Displaying publications 1 - 20 of 92 in total

Abstract:
Sort:
  1. Mangano MC, Berlino M, Corbari L, Milisenda G, Lucchese M, Terzo S, et al.
    Environ Sci Policy, 2022 Jan;127:98-110.
    PMID: 34720746 DOI: 10.1016/j.envsci.2021.10.014
    The COVID-19 global pandemic has had severe, unpredictable and synchronous impacts on all levels of perishable food supply chains (PFSC), across multiple sectors and spatial scales. Aquaculture plays a vital and rapidly expanding role in food security, in some cases overtaking wild caught fisheries in the production of high-quality animal protein in this PFSC. We performed a rapid global assessment to evaluate the effects of the COVID-19 pandemic and related emerging control measures on the aquaculture supply chain. Socio-economic effects of the pandemic were analysed by surveying the perceptions of stakeholders, who were asked to describe potential supply-side disruption, vulnerabilities and resilience patterns along the production pipeline with four main supply chain components: a) hatchery, b) production/processing, c) distribution/logistics and d) market. We also assessed different farming strategies, comparing land- vs. sea-based systems; extensive vs. intensive methods; and with and without integrated multi-trophic aquaculture, IMTA. In addition to evaluating levels and sources of economic distress, interviewees were asked to identify mitigation solutions adopted at local / internal (i.e., farm-site) scales, and to express their preference on national / external scale mitigation measures among a set of a priori options. Survey responses identified the potential causes of disruption, ripple effects, sources of food insecurity, and socio-economic conflicts. They also pointed to various levels of mitigation strategies. The collated evidence represents a first baseline useful to address future disaster-driven responses, to reinforce the resilience of the sector and to facilitate the design reconstruction plans and mitigation measures, such as financial aid strategies.
  2. Liu L, Mo Z, Liang Z, Zhang Y, Li R, Ong KC, et al.
    BMC Med, 2015;13:226.
    PMID: 26381232 DOI: 10.1186/s12916-015-0448-7
    To investigate the long-term effects on immunity of an inactivated enterovirus 71 (EV71) vaccine and its protective efficacy.
  3. Chan MY, Efthymios M, Tan SH, Pickering JW, Troughton R, Pemberton C, et al.
    Circulation, 2020 10 13;142(15):1408-1421.
    PMID: 32885678 DOI: 10.1161/CIRCULATIONAHA.119.045158
    BACKGROUND: Heart failure (HF) is the most common long-term complication of acute myocardial infarction (MI). Understanding plasma proteins associated with post-MI HF and their gene expression may identify new candidates for biomarker and drug target discovery.

    METHODS: We used aptamer-based affinity-capture plasma proteomics to measure 1305 plasma proteins at 1 month post-MI in a New Zealand cohort (CDCS [Coronary Disease Cohort Study]) including 181 patients post-MI who were subsequently hospitalized for HF in comparison with 250 patients post-MI who remained event free over a median follow-up of 4.9 years. We then correlated plasma proteins with left ventricular ejection fraction measured at 4 months post-MI and identified proteins potentially coregulated in post-MI HF using weighted gene co-expression network analysis. A Singapore cohort (IMMACULATE [Improving Outcomes in Myocardial Infarction through Reversal of Cardiac Remodelling]) of 223 patients post-MI, of which 33 patients were hospitalized for HF (median follow-up, 2.0 years), was used for further candidate enrichment of plasma proteins by using Fisher meta-analysis, resampling-based statistical testing, and machine learning. We then cross-referenced differentially expressed proteins with their differentially expressed genes from single-cell transcriptomes of nonmyocyte cardiac cells isolated from a murine MI model, and single-cell and single-nucleus transcriptomes of cardiac myocytes from murine HF models and human patients with HF.

