Displaying publications 1 - 20 of 46 in total

Abstract:
Sort:
  1. Yu SP, Ong KC, Perera D, Wong KT
    Virology, 2019 01 15;527:107-115.
    PMID: 30481615 DOI: 10.1016/j.virol.2018.10.015
    Japanese encephalitis virus (JEV) causes central nervous system neuronal injury and inflammation. A clear understanding of neuronal responses to JEV infection remains elusive. Using the Affymetrix array to investigate the transcriptome of infected SK-N-MC cells, 1316 and 2737 dysregulated genes (≥ 2/-2 fold change, P 
  2. Young KI, Buenemann M, Vasilakis N, Perera D, Hanley KA
    Ecosphere, 2021 Apr;12(4).
    PMID: 33996190 DOI: 10.1002/ecs2.3463
    Deforestation precipitates spillover of enzootic, vector-borne viruses into humans, but specific mechanisms for this effect have rarely been investigated. Expansion of oil palm cultivation is a major driver of deforestation. Here, we demonstrate that mosquito abundance decreased over ten stepwise distances from interior forest into conterminous palm plantations in Borneo. Diversity in interior plantation narrowed to one species, Aedes albopictus, a potential bridge vector for spillover of multiple viruses. A. albopictus was equally abundant across all distances in forests, forest-plantation edge, and plantations, while A. niveus, a known vector of sylvatic dengue virus, was found only in forests. A. albopictus collections were significantly female-biased in plantation but not in edge or forest. Our data reveal that the likelihood of encountering any mosquito is greater in interior forest and edge than plantation, while the likelihood of encountering A. albopictus is equivalent across the gradient sampled from interior plantation to interior forest.
  3. Young KI, Mundis S, Widen SG, Wood TG, Tesh RB, Cardosa J, et al.
    Parasit Vectors, 2017 Aug 31;10(1):406.
    PMID: 28859676 DOI: 10.1186/s13071-017-2341-z
    BACKGROUND: Mosquito-borne dengue virus (DENV) is maintained in a sylvatic, enzootic cycle of transmission between canopy-dwelling non-human primates and Aedes mosquitoes in Borneo. Sylvatic DENV can spill over into humans living in proximity to forest foci of transmission, in some cases resulting in severe dengue disease. The most likely vectors of such spillover (bridge vectors) in Borneo are Ae. albopictus and Ae. niveus. Borneo is currently experiencing extensive forest clearance. To gauge the effect of this change in forest cover on the likelihood of sylvatic DENV spillover, it is first necessary to characterize the distribution of bridge vectors in different land cover types. In the current study, we hypothesized that Ae. niveus and Ae. albopictus would show significantly different distributions in different land cover types; specifically, we predicted that Ae. niveus would be most abundant in forests whereas Ae. albopictus would have a more even distribution in the landscape.

    RESULTS: Mosquitoes were collected from a total of 15 sites using gravid traps and a backpack aspirator around Kampong Puruh Karu, Sarawak, Malaysian Borneo, where sylvatic DENV spillover has been documented. A total of 2447 mosquitoes comprising 10 genera and 4 species of Aedes, were collected over the three years, 2013, 2014 and 2016, in the three major land cover types in the area, homestead, agriculture and forest. Mosquitoes were identified morphologically, pooled by species and gender, homogenized, and subject to DNA barcoding of each Aedes species and to arbovirus screening. As predicted, Ae. niveus was found almost exclusively in forests whereas Ae. albopictus was collected in all land cover types. Aedes albopictus was significantly (P = 0.04) more abundant in agricultural fields than forests. Sylvatic DENV was not detected in any Aedes mosquito pools, however genomes of 14 viruses were detected using next generation sequencing.

    CONCLUSIONS: Land cover type affects the abundance and distribution of the most likely bridge vectors of sylvatic DENV in Malaysia Borneo. Conversion of forests to agriculture will likely decrease the range and abundance of Ae. niveus but enhance the abundance of Ae. albopictus.

