
    Bauxite and iron ore mining is the major contributor to metal pollution in Tasik Chini, Malaysia. Deforestation of the protected zone of reserve forest exacerbates the problem. The current study is to understand the speciation of metals spatially in sediment to analyse the risk associated in terms of its mobility and bioavailability. The samples of sediment are collected from Sungai Jemberau, Laut Jemberau, and Laut Gumum of Tasik Chini. Four samplings were conducted for a year, by collecting the surface sediment. Sequential extraction method was followed for speciation of sediment and classified it into exchangeable, reducible, Fe-Mn oxides, organic and residual fractions. The results were also analyzed using principal component analysis (PCA) and cluster analysis (CA). The result reveals that Fe, Al, Mn, Zn, and Pb are the primary constituents of sediment contributing to about 98% of residual fraction. Co, Cd, Cr, As, and Ni are found in trace metal concentration and are identified to be mainly released from anthropogenic sources nearby. Although the individual proportion is less than major metals in exchangeable and carbonate fraction, they possess geochemically significant concentration above the permissible limit. More than 70-80% of all its total concentration proportion is hence found in mobile and bioavailable state. These possess toxic and have chronic effects to aquatic life and public health even in trace elemental concentration. Hence, these metals are the most toxic and bioavailable metals pausing risk for aquatic and public health. PCA analysis highlights that the enrichment of heavy metals in bioavailable fraction is mostly contributed from anthropogenic sources. The same results are emphasized by cluster analysis.
  11. Mohd Pu'ad NAS, Koshy P, Abdullah HZ, Idris MI, Lee TC
    Heliyon, 2019 May;5(5):e01588.
    PMID: 31080905 DOI: 10.1016/j.heliyon.2019.e01588
    Waste materials from natural sources are important resources for extraction and recovery of valuable compounds. Transformation of these waste materials into valuable materials requires specific techniques and approaches. Hydroxyapatite (HAp) is a biomaterial that can be extracted from natural wastes. HAp has been widely used in biomedical applications owing to its excellent bioactivity, high biocompatibility, and excellent osteoconduction characteristics. Thus, HAp is gaining prominence for applications as orthopaedic implants and dental materials. This review summarizes some of the recent methods for extraction of HAp from natural sources including mammalian, aquatic or marine sources, shell sources, plants and algae, and from mineral sources. The extraction methods used to obtain hydroxyapatite are also described. The effect of extraction process and natural waste source on the critical properties of the HAp such as Ca/P ratio, crystallinity and phase assemblage, particle sizes, and morphology are discussed herein.
  12. Almansoory AF, Idris M, Abdullah SRS, Anuar N, Kurniawan SB
    Chemosphere, 2021 Apr;269:128760.
    PMID: 33162166 DOI: 10.1016/j.chemosphere.2020.128760
    The greenhouse phytotoxicity experiment was conducted to analyse and assess the capability of Scirpus mucronatus (L.) in tolerating and removing petrol in contaminated soil. This research was conducted for 72 days by using 5, 10 and 30 g/kg petrol as soil contaminants. Results showed that the system planted with S. mucronatus (L.) had high potential to treat the 10 g/kg petrol-contaminated soil and had an average Total Petroleum Hydrocarbon (TPH) removal of 82.1%. At 5 and 30 g/kg petrol, the planted system removed 74.9% and 75.8% TPH, respectively. The petrol (10 g/kg) affected the plant growth positively, which was indicated by the increase in dry and wet weights throughout the research period. The removal of the TPH in the system was performed because of the interaction of plants and rhizobacteria. SEM showed that a high concentration of petrol (30 g/kg) affected the plant tissue negatively, as indicated by the altered structures of the root and stem cells. EDX results also confirmed that petrol was absorbed by the plant, as shown by the increased carbon content in the plant's root and stem after the treatment.
  13. Titah HS, Abdullah SRS, Idris M, Anuar N, Basri H, Mukhlisin M, et al.
    Int J Microbiol, 2018;2018:3101498.
    PMID: 30723505 DOI: 10.1155/2018/3101498
    Certain rhizobacteria can be applied to remove arsenic in the environment through bioremediation or phytoremediation. This study determines the minimum inhibitory concentration (MIC) of arsenic on identified rhizobacteria that were isolated from the roots of Ludwigia octovalvis (Jacq.) Raven. The arsenic biosorption capability of the was also analyzed. Among the 10 isolated rhizobacteria, five were Gram-positive (Arthrobacter globiformis, Bacillus megaterium, Bacillus cereus, Bacillus pumilus, and Staphylococcus lentus), and five were Gram-negative (Enterobacter asburiae, Sphingomonas paucimobilis, Pantoea spp., Rhizobium rhizogenes, and Rhizobium radiobacter). R. radiobacter showed the highest MIC of >1,500 mg/L of arsenic. All the rhizobacteria were capable of absorbing arsenic, and S. paucimobilis showed the highest arsenic biosorption capability (146.4 ± 23.4 mg/g dry cell weight). Kinetic rate analysis showed that B. cereus followed the pore diffusion model (R2 = 0.86), E. asburiae followed the pseudo-first-order kinetic model (R2 = 0.99), and R. rhizogenes followed the pseudo-second-order kinetic model (R2 = 0.93). The identified rhizobacteria differ in their mechanism of arsenic biosorption, arsenic biosorption capability, and kinetic models in arsenic biosorption.