    RESULTS: In the CDCS cohort, 212 differentially expressed plasma proteins were significantly associated with subsequent HF events. Of these, 96 correlated with left ventricular ejection fraction measured at 4 months post-MI. Weighted gene co-expression network analysis prioritized 63 of the 212 proteins that demonstrated significantly higher correlations among patients who developed post-MI HF in comparison with event-free controls (data set 1). Cross-cohort meta-analysis of the IMMACULATE cohort identified 36 plasma proteins associated with post-MI HF (data set 2), whereas single-cell transcriptomes identified 15 gene-protein candidates (data set 3). The majority of prioritized proteins were of matricellular origin. The 6 most highly enriched proteins that were common to all 3 data sets included well-established biomarkers of post-MI HF: N-terminal B-type natriuretic peptide and troponin T, and newly emergent biomarkers, angiopoietin-2, thrombospondin-2, latent transforming growth factor-β binding protein-4, and follistatin-related protein-3, as well.

    CONCLUSIONS: Large-scale human plasma proteomics, cross-referenced to unbiased cardiac transcriptomics at single-cell resolution, prioritized protein candidates associated with post-MI HF for further mechanistic and clinical validation.

  4. Ho CL, Kwan YY, Choi MC, Tee SS, Ng WH, Lim KA, et al.
    BMC Genomics, 2007;8:381.
    PMID: 17953740
    Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm.
  5. Tiong KH, Tan BS, Choo HL, Chung FF, Hii LW, Tan SH, et al.
    Oncotarget, 2016 Sep 06;7(36):57633-57650.
    PMID: 27192118 DOI: 10.18632/oncotarget.9328
    Basal-like breast cancer is an aggressive tumor subtype with poor prognosis. The discovery of underlying mechanisms mediating tumor cell survival, and the development of novel agents to target these pathways, is a priority for patients with basal-like breast cancer. From a functional screen to identify key drivers of basal-like breast cancer cell growth, we identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of cell survival. We found that FGFR4 mediates cancer cell survival predominantly via activation of PI3K/AKT. Importantly, a subset of basal-like breast cancer cells also secrete fibroblast growth factor 19 (FGF19), a canonical ligand specific for FGFR4. siRNA-mediated silencing of FGF19 or neutralization of extracellular FGF19 by anti-FGF19 antibody (1A6) decreases AKT phosphorylation, suppresses cancer cell growth and enhances doxorubicin sensitivity only in the FGFR4+/FGF19+ breast cancer cells. Consistently, FGFR4/FGF19 co-expression was also observed in 82 out of 287 (28.6%) primary breast tumors, and their expression is strongly associated with AKT phosphorylation, Ki-67 staining, higher tumor stage and basal-like phenotype. In summary, our results demonstrated the presence of an FGFR4/FGF19 autocrine signaling that mediates the survival of a subset of basal-like breast cancer cells and suggest that inactivation of this autocrine loop may potentially serve as a novel therapeutic intervention for future treatment of breast cancers.
  6. Soo JS, Ng CH, Tan SH, Malik RA, Teh YC, Tan BS, et al.
    Apoptosis, 2015 Oct;20(10):1373-87.
    PMID: 26276035 DOI: 10.1007/s10495-015-1158-5
    Metformin, an AMPK activator, has been reported to improve pathological response to chemotherapy in diabetic breast cancer patients. To date, its mechanism of action in cancer, especially in cancer stem cells (CSCs) have not been fully elucidated. In this study, we demonstrated that metformin, but not other AMPK activators (e.g. AICAR and A-769662), synergizes 5-fluouracil, epirubicin, and cyclophosphamide (FEC) combination chemotherapy in non-stem breast cancer cells and breast cancer stem cells. We show that this occurs through an AMPK-dependent mechanism in parental breast cancer cell lines. In contrast, the synergistic effects of metformin and FEC occurred in an AMPK-independent mechanism in breast CSCs. Further analyses revealed that metformin accelerated glucose consumption and lactate production more severely in the breast CSCs but the production of intracellular ATP was severely hampered, leading to a severe energy crisis and impairs the ability of CSCs to repair FEC-induced DNA damage. Indeed, addition of extracellular ATP completely abrogated the synergistic effects of metformin on FEC sensitivity in breast CSCs. In conclusion, our results suggest that metformin synergizes FEC sensitivity through distinct mechanism in parental breast cancer cell lines and CSCs, thus providing further evidence for the clinical relevance of metformin for the treatment of cancers.
  7. Ang YLE, Ho GF, Soo RA, Sundar R, Tan SH, Yong WP, et al.
    BMC Cancer, 2020 Nov 17;20(1):1118.
    PMID: 33203399 DOI: 10.1186/s12885-020-07616-4
    BACKGROUND: We previously reported that low-dose, short-course sunitinib prior to neoadjuvant doxorubicin-cyclophosphamide (AC) normalised tumour vasculature and improved perfusion, but resulted in neutropenia and delayed subsequent cycles in breast cancer patients. This study combined sunitinib with docetaxel, which has an earlier neutrophil nadir than AC.