  4. Yogarajah T, Ong KC, Perera D, Wong KT
    Sci Rep, 2017 07 19;7(1):5845.
    PMID: 28724943 DOI: 10.1038/s41598-017-05589-2
    Encephalomyelitis is a well-known complication of hand, foot, and mouth disease (HFMD) due to Enterovirus 71 (EV71) infection. Viral RNA/antigens could be detected in the central nervous system (CNS) neurons in fatal encephalomyelitis but the mechanisms of neuronal cell death is not clearly understood. We investigated the role of absent in melanoma 2 (AIM2) inflammasome in neuronal cell death, and its relationship to viral replication. Our transcriptomic analysis, RT-qPCR, Western blot, immunofluorescence and flow cytometry studies consistently showed AIM2 gene up-regulation and protein expression in EV-A71-infected SK-N-SH cells. Downstream AIM2-induced genes, CARD16, caspase-1 and IL-1β were also up-regulated and caspase-1 was activated to form cleaved caspase-1 p20 subunits. As evidenced by 7-AAD positivity, pyroptosis was confirmed in infected cells. Overall, these findings have a strong correlation with decreases in viral titers, copy numbers and proteins, and reduced proportions of infected cells. AIM2 and viral antigens were detected by immunohistochemistry in infected neurons in inflamed areas of the CNS in EV-A71 encephalomyelitis. In infected AIM2-knockdown cells, AIM2 and related downstream gene expressions, and pyroptosis were suppressed, resulting in significantly increased virus infection. These results support the notion that AIM2 inflammasome-mediated pyroptosis is an important mechanism of neuronal cell death and it could play an important role in limiting EV-A71 replication.
  5. Yogarajah T, Ong KC, Perera D, Wong KT
    Arch Virol, 2017 Mar;162(3):727-737.
    PMID: 27878462 DOI: 10.1007/s00705-016-3157-4
    Enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16) are closely related enteroviruses that cause hand, foot and mouth disease (HFMD) in children. Serious neurological complications almost always occur in EV-A71 infection, but are rare in CV-A16 infection. Based on the hypothesis that this may be because EV-A71 infects neuronal cells more easily than CV-A16, we compared virus infection, replication and spread of EV-A71 and CV-A16 in SK-N-SH cells. We found that CV-A16 invariably showed significantly lower replication and caused less necrotic cell death in SK-N-SH cells, compared with EV-A71. This was not due to a lower proportion of CV-A16-infected cells, since both viruses showed similar proportions of infected cells at all time points analyzed. Furthermore, reduced replication of CV-A16 in SK-N-SH cells does not appear to be due to limited viral receptor availability, which might limit viral entry, because experiments with viral RNA-transfected cells showed the same results as for live virus infections. On the other hand, no differences were observed between EV-A71 and CV-A16 in RD cells and results were generally similar in RD cells for both viruses. Taken together, our findings suggest that the poor growth of CV-A16 and EV-A71in SK-N-SH cells, compared with RD cells, may be due to cell type-specific restrictions on viral replication and spread. Furthermore, the lower viral replication and necrotic cell death in CV-A16-infected SK-N-SH cells, compared with EV-A71-infected SK-N-SH cells, is consistent with the lower prevalence of neurotropism observed in CV-A16-associated HFMD outbreaks. Nonetheless, in vivo data and more extensive comparisons of different viral strains are essential to confirm our findings.
  6. Yogarajah T, Ong KC, Perera D, Wong KT
    J Virol, 2018 03 15;92(6).
    PMID: 29263272 DOI: 10.1128/JVI.01914-17
    Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are closely related enteroviruses that cause the same hand, foot, and mouth disease (HFMD), but neurological complications occur only very rarely in CV-A16 compared to EV-A71 infections. To elucidate host responses that may be able to explain these differences, we performed transcriptomic analysis and real-time quantitative PCR (RT-qPCR) in CV-A16-infected neuroblastoma cells (SK-N-SH), and the results showed that the radical S-adenosylmethionine domain containing 2 (RSAD2) was the highest upregulated gene in the antimicrobial pathway. Increased RSAD2 expression was correlated with reduced viral replication, while RSAD2 knockdown cells were correlated with increased replication. EV-A71 replication showed no apparent correlation to RSAD2 expressions. Absent in melanoma 2 (AIM2), which is associated with pyroptotic cell death, was upregulated in EV-A71-infected neurons but not in CV-A16 infection, suggesting that the AIM2 inflammasome played a significant role in suppressing EV-A71 replication. Chimeric viruses derived from CV-A16 and EV-A71 but containing swapped 5' nontranslated regions (5' NTRs) showed that RSAD2 expression/viral replication and AIM2 expression/viral replication patterns may be linked to the 5' NTRs of parental viruses. Differences in secondary structure of internal ribosomal entry sites within the 5' NTR may be responsible for these findings. Overall, our results suggest that CV-A16 and EV-A71 elicit different host responses to infection, which may help explain the apparent lower incidence of CV-A16-associated neurovirulence in HFMD outbreaks compared to EV-A71 infection.IMPORTANCE Although coxsackievirus A16 (CV-A16) and enterovirus A17 (EV-A71) both cause hand, foot, and mouth disease, EV-A71 has emerged as a leading cause of nonpolio, enteroviral fatal encephalomyelitis among young children. The significance of our research is in the identification of the possible differing and novel mechanisms of CV-A16 and EV-A71 inhibition in neuronal cells that may impact viral neuropathogenesis. We further showed that viral 5' NTRs may play significant roles in eliciting different host response mechanisms.
  7. Wang X, Xiu L, Binder RA, Toh TH, Lee JS, Ting J, et al.
    One Health, 2021 Dec;13:100274.
    PMID: 34124332 DOI: 10.1016/j.onehlt.2021.100274
    We examined a collection of 386 animal, 451 human, and 109 archived bioaerosol samples with a new pan-species coronavirus molecular assay. Thirty-eight (4.02%) of 946 specimens yielded evidence of human or animal coronaviruses. Our findings demonstrate the utility of employing the pan-CoV RT-PCR assay in detecting varied coronavirus among human, animal, and environmental specimens. This RT-PCR assay might be employed as a screening diagnostic for early detection of coronaviruses incursions or prepandemic coronavirus emergence in animal or human populations.
  8. Van Tu P, Thao NTT, Perera D, Truong KH, Tien NTK, Thuong TC, et al.
    Emerg Infect Dis, 2007 Nov;13(11):1733-41.
    PMID: 18217559 DOI: 10.3201/eid1311.070632
    During 2005, 764 children were brought to a large children's hospital in Ho Chi Minh City, Vietnam, with a diagnosis of hand, foot, and mouth disease. All enrolled children had specimens (vesicle fluid, stool, throat swab) collected for enterovirus isolation by cell culture. An enterovirus was isolated from 411 (53.8%) of the specimens: 173 (42.1%) isolates were identified as human enterovirus 71 (HEV71) and 214 (52.1%) as coxsackievirus A16. Of the identified HEV71 infections, 51 (29.5%) were complicated by acute neurologic disease and 3 (1.7%) were fatal. HEV71 was isolated throughout the year, with a period of higher prevalence in October-November. Phylogenetic analysis of 23 HEV71 isolates showed that during the first half of 2005, viruses belonging to 3 subgenogroups, C1, C4, and a previously undescribed subgenogroup, C5, cocirculated in southern Vietnam. In the second half of the year, viruses belonging to subgenogroup C5 predominated during a period of higher HEV71 activity.
  9. Thanh TT, Anh NT, Tham NT, Van HM, Sabanathan S, Qui PT, et al.
    Virol J, 2015 Jun 09;12:85.
    PMID: 26050791 DOI: 10.1186/s12985-015-0316-2
    BACKGROUND: Hand foot and mouth disease (HFMD) is a disease of public health importance across the Asia-Pacific region. The disease is caused by enteroviruses (EVs), in particular enterovirus A71 (EV-A71). In EV-A71-associated HFMD, the infection is sometimes associated with severe manifestations including neurological involvement and fatal outcome. The availability of a robust diagnostic assay to distinguish EV-A71 from other EVs is important for patient management and outbreak response.