  14. Lau YL, Hasan MT, Thiruvengadam G, Idris MM, Init I
    Trop Biomed, 2010 Dec;27(3):525-33.
    PMID: 21399595
    GRA4 of Toxoplasma gondii has been shown to prompt IgG, IgM and IgA responses in previous studies and is thus considered one of the major immunogenic proteins from T. gondii that can be used for both diagnostics purposes and vaccine development. This study seeks to clone and express the GRA4 in Pichia pastoris, which has numerous advantages over other systems for expression of eukaryotic proteins. In order to achieve this, the gene was cloned into the pPICZα A expression vector, which was then incorporated into the P. pastoris genome via insertional integration for expression of the recombinant protein, under the AOX1 promoter. The antigen was expressed along with the prepro sequence of the α-factor of yeast so that it could be excreted out of the P. pastoris cells and obtained from the medium. Upon SDS-PAGE analysis it was found that the recombinant protein was expressed optimally as a 40 kDa protein after 96 hours of induction with 0.75% of methanol. The expressed GRA4 protein showed discrepancy in size with the calculated molecular mass. This may be attributed to the various posttranslational modifications including glycosylation and phosphorylation. Despite the difference in molecular weight, the recombinant protein was able to detect toxoplasmosis in Western blot format. The recombinant GRA4 was expressed with an intact polyhistidine-tag, which could be used for future purification of the antigen.
  15. Almaamary EAS, Abdullah SRS, Ismail N', Idris M, Kurniawan SB, Imron MF
    J Environ Manage, 2022 Apr 01;307:114534.
    PMID: 35065382 DOI: 10.1016/j.jenvman.2022.114534
    Dye is one of the pollutants found in water bodies because of the increased growth of the textile industry. In this study, Scirpus grossus was planted inside a constructed wetland to treat mixed dye (methylene blue and methyl orange)-containing wastewater under batch and continuous modes. The plants were exposed to various concentrations (0, 50, 75, and 100 mg/L) of mixed dye for 72 days (with hydraulic retention time of 7 days for the continuous system). Biological oxygen demand, chemical oxygen demand, total organic carbon, pH, temperature, ionic content, and plant growth parameters were measured. Results showed that S. grossus can withstand all the tested dye concentrations until the end of the treatment period. Color removal efficiencies of 86, 84, and 75% were obtained in batch mode, whereas 90%, 85%, and 79% were obtained in continuous mode for 50, 75, and 100 mg/L dye concentrations, respectively. Fourier-transform infrared analysis confirmed the transformation of dye compounds after treatment and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy analysis showed that most of the intermediate compounds were not absorbed into plants but adsorbed onto the surface of the root structure.
  16. Purwanti IF, Abdullah SRS, Hamzah A, Idris M, Basri H, Latif MT, et al.
    Heliyon, 2023 Nov;9(11):e21737.
    PMID: 38027659 DOI: 10.1016/j.heliyon.2023.e21737
    Phytoremediation is one of the green technologies that is friendly to nature, utilizes fewer chemicals, and exhibits good performance. In this study, phytoremediation was used to treat diesel-contaminated sand using a local aquatic plant species, Scirpus mucronatus, by analyzing the amount of total petroleum hydrocarbons (TPHs). Optimization of diesel removal was performed according to Response Surface Methodology (RSM) using Box-Behnken Design (BBD) under pilot-scale conditions. The quadratic model showed the best fit to describe the obtained data. Actual vs. predicted values from BBD showed a total of 9.1 % error for the concentration of TPH in sand and 0 % error for the concentration of TPH in plants. Maximum TPH removal of 42.3 ± 2.1 % was obtained under optimized conditions at a diesel initial concentration of 50 mg/kg, an aeration rate of 0.48 L/min, and a retention time of 72 days. The addition of two species of rhizobacteria (Bacillus subtilis and Bacillus licheniformis) at optimum conditions increased the TPH removal to 51.9 ± 2.6 %. The obtained model and optimum condition can be adopted to treat diesel-contaminated sand within the same TPH range (50-3000 mg/kg) in sand.