    METHODS: Patients with advanced solid cancers were randomized 1:1 to 3-weekly docetaxel 75 mg/m2, with or without sunitinib 12.5 mg daily for 7 days prior to docetaxel, stratified by primary tumour site. Primary endpoints were objective-response (ORR:CR + PR) and clinical-benefit rate (CBR:CR + PR + SD); secondary endpoints were toxicity and progression-free-survival (PFS).

    RESULTS: We enrolled 68 patients from 2 study sites; 33 received docetaxel-sunitinib and 35 docetaxel alone, with 33 breast, 25 lung and 10 patients with other cancers. There was no difference in ORR (30.3% vs 28.6%, p = 0.432, odds-ratio [OR] 1.10, 95% CI 0.38-3.18); CBR was lower in the docetaxel-sunitinib arm (48.5% vs 71.4%, p = 0.027 OR 0.37, 95% CI 0.14-1.01). Median PFS was shorter in the docetaxel-sunitinib arm (2.9 vs 4.9 months, hazard-ratio [HR] 2.00, 95% CI 1.15-3.48, p = 0.014) overall, as well as in breast (4.2 vs 5.6 months, p = 0.048) and other cancers (2.0 vs 5.3 months, p = 0.009), but not in lung cancers (2.9 vs 4.1 months, p = 0.597). Median OS was similar in both arms overall (9.9 vs 10.5 months, HR 0.92, 95% CI 0.51-1.67, p = 0.789), and in the breast (18.9 vs 25.8 months, p = 0.354), lung (7.0 vs 6.7 months, p = 0.970) and other cancers (4.5 vs 8.8 months, p = 0.449) subgroups. Grade 3/4 haematological toxicities were lower with docetaxel-sunitinib (18.2% vs 34.3%, p = 0.132), attributed to greater discretionary use of prophylactic G-CSF (90.9% vs 63.0%, p = 0.024). Grade 3/4 non-haematological toxicities were similar (12.1% vs 14.3%, p = 0.792).

    CONCLUSIONS: The addition of sunitinib to docetaxel was well-tolerated but did not improve outcomes. The possible negative impact in metastatic breast cancer patients is contrary to results of adding sunitinib to neoadjuvant AC. These negative results suggest that the intermittent administration of sunitinib in the current dose and schedule with docetaxel in advanced solid tumours, particularly breast cancers, is not beneficial.

    TRIAL REGISTRATION: The study was registered ( NCT01803503 ) prospectively on clinicaltrials.gov on 4th March 2013.