    METHODS: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients.

    RESULTS: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed.

    CONCLUSION: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD.

  10. Tan le V, Tuyen NT, Thanh TT, Ngan TT, Van HM, Sabanathan S, et al.
    J Virol Methods, 2015 Apr;215-216:30-6.
    PMID: 25704598 DOI: 10.1016/j.jviromet.2015.02.011
    Enterovirus A71 (EV-A71) has emerged as the most important cause of large outbreaks of severe and sometimes fatal hand, foot and mouth disease (HFMD) across the Asia-Pacific region. EV-A71 outbreaks have been associated with (sub)genogroup switches, sometimes accompanied by recombination events. Understanding EV-A71 population dynamics is therefore essential for understanding this emerging infection, and may provide pivotal information for vaccine development. Despite the public health burden of EV-A71, relatively few EV-A71 complete-genome sequences are available for analysis and from limited geographical localities. The availability of an efficient procedure for whole-genome sequencing would stimulate effort to generate more viral sequence data. Herein, we report for the first time the development of a next-generation sequencing based protocol for whole-genome sequencing of EV-A71 directly from clinical specimens. We were able to sequence viruses of subgenogroup C4 and B5, while RNA from culture materials of diverse EV-A71 subgenogroups belonging to both genogroup B and C was successfully amplified. The nature of intra-host genetic diversity was explored in 22 clinical samples, revealing 107 positions carrying minor variants (ranging from 0 to 15 variants per sample). Our analysis of EV-A71 strains sampled in 2013 showed that they all belonged to subgenogroup B5, representing the first report of this subgenogroup in Vietnam. In conclusion, we have successfully developed a high-throughput next-generation sequencing-based assay for whole-genome sequencing of EV-A71 from clinical samples.
  11. Tan XH, Chong WL, Lee VS, Abdullah S, Jasni K, Suarni SQ, et al.
    Vaccines (Basel), 2023 Aug 14;11(8).
    PMID: 37631931 DOI: 10.3390/vaccines11081363
    Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.
  12. Tan SH, Ong KC, Perera D, Wong KT
    Antiviral Res, 2016 Aug;132:196-203.
    PMID: 27340013 DOI: 10.1016/j.antiviral.2016.04.015
    BACKGROUND: Enterovirus A71 (EV-A71) encephalomyelitis is an often fatal disease for which there is no specific treatment available. Passive immunization with a specific monoclonal antibody to EV-A71 was used on a murine model of EV-A71 encephalomyelitis to evaluate its therapeutic effectiveness before and after established central nervous system (CNS) infection.

    METHODS: Mice were intraperitoneally-infected with a mouse-adapted EV-A71 strain and treated with a dose of monoclonal antibody (MAb) daily for 3 days on day 1, 2 and 3 post-infection or for 3 days on 3, 4 and 5 post-infection. Treatment effectiveness was evaluated by signs of infection and survival rate. Histopathology and qPCR analyses were performed on mice sacrificed a day after completing treatment.

    RESULTS: In mock-treated mice, CNS infection was established from day 3 post-infection. All mice treated before established CNS infection, survived and recovered completely without CNS infection. All mice treated after established CNS infection survived with mild paralysis, and viral load and antigens/RNA at day 6 post-infection were significantly reduced.

    CONCLUSIONS: Passive immunization with our MAb could prevent CNS infection in mice if given early before the establishment of CNS infection. It could also ameliorate established CNS infection if optimal and repeated doses were given.

  13. Simarmata D, Ng DC, Kam YW, Lee B, Sum MS, Her Z, et al.
    Sci Rep, 2016 05 16;6:26097.
    PMID: 27180811 DOI: 10.1038/srep26097
    Chikungunya fever (CHIKF) is a global infectious disease which can affect a wide range of age groups. The pathological and immunological response upon Chikungunya virus (CHIKV) infection have been reported over the last few years. However, the clinical profile and immune response upon CHIKV infection in children remain largely unknown. In this study, we analyzed the clinical and immunological response, focusing on the cytokine/chemokine profile in a CHIKV-infected pediatric cohort from Sarawak, Malaysia. Unique immune mediators triggered upon CHIKV infection were identified through meta-analysis of the immune signatures between this pediatric group and cohorts from previous outbreaks. The data generated from this study revealed that a broad spectrum of cytokines/chemokines is up-regulated in a sub-group of virus-infected children stratified according to their viremic status during hospitalization. Furthermore, different immune mediator profiles (the levels of pro-inflammatory cytokines, chemokines and growth and other factors) were observed between children and adults. This study gives an important insight to understand the immune response of CHIKV infection in children and would aid in the development of better prognostics and clinical management for children.
  14. Sam IC, Chong YM, Abdullah A, Fu JYL, Hasan MS, Jamaluddin FH, et al.
    J Med Virol, 2021 Nov 10.
    PMID: 34757638 DOI: 10.1002/jmv.27441
    Malaysia has experienced three waves of coronavirus disease 2019 (COVID-19) as of March 31, 2021. We studied the associated molecular epidemiology and SARS-CoV-2 seroprevalence during the third wave. We obtained 60 whole-genome SARS-CoV-2 sequences between October 2020 and January 2021 in Kuala Lumpur/Selangor and analyzed 989 available Malaysian sequences. We tested 653 residual serum samples collected between December 2020 to April 2021 for anti-SARS-CoV-2 total antibodies, as a proxy for population immunity. The first wave (January 2020) comprised sporadic imported cases from China of early Pango lineages A and B. The second wave (March-June 2020) was associated with lineage B.6. The ongoing third wave (from September 2020) was propagated by a state election in Sabah. It is due to lineage B.1.524 viruses containing spike mutations D614G and A701V. Lineages B.1.459, B.1.470, and B.1.466.2 were likely imported from the region and confined to Sarawak state. Direct age-standardized seroprevalence in Kuala Lumpur/Selangor was 3.0%. The second and third waves were driven by super-spreading events and different circulating lineages. Malaysia is highly susceptible to further waves, especially as alpha (B.1.1.7) and beta (B.1.351) variants of concern were first detected in December 2020/January 2021. Increased genomic surveillance is critical.
  15. Podin Y, Gias EL, Ong F, Leong YW, Yee SF, Yusof MA, et al.
    BMC Public Health, 2006 Jul 07;6:180.
    PMID: 16827926
    BACKGROUND: A major outbreak of human enterovirus 71-associated hand, foot and mouth disease in Sarawak in 1997 marked the beginning of a series of outbreaks in the Asia Pacific region. Some of these outbreaks had unusually high numbers of fatalities and this generated much fear and anxiety in the region.