  17. Ma Q, Rejab MRM, Idris MS
    Data Brief, 2022 Dec;45:108731.
    PMID: 36426027 DOI: 10.1016/j.dib.2022.108731
    This article presents three datasets related to the laboratory scale 3-axis filament winding machine. The winding experimental tests are described on the range of winding angle, winding accuracy of programmed G-codes, and linear and rotation speeds in raw data. The real-time winding angle measurement system is developed to monitor and measure the winding angle of filament-wound carbon-fiber reinforced plastics (CFRP) tubes. Two winding patterns are provided as dry and wet winding processes. Moreover, an experimental test of a real-time winding angle measurement system is captured and analyzed. The i-winder app controls the winding machine through a Bluetooth module, which is programmed by MIT App Inventor. The data presented in this article can have a benchmark for developing a multi-axis filament winding machine. It is provided an inexpensive and open-source control system and is embedded in a real-time winding angle measurement system. The experimental assessment data can be found in this article [1]. The data is available in the cloud-based Mendeley Data repository [2].
  18. Teo GS, Idris MN
    Med J Malaysia, 1996 Mar;51(1):33-40.
    PMID: 10967977
    A cross-sectional study was carried out to determine the prevalence of hypertension in the Chinese elderly and to examine its relationship with various behavioural and nutritional risk factors. This study involved 243 Chinese aged 55 years and older in 2 randomly selected Chinese Villages in Seberang Prai Tengah, Penang. The study included an interview, anthropometric assessment and blood pressure measurement. The prevalence of hypertension was 48.1% and out of this, 65 (55.6%) were on anti-hypertensive treatment. There was a significant rise in the prevalence with age. Hypertension was found to be inversely related to per capita income and physical activity (p < 0.05). Hypertension was significantly more common in smokers than non-smokers. Alcohol intake in the elderly was low and not related to hypertension. Obesity was significantly associated with hypertension only among the elderly aged 55-64 years. The dietary intake of sodium, potassium and calcium did not differ significantly between the hypertensive and normotensive elderly.
  19. Alipal J, Lee TC, Koshy P, Abdullah HZ, Idris MI
    Heliyon, 2021 Jul;7(7):e07408.
    PMID: 34296002 DOI: 10.1016/j.heliyon.2021.e07408
    Anodised titanium has a long history as a coating structure for implants due to its bioactive and ossified surface, which promotes rapid bone integration. In response to the growing literature on anodised titanium, this article is the first to revisit the evolution of anodised titanium as an implant coating. The review reports the process and mechanisms for the engineering of distinctive anodised titanium structures, the significant factors influencing the mechanisms of its formation, bioactivity, as well as recent pre- and post-surface treatments proposed to improve the performance of anodised titanium. The review then broadens the discussion to include future functional trends of anodised titanium, ranging from the provision of higher surface energy interactions in the design of biocomposite coatings (template stencil interface for mechanical interlock) to techniques for measuring the bone-to-implant contact (BIC), each with their own challenges. Overall, this paper provides up-to-date information on the impacts of the structure and function of anodised titanium as an implant coating in vitro and in/ex vivo tests, as well as the four key future challenges that are important for its clinical translations, namely (i) techniques to enhance the mechanical stability and (ii) testing techniques to measure the mechanical stability of anodised titanium, (iii) real-time/in-situ detection methods for surface reactions, and (iv) cost-effectiveness for anodised titanium and its safety as a bone implant coating.
  20. Al-Baldawi IA, Sheikh Abdullah SR, Anuar N, Suja F, Idris M
    Water Sci Technol, 2013;68(10):2271-8.
    PMID: 24292478 DOI: 10.2166/wst.2013.484
    One of the appropriate development technology options for the treatment of wastewater contaminated with diesel is constructed wetlands (CWs). Throughout 72 days of exposure, sampling was carried out for monitoring of physical parameters, plant growth and the efficiency of total petroleum hydrocarbon (TPH) removal, as an indication for diesel contamination, to assess the pilot-scale performance. Four pilot CWs with a horizontal sub-surface flow system were applied using the bulrush of Scirpus grossus. The CWs were loaded with different diesel concentrations of 0, 0.1, 0.2 and 0.25% (Vdiesel/Vwater). The TPH removal efficiencies were 82, 71, and 67% at the end of 72 days for diesel concentrations of 0.1, 0.2, and 0.25% respectively. In addition, the high removal efficiency of total suspended solids and chemical oxygen demand (COD) were 100 and 75.4% respectively, for a diesel concentration of 0.1%. It was concluded that S. grossus is a potential plant that can be used in a well-operated CW for restoring 0.1% diesel-contaminated water.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links