  8. Kim SH, Chung DR, Song JH, Baek JY, Thamlikitkul V, Wang H, et al.
    Vaccine, 2020 08 27;38(38):6065-6073.
    PMID: 31590932 DOI: 10.1016/j.vaccine.2019.09.065
    This study was performed to investigate the serotype distribution and antimicrobial susceptibility of Streptococcus pneumoniae in Asian countries. A prospective surveillance study on S. pneumoniae collected from adult patients (≥50 years old) with invasive pneumococcal disease or community-acquired pneumonia was performed at 66 hospitals in Asian countries (Korea, China, Malaysia, Singapore, the Philippines, and Thailand) in 2012-2017. Serotyping and antimicrobial susceptibility tests of 850 pneumococcal isolates were performed. The proportions of isolates with serotypes covered by 13-valent pneumococcal conjugate vaccine (PCV13) were 37.0% in Korea, 53.4% in China, 77.2% in Malaysia, 35.9% in the Philippines, 68.7% in Singapore, and 60.2% in Thailand. Major serotypes were 19F (10.4%), 19A (10.1%), and 3 (8.5%) in 2012-2017, with different serotype distributions in each country. Macrolide resistance in pneumococci was high (66.8%) and prevalence of multidrug resistance (MDR) also remained high (50.8%). MDR non-PCV13 serotypes such as 11A, 15A, 35B, and 23A have emerged in Asian countries. This study showed the persistent prevalence of 19F and 19A with a noteworthy increase of certain non-PCV13 serotypes in Asian countries. High prevalence of macrolide resistance and MDR was also found in pneumococcal isolates. These data emphasize the need for continued surveillance of pneumococcal epidemiology in Asia in the post-pneumococcal vaccine era.
  9. Chung FF, Tan PF, Raja VJ, Tan BS, Lim KH, Kam TS, et al.
    Sci Rep, 2017 02 15;7:42504.
    PMID: 28198434 DOI: 10.1038/srep42504
    Precursor mRNA (pre-mRNA) splicing is catalyzed by a large ribonucleoprotein complex known as the spliceosome. Numerous studies have indicated that aberrant splicing patterns or mutations in spliceosome components, including the splicing factor 3b subunit 1 (SF3B1), are associated with hallmark cancer phenotypes. This has led to the identification and development of small molecules with spliceosome-modulating activity as potential anticancer agents. Jerantinine A (JA) is a novel indole alkaloid which displays potent anti-proliferative activities against human cancer cell lines by inhibiting tubulin polymerization and inducing G2/M cell cycle arrest. Using a combined pooled-genome wide shRNA library screen and global proteomic profiling, we showed that JA targets the spliceosome by up-regulating SF3B1 and SF3B3 protein in breast cancer cells. Notably, JA induced significant tumor-specific cell death and a significant increase in unspliced pre-mRNAs. In contrast, depletion of endogenous SF3B1 abrogated the apoptotic effects, but not the G2/M cell cycle arrest induced by JA. Further analyses showed that JA stabilizes endogenous SF3B1 protein in breast cancer cells and induced dissociation of the protein from the nucleosome complex. Together, these results demonstrate that JA exerts its antitumor activity by targeting SF3B1 and SF3B3 in addition to its reported targeting of tubulin polymerization.
  10. de Carvalho LP, Tan SH, Ow GS, Tang Z, Ching J, Kovalik JP, et al.
    JACC Basic Transl Sci, 2018 Apr;3(2):163-175.
    PMID: 30062203 DOI: 10.1016/j.jacbts.2017.12.005
    We identified a plasma signature of 11 C14 to C26 ceramides and 1 C16 dihydroceramide predictive of major adverse cardiovascular events in patients with acute myocardial infarction (AMI). Among patients undergoing coronary artery bypass surgery, those with recent AMI, compared with those without recent AMI, showed a significant increase in 5 of the signature's 12 ceramides in plasma but not simultaneously-biopsied aortic tissue. In contrast, a rat AMI model, compared with sham control, showed a significant increase in myocardial concentrations of all 12 ceramides and up-regulation of 3 ceramide-producing enzymes, suggesting ischemic myocardium as a possible source of this ceramide signature.
  11. Zhang Q, Wang PI, Ong GL, Tan SH, Tan ZW, Hii YH, et al.
    Polymers (Basel), 2019 May 09;11(5).
    PMID: 31075895 DOI: 10.3390/polym11050840
    In this work, polymers of poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-triphenylamine] with side chains containing: pyrene (C1), diphenyl (C2), naphthalene (C3), and isopropyl (C6) structures were synthesized via a Suzuki coupling reaction. The structures were verified using NMR and cyclic voltammetry measurements provide the HOMO and LUMO of the polymers. The polymer with pyrene (C1) and naphthalene (C3) produced photoluminescence in the green while the polymer with the side chain containing diphenyl (C2) and isopropyl (C6) produce dual emission peaks of blue-green photoluminescence (PL). In order to examine the electroluminescence properties of the polymers, the solutions were spin-coated onto patterned ITO anode, dried, and subsequently coated with an Al cathode layer to form pristine single layer polymer LEDs. The results are compared to a standard PFO sample. The electroluminescence spectra resemble the PL spectra for C1 and C3. The devices of C2, C3, and C6 exhibit voltage-dependent EL. An additional red emission peak was detected for C2 and C6, resulting in spectra with peaks at 435 nm, 490 nm, and 625 nm. The effects of the side chains on the spectral characteristics of the polymer are discussed.