    METHODS: We established a sentinel surveillance programme for hand, foot and mouth disease in Sarawak, Malaysia, in March 1998, and the observations of the first 7 years are described here. Virus isolation, serotyping and genotyping were performed on throat, rectal, vesicle and other swabs.

    RESULTS: During this period Sarawak had two outbreaks of human enterovirus 71, in 2000 and 2003. The predominant strains circulating in the outbreaks of 1997, 2000 and 2003 were all from genogroup B, but the strains isolated during each outbreak were genetically distinct from each other. Human enterovirus 71 outbreaks occurred in a cyclical pattern every three years and Coxsackievirus A16 co-circulated with human enterovirus 71. Although vesicles were most likely to yield an isolate, this sample was not generally available from most cases and obtaining throat swabs was thus found to be the most efficient way to obtain virological information.

    CONCLUSION: Knowledge of the epidemiology of human enterovirus 71 transmission will allow public health personnel to predict when outbreaks might occur and to plan interventions in an effective manner in order to reduce the burden of disease.

  16. Piyasena TBH, Setoh YX, Hobson-Peters J, Prow NA, Bielefeldt-Ohmann H, Khromykh AA, et al.
    Vector Borne Zoonotic Dis, 2017 12;17(12):825-835.
    PMID: 29083957 DOI: 10.1089/vbz.2017.2172
    In Australia, infection of horses with the West Nile virus (WNV) or Murray Valley encephalitis virus (MVEV) occasionally results in severe neurological disease that cannot be clinically differentiated. Confirmatory serological tests to detect antibody specific for MVEV or WNV in horses are often hampered by cross-reactive antibodies induced to conserved epitopes on the envelope (E) protein. This study utilized bacterially expressed recombinant antigens derived from domain III of the E protein (rE-DIII) of MVEV and WNV, respectively, to determine whether these subunit antigens provided specific diagnostic markers of infection with these two viruses. When a panel of 130 serum samples, from horses with known flavivirus infection status, was tested in enzyme-linked immunosorbent assay (ELISA) using rE-DIII antigens, a differential diagnosis of MVEV or WNV was achieved for most samples. Time-point samples from horses exposed to flavivirus infection during the 2011 outbreak of equine encephalitis in south-eastern Australia also indicated that the rE-DIII antigens were capable of detecting and differentiating MVEV and WNV infection in convalescent sera with similar sensitivity and specificity to virus neutralization tests and blocking ELISAs. Overall, these results indicate that the rE-DIII is a suitable antigen for use in rapid immunoassays for confirming MVEV and WNV infections in horses in the Australian context and warrant further assessment on sensitive, high-throughput serological platforms such as multiplex immune assays.
  17. Perera D, Shimizu H, Yoshida H, Tu PV, Ishiko H, McMinn PC, et al.
    J Med Virol, 2010 Apr;82(4):649-57.
    PMID: 20166171 DOI: 10.1002/jmv.21652
    The VP4, VP2, and VP1 gene regions were evaluated for their usefulness in typing human enteroviruses. Three published RT-PCR primers sets targeting separately these three gene regions were used. Initially, from a total of 86 field isolates (36 HEV-A, 40 HEV-B, and 10 HEV-C) tested, 100% concordance in HEV-A was identified from all three gene regions (VP4, VP2, and VP1). However, for HEV-B and HEV-C viruses, only the VP2 and VP1 regions, and not VP4, showed 100% concordance in typing these viruses. To evaluate further the usefulness of VP4 in typing HEV-A enteroviruses, 55 Japanese and 203 published paired VP4 and VP1 nucleotide sequences were also examined. In each case, typing by VP4 was 100% in concordance with typing using VP1. Given these results, it is proposed that for HEV-A enteroviruses, all three gene regions (VP4, VP2, and VP1), would be useful for typing these viruses. These options would enhance the capability of laboratories in identifying these viruses and would greatly help in outbreaks of hand, foot, and mouth disease.