  12. Tan BS, Tiong KH, Choo HL, Chung FF, Hii LW, Tan SH, et al.
    Cell Death Dis, 2015;6:e1826.
    PMID: 26181206 DOI: 10.1038/cddis.2015.191
    p53 is the most frequently mutated tumor-suppressor gene in human cancers. Unlike other tumor-suppressor genes, p53 mutations mainly occur as missense mutations within the DNA-binding domain, leading to the expression of full-length mutant p53 protein. Mutant p53 proteins not only lose their tumor-suppressor function, but may also gain new oncogenic functions and promote tumorigenesis. Here, we showed that silencing of endogenous p53-R273H contact mutant, but not p53-R175H conformational mutant, reduced AKT phosphorylation, induced BCL2-modifying factor (BMF) expression, sensitized BIM dissociation from BCL-XL and induced mitochondria-dependent apoptosis in cancer cells. Importantly, cancer cells harboring endogenous p53-R273H mutant were also found to be inherently resistant to anoikis and lack BMF induction following culture in suspension. Underlying these activities is the ability of p53-R273H mutant to suppress BMF expression that is dependent on constitutively active PI3K/AKT signaling. Collectively, these findings suggest that p53-R273H can specifically drive AKT signaling and suppress BMF expression, resulting in enhanced cell survivability and anoikis resistance. These findings open the possibility that blocking of PI3K/AKT will have therapeutic benefit in mutant p53-R273H expressing cancers.
  13. Lee ECS, Elhassan SAM, Lim GPL, Kok WH, Tan SW, Leong EN, et al.
    Biomed Pharmacother, 2019 Mar;111:198-208.
    PMID: 30583227 DOI: 10.1016/j.biopha.2018.12.052
    For many years, circular ribonucleic acids (circRNAs) have been counted as aberrant splicing by-products. Advanced bioinformatics analysis and deep sequencing techniques have allowed researchers to discover more interesting facts about circRNAs. Intriguing evidence has shed light on the functions of circRNAs in many tissues. Furthermore, emerging reports showed that circRNAs are found abundantly in saliva and blood samples, suggesting that circRNAs are potential clinical biomarkers for human embryonic development, diseases progression and prognosis, in addition to its role in organogenesis and pathogenesis. The implementation of circRNAs in human developmental stages and diseases would be a tremendous discovery in the science and medical field. Therefore, circRNAs have been studied for its biological function as well as its implication in various human diseases. The aim of this review is to highlight the importance of circRNAs in cardiac, respiratory, nervous, endocrine and digestive systems. In addition, the role and impact of circRNAs in, cardiogenesis, neurogenesis and cancer have been discussed.
  14. Tan SY, Mei Wong JL, Sim YJ, Wong SS, Mohamed Elhassan SA, Tan SH, et al.
    Diabetes Metab Syndr, 2018 10 10;13(1):364-372.
    PMID: 30641727 DOI: 10.1016/j.dsx.2018.10.008
    Type 1 and type 2 diabetes mellitus is a serious and lifelong condition commonly characterised by abnormally elevated blood glucose levels due to a failure in insulin production or a decrease in insulin sensitivity and function. Over the years, prevalence of diabetes has increased globally and it is classified as one of the leading cause of high mortality and morbidity rate. Furthermore, diabetes confers a huge economic burden due to its management costs as well as its complications are skyrocketing. The conventional medications in diabetes treatment focusing on insulin secretion and insulin sensitisation cause unwanted side effects to patients and lead to incompliance as well as treatment failure. Besides insulin and oral hypoglycaemic agents, other treatments such as gene therapy and induced β-cells regeneration have not been widely introduced to manage diabetes. Therefore, this review aims to deliver an overview of the current conventional medications in diabetes, discovery of newer pharmacological drugs and gene therapy as a potential intervention of diabetes in the future.
  15. Raziff HHA, Tan D, Tan SH, Wong YH, Lim KS, Yeong CH, et al.
    Phys Med, 2021 Feb;82:40-45.
    PMID: 33581616 DOI: 10.1016/j.ejmp.2021.01.067
    PURPOSE: To investigate the efficacy of a newly-developed laser-heated core biopsy needle in the thermal ablation of biopsy tract to reduce hemorrhage after biopsy using in vivo rabbit's liver model.