  18. Perera D, Yusof MA, Podin Y, Ooi MH, Thao NT, Wong KK, et al.
    Arch Virol, 2007;152(6):1201-8.
    PMID: 17308978
    A phylogenetic analysis of VP1 and VP4 nucleotide sequences of 52 recent CVA16 strains demonstrated two distinct CVA16 genogroups, A and B, with the prototype strain being the only member of genogroup A. CVA16 G-10, the prototype strain, showed a nucleotide difference of 27.7-30.2% and 19.9-25.2% in VP1 and VP4, respectively, in relation to other CVA16 strains, which formed two separate lineages in genogroup B with nucleotide variation of less than 13.4% and less than 16.3% in VP1 and VP4, respectively. Lineage 1 strains circulating before 2000 were later displaced by lineage 2 strains.
  19. Perera D, Podin Y, Akin W, Tan CS, Cardosa MJ
    BMC Infect Dis, 2004 May 4;4:11.
    PMID: 15122971
    Human enterovirus 71 has emerged as an important pathogen in the Asia Pacific region and it is important to be able to make a rapid and specific diagnosis for outbreak control. Recent Asian strains of Coxsackievirus A16 have changes in the VP1 gene which causes mispriming of widely used primers for human enterovirus 71 specific identification.
  20. Ooi MH, Wong SC, Mohan A, Podin Y, Perera D, Clear D, et al.
    BMC Infect Dis, 2009 Jan 19;9:3.
    PMID: 19152683 DOI: 10.1186/1471-2334-9-3
    BACKGROUND: Human enterovirus 71 (HEV71) can cause Hand, foot, and mouth disease (HFMD) with neurological complications, which may rapidly progress to fulminant cardiorespiratory failure, and death. Early recognition of children at risk is the key to reduce acute mortality and morbidity.

    METHODS: We examined data collected through a prospective clinical study of HFMD conducted between 2000 and 2006 that included 3 distinct outbreaks of HEV71 to identify risk factors associated with neurological involvement in children with HFMD.

    RESULTS: Total duration of fever >or= 3 days, peak temperature >or= 38.5 degrees C and history of lethargy were identified as independent risk factors for neurological involvement (evident by CSF pleocytosis) in the analysis of 725 children admitted during the first phase of the study. When they were validated in the second phase of the study, two or more (>or= 2) risk factors were present in 162 (65%) of 250 children with CSF pleocytosis compared with 56 (30%) of 186 children with no CSF pleocytosis (OR 4.27, 95% CI2.79-6.56, p < 0.0001). The usefulness of the three risk factors in identifying children with CSF pleocytosis on hospital admission during the second phase of the study was also tested. Peak temperature >or= 38.5 degrees C and history of lethargy had the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of 28%(48/174), 89%(125/140), 76%(48/63) and 50%(125/251), respectively in predicting CSF pleocytosis in children that were seen within the first 2 days of febrile illness. For those presented on the 3rd or later day of febrile illness, the sensitivity, specificity, PPV and NPV of >or= 2 risk factors predictive of CSF pleocytosis were 75%(57/76), 59%(27/46), 75%(57/76) and 59%(27/46), respectively.

    CONCLUSION: Three readily elicited clinical risk factors were identified to help detect children at risk of neurological involvement. These risk factors may serve as a guide to clinicians to decide the need for hospitalization and further investigation, including cerebrospinal fluid examination, and close monitoring for disease progression in children with HFMD.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links