    MATERIALS AND METHODS: Five male New Zealand White rabbits weighed between 1.5 and 4.0 kg were anesthetized and their livers were exposed. 18 liver biopsies were performed under control group (without tract ablation, n = 9) and study group (with tract ablation, n = 9) settings. The needle insertion depth (~3 cm) and rate of retraction (~3 mm/s) were fixed in all the experiments. For tract ablation, three different needle temperatures (100, 120 and 150 °C) were compared. The blood loss at each biopsy site was measured by weighing the gauze pads before and after blood absorption. The rabbits were euthanized immediately and the liver specimens were stained with hematoxylin-eosin (H&E) for further histopathological examination (HPE).

    RESULTS: The average blood loss in the study group was reduced significantly (p 

  16. Soo HC, Chung FF, Lim KH, Yap VA, Bradshaw TD, Hii LW, et al.
    PLoS One, 2017;12(1):e0170551.
    PMID: 28107519 DOI: 10.1371/journal.pone.0170551
    Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted.
  17. Khoo SC, Ma NL, Peng WX, Ng KK, Goh MS, Chen HL, et al.
    Chemosphere, 2022 Jan;286(Pt 1):131477.
    PMID: 34303046 DOI: 10.1016/j.chemosphere.2021.131477
    Global solid waste is expected to increase by at least 70% annually until year 2050. The mixture of solid waste including food waste from food industry and domestic diaper waste in landfills is causing environmental and human health issues. Nevertheless, food and diaper waste containing high lignocellulose can easily degrade using lignocellulolytic enzymes thereby converted into energy for the development and growth of mushroom. Therefore, this study explores the potential of recycling biomass waste from coffee ground, banana, eggshell, tea waste, sugarcane bagasse and sawdust and diaper waste as raw material for Lingzhi mushroom (Ganoderma lucidum) cultivation. Using 2% of diaper core with sawdust biowaste leading to the fastest 100% mushroom mycelium spreading completed in one month. The highest production yield is 71.45 g mushroom; this represents about 36% production biological efficiency compared to only 21% as in commercial substrate. The high mushroom substrate reduction of 73% reflect the valorisation of landfill waste. The metabolomics profiling showed that the Lingzhi mushroom produced is of high quality with a high content of triterpene being the bioactive compounds that are medically important for treating assorted disease and used as health supplement. In conclusion, our study proposed a potential resource management towards zero-waste and circular bioeconomy for high profitable mushroom cultivation.
  18. Kelly GM, Kong YH, Dobi A, Srivastava S, Sesterhenn IA, Pathmanathan R, et al.
    Molecular and clinical oncology, 2015 Jan;3(1):23-30.
    PMID: 25469265
    Overexpression of the erythroblast transformation-specific-related gene (ERG) oncoprotein due to transmembrane protease, serine 2 (TMPRSS2)-ERG fusion, the most prevalent genomic alteration in prostate cancer (CaP), is more frequently observed among Caucasian patients compared to patients of African or Asian descent. To the best of our knowledge, this is the first study to investigate the prevalence of ERG alterations in a multiethnic cohort of CaP patients. A total of 191 formalin-fixed paraffin-embedded sections of transrectal ultrasound-guided prostate biopsy specimens, collected from 120 patients treated at the Sime Darby Medical Centre, Subang Jaya, Malaysia, were analyzed for ERG protein expression by immunohistochemistry using the anti-ERG monoclonal antibody 9FY as a surrogate for the detection of ERG fusion events. The overall frequency of ERG protein expression in the population evaluated in this study was 39.2%. Although seemingly similar to rates reported in other Asian communities, the expression of ERG was distinct amongst different ethnic groups (P=0.004). Malaysian Indian (MI) patients exhibited exceedingly high expression of ERG in their tumors, almost doubling that of Malaysian Chinese (MC) patients, whereas ERG expression was very low amongst Malay patients (12.5%). When collectively analyzing data, we observed a significant correlation between younger patients and higher ERG expression (P=0.04). The prevalence of ERG expression was significantly different amongst CaP patients of different ethnicities. The higher number of ERG-expressing tumors among MI patients suggested that the TMPRSS2-ERG fusion may be particularly important in the pathogenesis of CaP amongst this group of patients. Furthermore, the more frequent expression of ERG among the younger patients analyzed suggested an involvement of ERG in the early onset of CaP. The results of this study underline the value of using ERG status to better understand the differences in the etiology of CaP initiation and progression between ethnic groups.
  19. Ishak SD, Tan SH, Khong HK, Jaya-Ram A, Enyu YL, Kuah MK, et al.
    PMID: 19025614 DOI: 10.1186/1477-7827-6-56
    Although unsaturated fatty acids such as eicosapentaenoic acid (EPA, C20:5n-3), docosahexaenoic acid (DHA, C22:6n-3) and arachidonic acid (ARA, C20:4n-6), collectively known as the highly unsaturated fatty acids (HUFA), play pivotal roles in vertebrate reproduction, very little is known about their synthesis in the ovary. The zebrafish (Danio rerio) display capability to synthesize all three HUFA via pathways involving desaturation and elongation of two precursors, the linoleic acid (LA, C18:2n-6) and linolenic acid (LNA, C18:3n-3). As a prerequisite to gain full understanding on the importance and regulation of ovarian HUFA synthesis, we described here the mRNA expression pattern of two enzymes; desaturase (fadsd6) and elongase (elovl5), involved in HUFA biosynthesis pathway, in different zebrafish ovarian follicle stages. Concurrently, the fatty acid profile of each follicle stage was also analyzed.
  20. Dayrat B, Goulding TC, Apte D, Aslam S, Bourke A, Comendador J, et al.
    Zookeys, 2020;972:1-224.
    PMID: 33071542 DOI: 10.3897/zookeys.972.52853
    The genus Peronia Fleming, 1822 includes all the onchidiid slugs with dorsal gills. Its taxonomy is revised for the first time based on a large collection of fresh material from the entire Indo-West Pacific, from South Africa to Hawaii. Nine species are supported by mitochondrial (COI and 16S) and nuclear (ITS2 and 28S) sequences as well as comparative anatomy. All types available were examined and the nomenclatural status of each existing name in the genus is addressed. Of 31 Peronia species-group names available, 27 are regarded as invalid (twenty-one synonyms, sixteen of which are new, five nomina dubia, and one homonym), and four as valid: Peronia peronii (Cuvier, 1804), Peronia verruculata (Cuvier, 1830), Peronia platei (Hoffmann, 1928), and Peronia madagascariensis (Labbé, 1934a). Five new species names are created: P. griffithsi Dayrat & Goulding, sp. nov., P. okinawensis Dayrat & Goulding, sp. nov., P. setoensis Dayrat & Goulding, sp. nov., P. sydneyensis Dayrat & Goulding, sp. nov., and P. willani Dayrat & Goulding, sp. nov.Peronia species are cryptic externally but can be distinguished using internal characters, with the exception of P. platei and P. setoensis. The anatomy of most species is described in detail here for the first time. All the secondary literature is commented on and historical specimens from museum collections were also examined to better establish species distributions. The genus Peronia includes two species that are widespread across the Indo-West Pacific (P. verruculata and P. peronii) as well as endemic species: P. okinawensis and P. setoensis are endemic to Japan, and P. willani is endemic to Northern Territory, Australia. Many new geographical records are provided, as well as a key to the species using morphological traits.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links